This is an automated email from the ASF dual-hosted git repository.

aaronmarkham pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/incubator-mxnet-site.git


The following commit(s) were added to refs/heads/asf-site by this push:
     new 43c16e1  Publish triggered by CI
43c16e1 is described below

commit 43c16e149f8373684c29ac9131dc44d2f8752047
Author: mxnet-ci <mxnet-ci>
AuthorDate: Sun Jul 19 00:42:28 2020 +0000

    Publish triggered by CI
---
 api/python/docs/_modules/mxnet/util.html | 82 ++++++++++++++++----------------
 date.txt                                 |  1 -
 feed.xml                                 |  2 +-
 3 files changed, 42 insertions(+), 43 deletions(-)

diff --git a/api/python/docs/_modules/mxnet/util.html 
b/api/python/docs/_modules/mxnet/util.html
index 42e8ea84..b0c301a 100644
--- a/api/python/docs/_modules/mxnet/util.html
+++ b/api/python/docs/_modules/mxnet/util.html
@@ -815,7 +815,7 @@
     <span class="k">return</span> <span class="n">free_mem</span><span 
class="o">.</span><span class="n">value</span><span class="p">,</span> <span 
class="n">total_mem</span><span class="o">.</span><span class="n">value</span>
 
 
-<span class="k">def</span> <span class="nf">set_np_shape</span><span 
class="p">(</span><span class="n">active</span><span class="p">):</span>
+<div class="viewcode-block" id="set_np_shape"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.set_np_shape">[docs]</a><span 
class="k">def</span> <span class="nf">set_np_shape</span><span 
class="p">(</span><span class="n">active</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;Turns on/off NumPy shape semantics, in 
which `()` represents the shape of scalar tensors,</span>
 <span class="sd">    and tuples with `0` elements, for example, `(0,)`, `(1, 
0, 2)`, represent the shapes</span>
 <span class="sd">    of zero-size tensors. This is turned off by default for 
keeping backward compatibility.</span>
@@ -859,10 +859,10 @@
                          <span class="s1">&#39; deactivate both of 
them.&#39;</span><span class="p">)</span>
     <span class="n">prev</span> <span class="o">=</span> <span 
class="n">ctypes</span><span class="o">.</span><span 
class="n">c_int</span><span class="p">()</span>
     <span class="n">check_call</span><span class="p">(</span><span 
class="n">_LIB</span><span class="o">.</span><span 
class="n">MXSetIsNumpyShape</span><span class="p">(</span><span 
class="n">ctypes</span><span class="o">.</span><span 
class="n">c_int</span><span class="p">(</span><span 
class="n">active</span><span class="p">),</span> <span 
class="n">ctypes</span><span class="o">.</span><span 
class="n">byref</span><span class="p">(</span><span class="n">prev</span><span 
class="p">)))</span>
-    <span class="k">return</span> <span class="nb">bool</span><span 
class="p">(</span><span class="n">prev</span><span class="o">.</span><span 
class="n">value</span><span class="p">)</span>
+    <span class="k">return</span> <span class="nb">bool</span><span 
class="p">(</span><span class="n">prev</span><span class="o">.</span><span 
class="n">value</span><span class="p">)</span></div>
 
 
-<span class="k">def</span> <span class="nf">is_np_shape</span><span 
class="p">():</span>
+<div class="viewcode-block" id="is_np_shape"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.is_np_shape">[docs]</a><span 
class="k">def</span> <span class="nf">is_np_shape</span><span 
class="p">():</span>
     <span class="sd">&quot;&quot;&quot;Checks whether the NumPy shape 
semantics is currently turned on.</span>
 <span class="sd">    In NumPy shape semantics, `()` represents the shape of 
scalar tensors,</span>
 <span class="sd">    and tuples with `0` elements, for example, `(0,)`, `(1, 
0, 2)`, represent</span>
@@ -893,7 +893,7 @@
 <span class="sd">    &quot;&quot;&quot;</span>
     <span class="n">curr</span> <span class="o">=</span> <span 
class="n">ctypes</span><span class="o">.</span><span 
class="n">c_bool</span><span class="p">()</span>
     <span class="n">check_call</span><span class="p">(</span><span 
class="n">_LIB</span><span class="o">.</span><span 
class="n">MXIsNumpyShape</span><span class="p">(</span><span 
class="n">ctypes</span><span class="o">.</span><span 
class="n">byref</span><span class="p">(</span><span class="n">curr</span><span 
class="p">)))</span>
-    <span class="k">return</span> <span class="n">curr</span><span 
class="o">.</span><span class="n">value</span>
+    <span class="k">return</span> <span class="n">curr</span><span 
class="o">.</span><span class="n">value</span></div>
 
