piiswrong closed pull request #10484: refactored example
URL: https://github.com/apache/incubator-mxnet/pull/10484
 
 
   

This is a PR merged from a forked repository.
As GitHub hides the original diff on merge, it is displayed below for
the sake of provenance:

As this is a foreign pull request (from a fork), the diff is supplied
below (as it won't show otherwise due to GitHub magic):

diff --git a/example/multivariate_time_series/README.md 
b/example/multivariate_time_series/README.md
index 26f6131800c..704c86ae770 100644
--- a/example/multivariate_time_series/README.md
+++ b/example/multivariate_time_series/README.md
@@ -1,16 +1,36 @@
-# Implementation
+# LSTNet
 
-This tutorial shows how to implement LSTNet, a multivariate time series 
forecasting model submitted by Wei-Cheng Chang, Yiming Yang, Hanxiao Liu and 
Guokun Lai in their paper [Modeling Long- and Short-Term Temporal 
Patterns](https://arxiv.org/pdf/1703.07015.pdf) in March 2017.  This model 
achieved state of the art performance on 3 of the 4 public datasets it was 
evaluated on.
+- This repo contains an MXNet implementation of 
[this](https://arxiv.org/pdf/1703.07015.pdf) state of the art time series 
forecasting model.
+- You can find my blog post on the model 
[here](https://opringle.github.io/2018/01/05/deep_learning_multivariate_ts.html)
+
+![](./docs/model_architecture.png)
 
 ## Running the code
 
-1. Download and unpack the public electricity dataset used in the paper.  This 
dataset comprises measurements of electricity consumption in kWh every hour 
from 2012 to 2014 for 321 different clients.
+1. Download & extract the training data: 
+    - `$ mkdir data && cd data`
+    - `$ wget 
https://github.com/laiguokun/multivariate-time-series-data/raw/master/electricity/electricity.txt.gz`
+    - `$ gunzip electricity.txt.gz`
+2. Train the model (~1.5 hours on Tesla K80 GPU with default hyperparams):
+    - `$ cd src && python lstnet.py --gpus=0`
+
+## Results & Comparison
+
+- The model in the paper predicts with h = 3 on electricity dataset, achieving 
*RSE = 0.0906, RAE = 0.0519 and CORR = 0.9195* on test dataset
+- This MXNet implementation achieves *RSE = 0.0880, RAE = 0.0542* after 100 
epochs on the validation dataset
+- Saved model checkpoint files can be found in `models/`
+
+## Hyperparameters
 
-```s
-$ wget 
https://github.com/laiguokun/multivariate-time-series-data/raw/master/electricity/electricity.txt.gz
-$ gunzip electricity.txt.gz
-```
+The default arguements in `lstnet.py` achieve equivolent performance to the 
published results. For other datasets, the following hyperparameters provide a 
good starting point:
 
-2. preprocess data with `python preprocess.py`
-3. set model hyperparameters in `/src/config.py`
-4. `python train.py`
\ No newline at end of file
+- q = {2^0, 2^1, ... , 2^9} (1 week is typical value)
+- Convolutional num filters  = {50, 100, 200}
+- Convolutional kernel sizes = 6,12,18
+- Recurrent state size = {50, 100, 200}
+- Skip recurrent state size = {20, 50, 100}
+- Skip distance = 24 (tune this based on domain knowledge)
+- AR lambda = {0.1,1,10}
+- Adam optimizer LR = 0.001
+- Dropout after every layer =  {0.1, 0.2}
+- Epochs = 100
diff --git a/example/multivariate_time_series/docs/post.md 
b/example/multivariate_time_series/docs/post.md
deleted file mode 100644
index 0a4a49370a8..00000000000
--- a/example/multivariate_time_series/docs/post.md
+++ /dev/null
@@ -1,498 +0,0 @@
----
-layout: post
-title: Deep Learning for Multivariate Time Series Forecasting using Apache 
MXNet
----
-
-This tutorial shows how to implement LSTNet, a multivariate time series 
forecasting model submitted by Wei-Cheng Chang, Yiming Yang, Hanxiao Liu and 
Guokun Lai in their paper [Modeling Long- and Short-Term Temporal 
Patterns](https://arxiv.org/pdf/1703.07015.pdf) in March 2017.  This model 
achieved state of the art performance on 3 of the 4 public datasets it was 
evaluated on.
