sxjscience commented on a change in pull request #9777: [MX-9588] Add micro 
averaging strategy for F1 metric
URL: https://github.com/apache/incubator-mxnet/pull/9777#discussion_r167942814
 
 

 ##########
 File path: python/mxnet/metric.py
 ##########
 @@ -475,8 +475,84 @@ def update(self, labels, preds):
             self.num_inst += num_samples
 
 
+class _BinaryClassificationMixin(object):
+    """
+    Private mixin for keeping track of TPR, FPR, TNR, FNR counts for a 
classification metric.
+    """
+
+    def __init__(self):
+        self._true_positives = 0
+        self._false_negatives = 0
+        self._false_positives = 0
+        self._true_negatives = 0
+
+    def _update_binary_stats(self, label, pred):
+        """
+        Update various binary classification counts for a single (label, pred)
+        pair.
+
+        Parameters
+        ----------
+        label : `NDArray`
+            The labels of the data.
+
+        pred : `NDArray`
+            Predicted values.
+        """
+        pred = pred.asnumpy()
+        label = label.asnumpy().astype('int32')
+        pred_label = numpy.argmax(pred, axis=1)
+
+        check_label_shapes(label, pred)
+        if len(numpy.unique(label)) > 2:
+            raise ValueError("%s currently only supports binary 
classification."
+                             % self.__class__.__name__)
+
+        for y_pred, y_true in zip(pred_label, label):
 
 Review comment:
   Do we have to use a for-loop here? Using array arithmetic OPs should be more 
efficient. Also we can try not to convert them into numpy array so it can be 
calculated in GPU.

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

Reply via email to