 
 <span class="k">class</span> <span class="nc">_NumpyShapeScope</span><span 
class="p">(</span><span class="nb">object</span><span class="p">):</span>
@@ -924,7 +924,7 @@
             <span class="n">set_np_shape</span><span class="p">(</span><span 
class="bp">self</span><span class="o">.</span><span 
class="n">_prev_is_np_shape</span><span class="p">)</span>
 
 
-<span class="k">def</span> <span class="nf">np_shape</span><span 
class="p">(</span><span class="n">active</span><span class="o">=</span><span 
class="kc">True</span><span class="p">):</span>
+<div class="viewcode-block" id="np_shape"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.np_shape">[docs]</a><span 
class="k">def</span> <span class="nf">np_shape</span><span 
class="p">(</span><span class="n">active</span><span class="o">=</span><span 
class="kc">True</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;Returns an activated/deactivated NumPy 
shape scope to be used in &#39;with&#39; statement</span>
 <span class="sd">    and captures code that needs the NumPy shape semantics, 
i.e. support of scalar and</span>
 <span class="sd">    zero-size tensors.</span>
@@ -990,10 +990,10 @@
 <span class="sd">            assert arg_shapes[0] == ()</span>
 <span class="sd">            assert out_shapes[0] == ()</span>
 <span class="sd">    &quot;&quot;&quot;</span>
-    <span class="k">return</span> <span class="n">_NumpyShapeScope</span><span 
class="p">(</span><span class="n">active</span><span class="p">)</span>
+    <span class="k">return</span> <span class="n">_NumpyShapeScope</span><span 
class="p">(</span><span class="n">active</span><span class="p">)</span></div>
 
 
-<span class="k">def</span> <span class="nf">use_np_shape</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
+<div class="viewcode-block" id="use_np_shape"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.use_np_shape">[docs]</a><span 
class="k">def</span> <span class="nf">use_np_shape</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;A decorator wrapping a function or 
class with activated NumPy-shape semantics.</span>
 <span class="sd">    When `func` is a function, this ensures that the 
execution of the function is scoped with NumPy</span>
 <span class="sd">    shape semantics, such as the support for zero-dim and 
zero size tensors. When</span>
@@ -1064,7 +1064,7 @@
         <span class="k">return</span> <span class="n">_with_np_shape</span>
     <span class="k">else</span><span class="p">:</span>
         <span class="k">raise</span> <span class="ne">TypeError</span><span 
class="p">(</span><span class="s1">&#39;use_np_shape can only decorate classes 
and callable objects, &#39;</span>
-                        <span class="s1">&#39;while received a </span><span 
class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span 
class="n">format</span><span class="p">(</span><span class="nb">str</span><span 
class="p">(</span><span class="nb">type</span><span class="p">(</span><span 
class="n">func</span><span class="p">))))</span>
+                        <span class="s1">&#39;while received a </span><span 
class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span 
class="n">format</span><span class="p">(</span><span class="nb">str</span><span 
class="p">(</span><span class="nb">type</span><span class="p">(</span><span 
class="n">func</span><span class="p">))))</span></div>
 
 
 <span class="k">def</span> <span class="nf">_sanity_check_params</span><span 
class="p">(</span><span class="n">func_name</span><span class="p">,</span> 
<span class="n">unsupported_params</span><span class="p">,</span> <span 
class="n">param_dict</span><span class="p">):</span>
@@ -1074,7 +1074,7 @@
                                       <span class="o">.</span><span 
class="n">format</span><span class="p">(</span><span 
class="n">func_name</span><span class="p">,</span> <span 
class="n">param_name</span><span class="p">))</span>
 
 
-<span class="k">def</span> <span class="nf">set_module</span><span 
class="p">(</span><span class="n">module</span><span class="p">):</span>
+<div class="viewcode-block" id="set_module"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.set_module">[docs]</a><span 
class="k">def</span> <span class="nf">set_module</span><span 
class="p">(</span><span class="n">module</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;Decorator for overriding __module__ on 
a function or class.</span>
 
 <span class="sd">    Example usage::</span>
@@ -1089,7 +1089,7 @@
         <span class="k">if</span> <span class="n">module</span> <span 
class="ow">is</span> <span class="ow">not</span> <span 
class="kc">None</span><span class="p">:</span>
             <span class="n">func</span><span class="o">.</span><span 
class="vm">__module__</span> <span class="o">=</span> <span 
class="n">module</span>
         <span class="k">return</span> <span class="n">func</span>
-    <span class="k">return</span> <span class="n">decorator</span>
+    <span class="k">return</span> <span class="n">decorator</span></div>
 