-
-We will use MXNet to train a neural network with convolutional, recurrent, 
recurrent-skip and autoregressive components.  The result is a model that 
predicts the future value for all input variables, given a specific horizon.
-
-![](/example/multivariate_time_series/docs/model_architecture.png)
-
-> Image from [Modeling Long- and Short-Term Temporal Patterns
-with Deep Neural Networks](https://arxiv.org/abs/1703.07015), Figure 2
-
-Our first step will be to download and unpack the public electricity dataset 
used in the paper.  This dataset comprises measurements of electricity 
consumption in kWh every hour from 2012 to 2014 for 321 different clients.
-
-```s
-$ wget 
https://github.com/laiguokun/multivariate-time-series-data/raw/master/electricity/electricity.txt.gz
-$ gunzip electricity.txt.gz
-```
-
-Now we need to preprocess the data.  Each training record is the previous q 
values of each time series (see figure above).  Each label is the value of each 
of the 321 time series, h steps ahead.
-
-```python
-#modules
-import math
-import os
-import sys
-import numpy as np
-import math
-import mxnet as mx
-import pandas as pd
-
-#custom modules
-import config
-
-##############################################
-#load input data
-##############################################
-
-#read tar.gz data into a pandas dataframe
-df = pd.read_csv("./electricity.txt", sep=",", header=None)
-
-#convert to numpy array
-x = df.astype(float).as_matrix()
-
-print("\n\tlength of time series: ", x.shape[0])
-
-################################################
-# define model hyperparameters and preprocessing parameters
-################################################
-
-#input data parameters
-max_training_examples = None  # limit the number of training examples used
-split = [0.6, 0.2, 0.2] # the proportion of training, validation and testing 
examples
-horizon = 3  # how many time steps ahead do we wish to predict?
-time_interval = 60 * 60  # seconds between feature values (data defined)
-
-#model hyperparameters
-batch_size = 128  # number of examples to pass into the network/use to compute 
gradient of the loss function
-num_epoch = 100  # how many times to backpropogate and update weights
-seasonal_period = 24 * 60 * 60  # seconds between important measurements (tune)
-q = max(24 * 7, math.ceil(seasonal_period / time_interval)) # windowsize used 
to make a prediction
-filter_list = [6] #size of each filter we wish to apply
-num_filter = 50  # number of each filter size
-recurrent_state_size = 50  # number of hidden units for each unrolled 
recurrent layer
-recurrent_skip_state_size = 20 # number of hidden units for each unrolled 
recurrent-skip layer
-optimizer = 'Adam'
-optimizer_params = {'learning_rate': 0.001,
-                    'beta1': 0.9,
-                    'beta2': 0.999}
-dropout = 0.1  # dropout probability applied after convolutional/recurrent and 
autoregressive layers
-rcells = [mx.rnn.GRUCell(num_hidden=recurrent_state_size)] #recurrent cell 
types we wish to use
-skiprcells = [mx.rnn.GRUCell(num_hidden=recurrent_skip_state_size, 
prefix="skip_")] # recurrent-skip cell types we wish to use
-
-#computational parameters
-context = mx.cpu()  # train on cpu or gpu
-
-
-##############################################
-# loop through data constructing features/labels
-##############################################
-
-#create arrays for storing values in
-x_ts = np.zeros((x.shape[0] - q,  q, x.shape[1]))
-y_ts = np.zeros((x.shape[0] - q, x.shape[1]))
-
-#loop through collecting records for ts analysis depending on q
-for n in list(range(x.shape[0])):
-
-    if n + 1 < q:
-        continue
-
-    if n + 1 + horizon > x.shape[0]:
-        continue
-
-    else:
-        y_n = x[n+horizon,:]
-        x_n = x[n+1 - q:n+1,:]
-
-    x_ts[n - q] = x_n
-    y_ts[n - q] = y_n
-
-#split into training and testing data
-training_examples = int(x_ts.shape[0] * split[0])
-valid_examples = int(x_ts.shape[0] * split[1])
-
-x_train = x_ts[:training_examples]
-y_train = y_ts[:training_examples]
-x_valid = x_ts[training_examples:training_examples + valid_examples]
-y_valid = y_ts[training_examples:training_examples + valid_examples]
-x_test = x_ts[training_examples + valid_examples:]
-y_test = y_ts[training_examples + valid_examples:]
-
-print("\ntraining examples: ", x_train.shape[0],
-        "\n\nvalidation examples: ", x_valid.shape[0],
-        "\n\ntest examples: ", x_test.shape[0],
-        "\n\nwindow size: ", q,
-        "\n\nskip length p: ", seasonal_period / time_interval)
-```
-
-Now that we have our input data we are ready to start building the network 
graph.   First lets consider the data iterators and convolutional component.  