 
 <span class="k">class</span> <span class="nc">_NumpyArrayScope</span><span 
class="p">(</span><span class="nb">object</span><span class="p">):</span>
@@ -1117,7 +1117,7 @@
         <span class="n">_NumpyArrayScope</span><span class="o">.</span><span 
class="n">_current</span><span class="o">.</span><span class="n">value</span> 
<span class="o">=</span> <span class="bp">self</span><span 
class="o">.</span><span class="n">_old_scope</span>
 
 
-<span class="k">def</span> <span class="nf">np_array</span><span 
class="p">(</span><span class="n">active</span><span class="o">=</span><span 
class="kc">True</span><span class="p">):</span>
+<div class="viewcode-block" id="np_array"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.np_array">[docs]</a><span 
class="k">def</span> <span class="nf">np_array</span><span 
class="p">(</span><span class="n">active</span><span class="o">=</span><span 
class="kc">True</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;Returns an activated/deactivated 
NumPy-array scope to be used in &#39;with&#39; statement</span>
 <span class="sd">    and captures code that needs the NumPy-array 
semantics.</span>
 
@@ -1143,10 +1143,10 @@
 <span class="sd">    _NumpyShapeScope</span>
 <span class="sd">        A scope object for wrapping the code w/ or w/o 
NumPy-shape semantics.</span>
 <span class="sd">    &quot;&quot;&quot;</span>
-    <span class="k">return</span> <span class="n">_NumpyArrayScope</span><span 
class="p">(</span><span class="n">active</span><span class="p">)</span>
+    <span class="k">return</span> <span class="n">_NumpyArrayScope</span><span 
class="p">(</span><span class="n">active</span><span class="p">)</span></div>
 
 
-<div class="viewcode-block" id="is_np_array"><a class="viewcode-back" 
href="../../api/mxnet/image/index.html#mxnet.image.is_np_array">[docs]</a><span 
class="k">def</span> <span class="nf">is_np_array</span><span 
class="p">():</span>
+<div class="viewcode-block" id="is_np_array"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.is_np_array">[docs]</a><span 
class="k">def</span> <span class="nf">is_np_array</span><span 
class="p">():</span>
     <span class="sd">&quot;&quot;&quot;Checks whether the NumPy-array 
semantics is currently turned on.</span>
 <span class="sd">    This is currently used in Gluon for checking whether an 
array of type `mxnet.numpy.ndarray`</span>
 <span class="sd">    or `mx.nd.NDArray` should be created. For example, at the 
time when a parameter</span>
@@ -1169,7 +1169,7 @@
         <span class="n">_NumpyArrayScope</span><span class="o">.</span><span 
class="n">_current</span><span class="p">,</span> <span 
class="s2">&quot;value&quot;</span><span class="p">)</span> <span 
class="k">else</span> <span class="kc">False</span></div>
 
 
-<span class="k">def</span> <span class="nf">use_np_array</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
+<div class="viewcode-block" id="use_np_array"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.use_np_array">[docs]</a><span 
class="k">def</span> <span class="nf">use_np_array</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;A decorator wrapping Gluon `Block`s and 
all its methods, properties, and static functions</span>
 <span class="sd">    with the semantics of NumPy-array, which means that where 
ndarrays are created,</span>
 <span class="sd">    `mxnet.numpy.ndarray`s should be created, instead of 
legacy ndarrays of type `mx.nd.NDArray`.</span>
@@ -1248,10 +1248,10 @@
         <span class="k">return</span> <span class="n">_with_np_array</span>
     <span class="k">else</span><span class="p">:</span>
         <span class="k">raise</span> <span class="ne">TypeError</span><span 
class="p">(</span><span class="s1">&#39;use_np_array can only decorate classes 
and callable objects, &#39;</span>
-                        <span class="s1">&#39;while received a </span><span 
class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span 
class="n">format</span><span class="p">(</span><span class="nb">str</span><span 
class="p">(</span><span class="nb">type</span><span class="p">(</span><span 
class="n">func</span><span class="p">))))</span>
+                        <span class="s1">&#39;while received a </span><span 
class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span 
class="n">format</span><span class="p">(</span><span class="nb">str</span><span 
class="p">(</span><span class="nb">type</span><span class="p">(</span><span 
class="n">func</span><span class="p">))))</span></div>
 
 
-<span class="k">def</span> <span class="nf">use_np</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
+<div class="viewcode-block" id="use_np"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.use_np">[docs]</a><span 
class="k">def</span> <span class="nf">use_np</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;A convenience decorator for wrapping 
user provided functions and classes in the scope of</span>
 <span class="sd">    both NumPy-shape and NumPy-array semantics, which means 
that (1) empty tuples `()` and tuples</span>
 <span class="sd">    with zeros, such as `(0, 1)`, `(1, 0, 2)`, will be 
treated as scalar tensors&#39; shapes and</span>
@@ -1311,10 +1311,10 @@
 <span class="sd">    Function or class</span>
 <span class="sd">        A function or class wrapped in the Numpy-shape and 
NumPy-array scope.</span>
 <span class="sd">    &quot;&quot;&quot;</span>
-    <span class="k">return</span> <span class="n">use_np_shape</span><span 
class="p">(</span><span class="n">use_np_array</span><span 
class="p">(</span><span class="n">func</span><span class="p">))</span>
+    <span class="k">return</span> <span class="n">use_np_shape</span><span 
class="p">(</span><span class="n">use_np_array</span><span 
class="p">(</span><span class="n">func</span><span class="p">))</span></div>
 
 
-<span class="k">def</span> <span class="nf">np_ufunc_legal_option</span><span 
class="p">(</span><span class="n">key</span><span class="p">,</span> <span 
class="n">value</span><span class="p">):</span>
+<div class="viewcode-block" id="np_ufunc_legal_option"><a 
class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.np_ufunc_legal_option">[docs]</a><span
 class="k">def</span> <span class="nf">np_ufunc_legal_option</span><span 
class="p">(</span><span class="n">key</span><span class="p">,</span> <span 
class="n">value</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;Checking if ufunc arguments are legal 
inputs</span>
 
 <span class="sd">    Parameters</span>
@@ -1346,10 +1346,10 @@
                               <span class="s1">&#39;float16&#39;</span><span 
class="p">,</span> <span class="s1">&#39;float32&#39;</span><span 
class="p">,</span> <span class="s1">&#39;float64&#39;</span><span 
class="p">]))</span>
     <span class="k">elif</span> <span class="n">key</span> <span 
class="o">==</span> <span class="s1">&#39;subok&#39;</span><span 
class="p">:</span>
         <span class="k">return</span> <span class="nb">isinstance</span><span 
class="p">(</span><span class="n">value</span><span class="p">,</span> <span 
class="nb">bool</span><span class="p">)</span>
-    <span class="k">return</span> <span class="kc">False</span>
+    <span class="k">return</span> <span class="kc">False</span></div>
 
 
-<span class="k">def</span> <span class="nf">wrap_np_unary_func</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
+<div class="viewcode-block" id="wrap_np_unary_func"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.wrap_np_unary_func">[docs]</a><span
 class="k">def</span> <span class="nf">wrap_np_unary_func</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;A convenience decorator for wrapping 
numpy-compatible unary ufuncs to provide uniform</span>
 <span class="sd">    error handling.</span>
 
@@ -1379,10 +1379,10 @@
                     <span class="k">raise</span> <span 
class="ne">TypeError</span><span class="p">(</span><span 
class="s2">&quot;</span><span class="si">{}</span><span 
class="s2">=</span><span class="si">{}</span><span class="s2"> not understood 
for operator </span><span class="si">{}</span><span class="s2">&quot;</span>
                                     <span class="o">.</span><span 
class="n">format</span><span class="p">(</span><span class="n">key</span><span 
class="p">,</span> <span class="n">value</span><span class="p">,</span> <span 
class="n">func</span><span class="o">.</span><span 
class="vm">__name__</span><span class="p">))</span>
         <span class="k">return</span> <span class="n">func</span><span 
class="p">(</span><span class="n">x</span><span class="p">,</span> <span 
class="n">out</span><span class="o">=</span><span class="n">out</span><span 
class="p">)</span>
-    <span class="k">return</span> <span class="n">_wrap_np_unary_func</span>
+    <span class="k">return</span> <span 
class="n">_wrap_np_unary_func</span></div>
 
 
-<span class="k">def</span> <span class="nf">wrap_np_binary_func</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
+<div class="viewcode-block" id="wrap_np_binary_func"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.wrap_np_binary_func">[docs]</a><span
 class="k">def</span> <span class="nf">wrap_np_binary_func</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;A convenience decorator for wrapping 
numpy-compatible binary ufuncs to provide uniform</span>
 <span class="sd">    error handling.</span>
 