If you're not solid on convolutions check out [this blog 
post](http://colah.github.io/posts/2014-07-Conv-Nets-Modular/).
-
-All filters have width = number of time series.  The input data is zero padded 
on one side before being passed into the convolutional layer, ensuring the 
output from each kernel has the same dimensions, regardless of the filter size.
-
-Each filter slides over the input data producing a 1D array of length q.  Relu 
activation is used as per the paper.  The resulting output from the 
convolutional component is of shape (batch size, q, total number of filters).
-
-```python
-###############################################
-#define input data iterators for training and testing
-###############################################
-
-train_iter = mx.io.NDArrayIter(data={'seq_data': x_train},
-                               label={'seq_label': y_train},
-                               batch_size=batch_size)
-
-val_iter = mx.io.NDArrayIter(data={'seq_data': x_valid},
-                             label={'seq_label': y_valid},
-                             batch_size=batch_size)
-
-test_iter = mx.io.NDArrayIter(data={'seq_data': x_test},
-                             label={'seq_label': y_test},
-                             batch_size=batch_size)
-
-#print input shapes
-input_feature_shape = train_iter.provide_data[0][1]
-input_label_shape = train_iter.provide_label[0][1]
-print("\nfeature input shape: ", input_feature_shape,
-      "\nlabel input shape: ", input_label_shape)
-
-####################################
-# define neural network graph
-####################################
-
-#create placeholders to refer to when creating network graph (names are 
defined in data iterators)
-seq_data = mx.symbol.Variable(train_iter.provide_data[0].name)
-seq_label = mx.sym.Variable(train_iter.provide_label[0].name)
-
-# reshape data before applying convolutional layer (takes 4D shape)
-conv_input = mx.sym.Reshape(data=seq_data, shape=(batch_size, 1, q, 
x.shape[1]))
-
-
-print("\n\t#################################\n\
-       #convolutional component:\n\
-       #################################\n")
-
-#create many convolutional filters to slide over the input
-outputs = []
-for i, filter_size in enumerate(filter_list):
-
-        # zero pad the input array, adding rows at the top only
-        # this ensures the number output rows = number input rows after 
applying kernel
-        padi = mx.sym.pad(data=conv_input, mode="constant", constant_value=0,
-                            pad_width=(0, 0, 0, 0, filter_size - 1, 0, 0, 0))  
                
-        padi_shape = padi.infer_shape(seq_data=input_feature_shape)[1][0]
-
-        # apply convolutional layer (the result of each kernel position is a 
single number)
-        convi = mx.sym.Convolution(data=padi, kernel=(filter_size, 
x.shape[1]), num_filter=num_filter)
-        convi_shape = convi.infer_shape(seq_data=input_feature_shape)[1][0]
-
-        #apply relu activation function as per paper
-        acti = mx.sym.Activation(data=convi, act_type='relu')
-
-        #transpose output shape in preparation for recurrent layer (batches, 
q, num filter, 1)
-        transposed_convi = mx.symbol.transpose(data=acti, axes= (0,2,1,3))
-        transposed_convi_shape = 
transposed_convi.infer_shape(seq_data=input_feature_shape)[1][0]
-
-        #reshape to (batches, q, num filter) for recurrent layers
-        reshaped_transposed_convi = mx.sym.Reshape(data=transposed_convi, 
target_shape=(batch_size, q, num_filter))
-        reshaped_transposed_convi_shape = 
reshaped_transposed_convi.infer_shape(seq_data=input_feature_shape)[1][0]
-
-        #append resulting symbol to a list
-        outputs.append(reshaped_transposed_convi)
-
-        print("\n\tpadded input size: ", padi_shape)
-        print("\n\t\tfilter size: ", (filter_size, x.shape[1]), " , number of 
filters: ", num_filter)
-        print("\n\tconvi output layer shape (notice length is maintained): ", 
convi_shape)
-        print("\n\tconvi output layer after transposing: ", 
transposed_convi_shape)
-        print("\n\tconvi output layer after reshaping: ", 
reshaped_transposed_convi_shape)
-
-#concatenate symbols to (batch, total_filters, q, 1)
-conv_concat = mx.sym.Concat(*outputs, dim=2)
-conv_concat_shape = conv_concat.infer_shape(seq_data=input_feature_shape)[1][0]
-print("\nconcat output layer shape: ", conv_concat_shape)
-
-#apply a dropout layer
-conv_dropout = mx.sym.Dropout(conv_concat, p = dropout)
-```
-
-The output from the convolutional layer is used in two places.  The first is a 
simple recurrent layer.  A gated recurrent unit is unrolled through q time 
steps.  The output of the last time step is taken.  Here's an [awesome blog 
post](http://colah.github.io/posts/2015-08-Understanding-LSTMs/) explaining 
different types of recurrent cells.
-
-```python
-print("\n\t#################################\n\
-       #recurrent component:\n\
-       #################################\n")
-
-#define a gated recurrent unit cell, which we can unroll into many symbols 
based on our desired time dependancy
-cell_outputs = []
-for i, recurrent_cell in enumerate(rcells):
-
-    #unroll the lstm cell, obtaining a symbol each time step
-    outputs, states = recurrent_cell.unroll(length=conv_concat_shape[1], 
inputs=conv_dropout, merge_outputs=False, layout="NTC")
-
-    #we only take the output from the recurrent layer at time t
-    output = outputs[-1]
-
-    #just ensures we can have multiple RNN layer types
-    cell_outputs.append(output)
-
-    print("\n\teach of the ", conv_concat_shape[1], " unrolled hidden cells in 
the RNN is of shape: ",
-          output.infer_shape(seq_data=input_feature_shape)[1][0],
-          "\nNOTE: only the output from the unrolled cell at time t is 
used...")
-
-
-#concatenate output from each type of recurrent cell
-rnn_component = mx.sym.concat(*cell_outputs, dim=1)
-print("\nshape after combining RNN cell types: ", 
rnn_component.infer_shape(seq_data=input_feature_shape)[1][0])
-
-#apply a dropout layer to output
-rnn_dropout = mx.sym.Dropout(rnn_component, p=dropout)
-```
-
-The output from the convolutional layer is also passed to the recurrent-skip 
component.  Again a gated recurrent unit is unrolled through q time steps.  
Unrolled units a prespecified time interval (seasonal period) apart are 
connected. In practice recurrent cells do not capture long term dependencies.  
When predicting electricity consumption the measurements from the previous day 
could be very useful predictors.  By introducing skip connections 24 hours 
apart we ensure the model can leverage these historical dependencies.
-
-```python
-print("\n\t#################################\n\
-       #recurrent-skip component:\n\
-       #################################\n")
-
-#define number of cells to skip through to get a certain time interval back 
from current hidden state
-p =int(seasonal_period / time_interval)
-print("adding skip connections for cells ", p, " intervals apart...")