@@ -1410,11 +1410,11 @@
                     <span class="c1"># otherwise raise TypeError with not 
understood error message</span>
                     <span class="k">raise</span> <span 
class="ne">TypeError</span><span class="p">(</span><span 
class="s2">&quot;</span><span class="si">{}</span><span class="s2"> 
</span><span class="si">{}</span><span class="s2"> not 
understood&quot;</span><span class="o">.</span><span 
class="n">format</span><span class="p">(</span><span class="n">key</span><span 
class="p">,</span> <span class="n">value</span><span class="p">))</span>
         <span class="k">return</span> <span class="n">func</span><span 
class="p">(</span><span class="n">x1</span><span class="p">,</span> <span 
class="n">x2</span><span class="p">,</span> <span class="n">out</span><span 
class="o">=</span><span class="n">out</span><span class="p">)</span>
-    <span class="k">return</span> <span class="n">_wrap_np_binary_func</span>
+    <span class="k">return</span> <span 
class="n">_wrap_np_binary_func</span></div>
 
 
 <span class="c1"># pylint: disable=exec-used</span>
-<span class="k">def</span> <span class="nf">numpy_fallback</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
+<div class="viewcode-block" id="numpy_fallback"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.numpy_fallback">[docs]</a><span
 class="k">def</span> <span class="nf">numpy_fallback</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;decorator for falling back to offical 
numpy for a specific function&quot;&quot;&quot;</span>
     <span class="k">def</span> <span class="nf">get_ctx</span><span 
class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span 
class="n">new_ctx</span><span class="p">):</span>
         <span class="k">if</span> <span class="n">ctx</span> <span 
class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
@@ -1496,7 +1496,7 @@
         <span class="n">ret</span> <span class="o">=</span> <span 
class="n">_as_mx_np_array</span><span class="p">(</span><span 
class="n">ret</span><span class="p">,</span> <span class="n">ctx</span><span 
class="o">=</span><span class="n">ctx</span><span class="p">)</span>
         <span class="k">return</span> <span class="n">ret</span>
 
-    <span class="k">return</span> <span 
class="n">_fallback_to_official_np</span>
+    <span class="k">return</span> <span 
class="n">_fallback_to_official_np</span></div>
 <span class="c1"># pylint: enable=exec-used</span>
 
 
@@ -1526,7 +1526,7 @@
     <span class="k">return</span> <span class="n">cur_state</span>
 
 
-<span class="k">def</span> <span class="nf">set_np</span><span 
class="p">(</span><span class="n">shape</span><span class="o">=</span><span 
class="kc">True</span><span class="p">,</span> <span 
class="n">array</span><span class="o">=</span><span class="kc">True</span><span 
class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span 
class="kc">False</span><span class="p">):</span>
+<div class="viewcode-block" id="set_np"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.set_np">[docs]</a><span 
class="k">def</span> <span class="nf">set_np</span><span 
class="p">(</span><span class="n">shape</span><span class="o">=</span><span 
class="kc">True</span><span class="p">,</span> <span 
class="n">array</span><span class="o">=</span><span class="kc">True</span><span 
class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span 
class="kc"> [...]
     <span class="sd">&quot;&quot;&quot;Setting NumPy shape and array semantics 
at the same time.</span>
 <span class="sd">    It is required to keep NumPy shape semantics active while 
activating NumPy array semantics.</span>
 <span class="sd">    Deactivating NumPy shape semantics while NumPy array 
semantics is still active is not allowed.</span>
@@ -1610,18 +1610,18 @@
         <span class="k">raise</span> <span class="ne">ValueError</span><span 
class="p">(</span><span class="s1">&#39;NumPy Shape semantics is required in 
using NumPy array semantics.&#39;</span><span class="p">)</span>
     <span class="n">_set_np_array</span><span class="p">(</span><span 
class="n">array</span><span class="p">)</span>
     <span class="n">set_np_shape</span><span class="p">(</span><span 
class="n">shape</span><span class="p">)</span>
-    <span class="n">set_np_default_dtype</span><span class="p">(</span><span 
class="n">dtype</span><span class="p">)</span>
+    <span class="n">set_np_default_dtype</span><span class="p">(</span><span 
class="n">dtype</span><span class="p">)</span></div>
 
 
-<span class="k">def</span> <span class="nf">reset_np</span><span 
class="p">():</span>
+<div class="viewcode-block" id="reset_np"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.reset_np">[docs]</a><span 
class="k">def</span> <span class="nf">reset_np</span><span class="p">():</span>
     <span class="sd">&quot;&quot;&quot;Deactivate NumPy shape and array and 
deafult dtype semantics at the same time.&quot;&quot;&quot;</span>
-    <span class="n">set_np</span><span class="p">(</span><span 
class="n">shape</span><span class="o">=</span><span 
class="kc">False</span><span class="p">,</span> <span 
class="n">array</span><span class="o">=</span><span 
class="kc">False</span><span class="p">,</span> <span 
class="n">dtype</span><span class="o">=</span><span 
class="kc">False</span><span class="p">)</span>
+    <span class="n">set_np</span><span class="p">(</span><span 
class="n">shape</span><span class="o">=</span><span 
class="kc">False</span><span class="p">,</span> <span 
class="n">array</span><span class="o">=</span><span 
class="kc">False</span><span class="p">,</span> <span 
class="n">dtype</span><span class="o">=</span><span 
class="kc">False</span><span class="p">)</span></div>
 