-
-#define a gated recurrent unit cell, which we can unroll into many symbols 
based on our desired time dependancy
-skipcell_outputs = []
-for i, recurrent_cell in enumerate(skiprcells):
-
-    #unroll the rnn cell, obtaining an output and state symbol each time
-    outputs, states = recurrent_cell.unroll(length=conv_concat_shape[1], 
inputs=conv_dropout, merge_outputs=False, layout="NTC")
-
-    #for each unrolled timestep
-    counter = 0
-    connected_outputs = []
-    for i, current_cell in enumerate(reversed(outputs)):
-
-        #try adding a concatenated skip connection
-        try:
-
-            #get seasonal cell p steps apart
-            skip_cell = outputs[i + p]
-
-            #connect this cell to is seasonal neighbour
-            cell_pair = [current_cell, skip_cell]
-            concatenated_pair = mx.sym.concat(*cell_pair, dim=1)
-
-            #prepend symbol to a list
-            connected_outputs.insert(0, concatenated_pair)
-
-            counter += 1
-
-        except IndexError:
-
-            #prepend symbol to a list without skip connection
-            connected_outputs.insert(0, current_cell)
-
-    selected_outputs = []
-    for i, current_cell in enumerate(connected_outputs):
-
-        t = i + 1
-
-        #use p hidden states of Recurrent-skip component from time stamp t − p 
+ 1 to t as outputs
-        if t > conv_concat_shape[1] - p:
-
-            selected_outputs.append(current_cell)
-
-    #concatenate outputs
-    concatenated_output = mx.sym.concat(*selected_outputs, dim=1)
-
-    #append to list
-    skipcell_outputs.append(concatenated_output)
-
-print("\n\t", len(selected_outputs), " hidden cells used in output of shape: ",
-        concatenated_pair.infer_shape(seq_data=input_feature_shape)[1][0], " 
after adding skip connections")
-
-print("\n\tconcatenated output shape for each skipRNN cell type: ",
-      concatenated_output.infer_shape(seq_data=input_feature_shape)[1][0])
-
-#concatenate output from each type of recurrent cell
-skiprnn_component = mx.sym.concat(*skipcell_outputs, dim=1)
-print("\ncombined flattened recurrent-skip shape : ", 
skiprnn_component.infer_shape(seq_data=input_feature_shape)[1][0])
-
-#apply a dropout layer
-skiprnn_dropout = mx.sym.Dropout(skiprnn_component, p=dropout)
-```
-
-The final component is a simple autoregressive layer.  This splits the input 
data into 321 individual time series and passes each to a fully connected layer 
of size 1, with no activation function.  The effect of this is to predict the 
next value as a linear combination of the previous q values.
-
-```python
-print("\n\t#################################\n\
-       #autoregressive component:\n\
-       #################################\n")
-
-auto_list = []
-for i in list(range(x.shape[1])):
-
-    #get a symbol representing data in each individual time series
-    time_series = mx.sym.slice_axis(data=seq_data, axis=2, begin=i, end=i + 1)
-
-    #pass to a fully connected layer
-    fc_ts = mx.sym.FullyConnected(data=time_series, num_hidden=1)
-
-    auto_list.append(fc_ts)
-
-print("\neach time series shape: ", 
time_series.infer_shape(seq_data=input_feature_shape)[1][0])
-
-#concatenate fully connected outputs
-ar_output = mx.sym.concat(*auto_list, dim=1)
-print("\nar component shape: ", ar_output.infer_shape(
-    seq_data=input_feature_shape)[1][0])
-
-#do not apply activation function since we want this to be linear
-```
-
-Now lets combine all the components, define a loss function and create a 
trainable module from the final symbol.  I found I achieved good performance 
with the L2 loss function.
-
-```python
-print("\n\t#################################\n\
-       #combine AR and NN components:\n\
-       #################################\n")
-
-#combine model components
-neural_components = mx.sym.concat(*[rnn_dropout, skiprnn_dropout], dim=1)
-
-#pass to fully connected layer to map to a single value
-neural_output = mx.sym.FullyConnected(
-    data=neural_components, num_hidden=x.shape[1])
-print("\nNN output shape : ", neural_output.infer_shape(
-    seq_data=input_feature_shape)[1][0])
-
-#sum the output from AR and deep learning
-model_output = neural_output + ar_output
-print("\nshape after adding autoregressive output: ",
-      model_output.infer_shape(seq_data=input_feature_shape)[1][0])
-
-#########################################
-# loss function
-#########################################
-
-#compute the gradient of the L2 loss
-loss_grad = mx.sym.LinearRegressionOutput(data=model_output, label=seq_label)
-
-#set network point to back so name is interpretable
-batmans_NN = loss_grad
-
-#########################################
-# create a trainable module on CPU/GPUs
-#########################################
-
-model = mx.mod.Module(symbol=batmans_NN,
-                      context=context,
-                      data_names=[v.name for v in train_iter.provide_data],
-                      label_names=[v.name for v in train_iter.provide_label])
-```
-
-We are ready to start training, however, before we do so lets create some 
custom metrics.  Please see the paper for a definition of the three metrics: 
Relative square error, relative absolute error and correlation.
-
-Note: although MXNet has functions for creating custom metrics, I found the 
metric output of my implementation varied with batch size, so defined them 
explicity.