 
 <span class="n">_CUDA_SUCCESS</span> <span class="o">=</span> <span 
class="mi">0</span>
 
 
-<span class="k">def</span> <span 
class="nf">get_cuda_compute_capability</span><span class="p">(</span><span 
class="n">ctx</span><span class="p">):</span>
+<div class="viewcode-block" id="get_cuda_compute_capability"><a 
class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.get_cuda_compute_capability">[docs]</a><span
 class="k">def</span> <span class="nf">get_cuda_compute_capability</span><span 
class="p">(</span><span class="n">ctx</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;Returns the cuda compute capability of 
the input `ctx`.</span>
 
 <span class="sd">    Parameters</span>
@@ -1676,9 +1676,9 @@
         <span class="n">cuda</span><span class="o">.</span><span 
class="n">cuGetErrorString</span><span class="p">(</span><span 
class="n">ret</span><span class="p">,</span> <span class="n">ctypes</span><span 
class="o">.</span><span class="n">byref</span><span class="p">(</span><span 
class="n">error_str</span><span class="p">))</span>
         <span class="k">raise</span> <span class="ne">RuntimeError</span><span 
class="p">(</span><span class="s1">&#39;cuDeviceComputeCapability failed with 
error code </span><span class="si">{}</span><span class="s1">: </span><span 
class="si">{}</span><span class="s1">&#39;</span>
                            <span class="o">.</span><span 
class="n">format</span><span class="p">(</span><span class="n">ret</span><span 
class="p">,</span> <span class="n">error_str</span><span 
class="o">.</span><span class="n">value</span><span class="o">.</span><span 
class="n">decode</span><span class="p">()))</span>
-    <span class="k">return</span> <span class="n">cc_major</span><span 
class="o">.</span><span class="n">value</span> <span class="o">*</span> <span 
class="mi">10</span> <span class="o">+</span> <span 
class="n">cc_minor</span><span class="o">.</span><span class="n">value</span>
+    <span class="k">return</span> <span class="n">cc_major</span><span 
class="o">.</span><span class="n">value</span> <span class="o">*</span> <span 
class="mi">10</span> <span class="o">+</span> <span 
class="n">cc_minor</span><span class="o">.</span><span 
class="n">value</span></div>
 
-<span class="k">def</span> <span class="nf">default_array</span><span 
class="p">(</span><span class="n">source_array</span><span class="p">,</span> 
<span class="n">ctx</span><span class="o">=</span><span 
class="kc">None</span><span class="p">,</span> <span 
class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span 
class="p">):</span>
+<div class="viewcode-block" id="default_array"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.default_array">[docs]</a><span 
class="k">def</span> <span class="nf">default_array</span><span 
class="p">(</span><span class="n">source_array</span><span class="p">,</span> 
<span class="n">ctx</span><span class="o">=</span><span 
class="kc">None</span><span class="p">,</span> <span 
class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span 
class="p" [...]
     <span class="sd">&quot;&quot;&quot;Creates an array from any object 
exposing the default(nd or np) array interface.</span>
 
 <span class="sd">    Parameters</span>
@@ -1702,7 +1702,7 @@
     <span class="k">if</span> <span class="n">is_np_array</span><span 
class="p">():</span>
         <span class="k">return</span> <span class="n">_mx_np</span><span 
class="o">.</span><span class="n">array</span><span class="p">(</span><span 
class="n">source_array</span><span class="p">,</span> <span 
class="n">ctx</span><span class="o">=</span><span class="n">ctx</span><span 
class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span 
class="n">dtype</span><span class="p">)</span>
     <span class="k">else</span><span class="p">:</span>
-        <span class="k">return</span> <span class="n">_mx_nd</span><span 
class="o">.</span><span class="n">array</span><span class="p">(</span><span 
class="n">source_array</span><span class="p">,</span> <span 
class="n">ctx</span><span class="o">=</span><span class="n">ctx</span><span 
class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span 
class="n">dtype</span><span class="p">)</span>
+        <span class="k">return</span> <span class="n">_mx_nd</span><span 
class="o">.</span><span class="n">array</span><span class="p">(</span><span 
class="n">source_array</span><span class="p">,</span> <span 
class="n">ctx</span><span class="o">=</span><span class="n">ctx</span><span 
class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span 
class="n">dtype</span><span class="p">)</span></div>
 
 <span class="k">class</span> <span 
class="nc">_NumpyDefaultDtypeScope</span><span class="p">(</span><span 
class="nb">object</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;Scope for managing NumPy default dtype 
semantics.</span>
@@ -1732,7 +1732,7 @@
            <span class="bp">self</span><span class="o">.</span><span 
class="n">_prev_is_np_default_dtype</span> <span class="o">!=</span> <span 
class="bp">self</span><span class="o">.</span><span 
class="n">_enter_is_np_default_dtype</span><span class="p">:</span>
             <span class="n">set_np_default_dtype</span><span 
class="p">(</span><span class="bp">self</span><span class="o">.</span><span 
class="n">_prev_is_np_default_dtype</span><span class="p">)</span>
 
-<span class="k">def</span> <span class="nf">np_default_dtype</span><span 
class="p">(</span><span class="n">active</span><span class="o">=</span><span 
class="kc">True</span><span class="p">):</span>
+<div class="viewcode-block" id="np_default_dtype"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.np_default_dtype">[docs]</a><span
 class="k">def</span> <span class="nf">np_default_dtype</span><span 
class="p">(</span><span class="n">active</span><span class="o">=</span><span 
class="kc">True</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;Returns an activated/deactivated 
NumPy-default_dtype scope to be used in &#39;with&#39; statement</span>
 <span class="sd">    and captures code that needs the NumPy default dtype 
semantics. i.e. default dtype is float64.</span>
 
@@ -1764,9 +1764,9 @@
 <span class="sd">            assert arr.dtype == &#39;float32&#39;</span>
 
 <span class="sd">    &quot;&quot;&quot;</span>
-    <span class="k">return</span> <span 
class="n">_NumpyDefaultDtypeScope</span><span class="p">(</span><span 
class="n">active</span><span class="p">)</span>
+    <span class="k">return</span> <span 
class="n">_NumpyDefaultDtypeScope</span><span class="p">(</span><span 
class="n">active</span><span class="p">)</span></div>
 
-<span class="k">def</span> <span class="nf">use_np_default_dtype</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
+<div class="viewcode-block" id="use_np_default_dtype"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.use_np_default_dtype">[docs]</a><span
 class="k">def</span> <span class="nf">use_np_default_dtype</span><span 
class="p">(</span><span class="n">func</span><span class="p">):</span>
     <span class="sd">&quot;&quot;&quot;A decorator wrapping a function or 
class with activated NumPy-default_dtype semantics.</span>
 <span class="sd">    When `func` is a function, this ensures that the 
execution of the function is scoped with NumPy</span>
 <span class="sd">    default dtype semantics, with the support for float64 as 
default dtype.</span>
@@ -1836,9 +1836,9 @@
         <span class="k">return</span> <span 
class="n">_with_np_default_dtype</span>
     <span class="k">else</span><span class="p">:</span>
         <span class="k">raise</span> <span class="ne">TypeError</span><span 
class="p">(</span><span class="s1">&#39;use_np_default_dtype can only decorate 
classes and callable objects, &#39;</span>
-                        <span class="s1">&#39;while received a </span><span 
class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span 
class="n">format</span><span class="p">(</span><span class="nb">str</span><span 
class="p">(</span><span class="nb">type</span><span class="p">(</span><span 
class="n">func</span><span class="p">))))</span>
+                        <span class="s1">&#39;while received a </span><span 
class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span 
class="n">format</span><span class="p">(</span><span class="nb">str</span><span 
class="p">(</span><span class="nb">type</span><span class="p">(</span><span 
class="n">func</span><span class="p">))))</span></div>
 
-<span class="k">def</span> <span class="nf">is_np_default_dtype</span><span 
class="p">():</span>
+<div class="viewcode-block" id="is_np_default_dtype"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.is_np_default_dtype">[docs]</a><span
 class="k">def</span> <span class="nf">is_np_default_dtype</span><span 
class="p">():</span>
     <span class="sd">&quot;&quot;&quot;Checks whether the NumPy default dtype 
semantics is currently turned on.</span>
 <span class="sd">    In NumPy default dtype semantics, default dtype is 
float64.</span>
 
@@ -1868,9 +1868,9 @@
 <span class="sd">    &quot;&quot;&quot;</span>
     <span class="n">curr</span> <span class="o">=</span> <span 
class="n">ctypes</span><span class="o">.</span><span 
class="n">c_bool</span><span class="p">()</span>
     <span class="n">check_call</span><span class="p">(</span><span 
class="n">_LIB</span><span class="o">.</span><span 
class="n">MXIsNumpyDefaultDtype</span><span class="p">(</span><span 
class="n">ctypes</span><span class="o">.</span><span 
class="n">byref</span><span class="p">(</span><span class="n">curr</span><span 
class="p">)))</span>
-    <span class="k">return</span> <span class="n">curr</span><span 
class="o">.</span><span class="n">value</span>
+    <span class="k">return</span> <span class="n">curr</span><span 
class="o">.</span><span class="n">value</span></div>
 
-<span class="k">def</span> <span class="nf">set_np_default_dtype</span><span 
class="p">(</span><span class="n">is_np_default_dtype</span><span 
class="o">=</span><span class="kc">True</span><span class="p">):</span>  <span 
class="c1"># pylint: disable=redefined-outer-name</span>
+<div class="viewcode-block" id="set_np_default_dtype"><a class="viewcode-back" 
href="../../api/mxnet/util/index.html#mxnet.util.set_np_default_dtype">[docs]</a><span
 class="k">def</span> <span class="nf">set_np_default_dtype</span><span 
class="p">(</span><span class="n">is_np_default_dtype</span><span 
class="o">=</span><span class="kc">True</span><span class="p">):</span>  <span 
class="c1"># pylint: disable=redefined-outer-name</span>
     <span class="sd">&quot;&quot;&quot;Turns on/off NumPy default dtype 
semantics, because mxnet.numpy.ndarray use</span>
 <span class="sd">    32 bit data storage as default (e.g. float32 and int 32) 
while offical NumPy use</span>
 <span class="sd">    64 bit data storage as default (e.g. float64 and 
int64).</span>
@@ -1908,7 +1908,7 @@
             <span class="n">_set_np_default_dtype_logged</span> <span 
class="o">=</span> <span class="kc">True</span>
     <span class="n">prev</span> <span class="o">=</span> <span 
class="n">ctypes</span><span class="o">.</span><span 
class="n">c_bool</span><span class="p">()</span>
     <span class="n">check_call</span><span class="p">(</span><span 
class="n">_LIB</span><span class="o">.</span><span 
class="n">MXSetIsNumpyDefaultDtype</span><span class="p">(</span><span 
class="n">ctypes</span><span class="o">.</span><span 
class="n">c_bool</span><span class="p">(</span><span 
class="n">is_np_default_dtype</span><span class="p">),</span> <span 
class="n">ctypes</span><span class="o">.</span><span 
class="n">byref</span><span class="p">(</span><span class="n">prev</span><sp 
[...]
-    <span class="k">return</span> <span class="n">prev</span><span 
class="o">.</span><span class="n">value</span>
+    <span class="k">return</span> <span class="n">prev</span><span 
class="o">.</span><span class="n">value</span></div>
 </pre></div>
 
         <hr class="feedback-hr-top" />
diff --git a/date.txt b/date.txt
deleted file mode 100644
index 951ee20..0000000
--- a/date.txt
+++ /dev/null
@@ -1 +0,0 @@
-Sat Jul 18 18:42:04 UTC 2020
diff --git a/feed.xml b/feed.xml
index ba84bd1..d66ce9e 100644
--- a/feed.xml
+++ b/feed.xml
@@ -1 +1 @@
-<?xml version="1.0" encoding="utf-8"?><feed 
xmlns="http://www.w3.org/2005/Atom"; ><generator uri="https://jekyllrb.com/"; 
version="4.0.0">Jekyll</generator><link 
href="https://mxnet.apache.org/feed.xml"; rel="self" type="application/atom+xml" 
/><link href="https://mxnet.apache.org/"; rel="alternate" type="text/html" 
/><updated>2020-07-18T18:30:04+00:00</updated><id>https://mxnet.apache.org/feed.xml</id><title
 type="html">Apache MXNet</title><subtitle>A flexible and efficient library for 
deep [...]
\ No newline at end of file
+<?xml version="1.0" encoding="utf-8"?><feed 
xmlns="http://www.w3.org/2005/Atom"; ><generator uri="https://jekyllrb.com/"; 
version="4.0.0">Jekyll</generator><link 
href="https://mxnet.apache.org/feed.xml"; rel="self" type="application/atom+xml" 
/><link href="https://mxnet.apache.org/"; rel="alternate" type="text/html" 
/><updated>2020-07-19T00:30:24+00:00</updated><id>https://mxnet.apache.org/feed.xml</id><title
 type="html">Apache MXNet</title><subtitle>A flexible and efficient library for 
deep [...]
\ No newline at end of file

Reply via email to