-
-```python
-####################################
-#define evaluation metrics to show when training
-#####################################
-
-#root relative squared error
-def rse(label, pred):
-    """computes the root relative squared error
-    (condensed using standard deviation formula)"""
-
-    #compute the root of the sum of the squared error
-    numerator = np.sqrt(np.mean(np.square(label - pred), axis=None))
-    #numerator = np.sqrt(np.sum(np.square(label - pred), axis=None))
-
-    #compute the RMSE if we were to simply predict the average of the previous 
values
-    denominator = np.std(label, axis=None)
-    #denominator = np.sqrt(np.sum(np.square(label - np.mean(label, axis = 
None)), axis=None))
-
-    return numerator / denominator
-
-#relative absolute error
-def rae(label, pred):
-    """computes the relative absolute error
-    (condensed using standard deviation formula)"""
-
-    #compute the root of the sum of the squared error
-    numerator = np.mean(np.abs(label - pred), axis=None)
-    #numerator = np.sum(np.abs(label - pred), axis = None)
-
-    #compute AE if we were to simply predict the average of the previous values
-    denominator = np.mean(np.abs(label - np.mean(label, axis=None)), axis=None)
-    #denominator = np.sum(np.abs(label - np.mean(label, axis = None)), 
axis=None)
-
-    return numerator / denominator
-
-#empirical correlation coefficient
-def corr(label, pred):
-    """computes the empirical correlation coefficient"""
-
-    #compute the root of the sum of the squared error
-    numerator1 = label - np.mean(label, axis=0)
-    numerator2 = pred - np.mean(pred, axis=0)
-    numerator = np.mean(numerator1 * numerator2, axis=0)
-
-    #compute the root of the sum of the squared error if we were to simply 
predict the average of the previous values
-    denominator = np.std(label, axis=0) * np.std(pred, axis=0)
-
-    #value passed here should be 321 numbers
-    return np.mean(numerator / denominator)
-
-#create a composite metric manually
-def metrics(label, pred):
-    return ["RSE: ", rse(label, pred), "RAE: ", rae(label, pred), "CORR: ", 
corr(label, pred)]
-```
-
-Time to train.
-
-```python
-################
-# #fit the model
-################
-
-# allocate memory given the input data and label shapes
-model.bind(data_shapes=train_iter.provide_data,
-           label_shapes=train_iter.provide_label)
-
-# initialize parameters by uniform random numbers
-model.init_params()
-
-# optimizer
-model.init_optimizer(optimizer=optimizer,
-                     optimizer_params=optimizer_params)
-
-# train n epochs, i.e. going over the data iter one pass
-for epoch in range(num_epoch):
-
-    train_iter.reset()
-    val_iter.reset()
-
-    for batch in train_iter:
-        # compute predictions
-        model.forward(batch, is_train=True)
-        model.backward()                                # compute gradients
-        model.update()                                  # update parameters
-
-    # compute train metrics
-    pred = model.predict(train_iter).asnumpy()
-    label = y_train
-
-    print('\n', 'Epoch %d, Training %s' % (epoch, metrics(label, pred)))
-
-    # compute test metrics
-    pred = model.predict(val_iter).asnumpy()
-    label = y_valid
-    print('Epoch %d, Validation %s' % (epoch, metrics(label, pred)))
-```
-
-The hyperparameters previously specified resulted in comparible performance to 
the results in the paper (*RSE = 0.0967, RAE = 0.0581 and CORR = 0.8941*) with 
horizon = 3 hours.
-
-This model took ~10 hours to train on an [Nvidia Tesla K80 
GPU](http://www.nvidia.ca/object/tesla-k80.html).
-
-This code can be found in [my github 
repo](https://github.com/opringle/multivariate_time_series_forecasting), 
separated into training and config files. You can find the trained model symbol 
and parameters in the results folder.  This model was originally implemented in 
PyTorch and can be found [here](https://github.com/laiguokun/LSTNet).
-
-Happy forecasting!
-
-# About the author
-
->[Oliver Pringle](https://www.linkedin.com/in/oliverpringle/) graduated from 
the UBC Master of Data Science Program in 2017 and is currently a Data 
Scientist at [Finn.ai](http://finn.ai/) working on AI driven conversational 
assistants.
-
-
diff --git a/example/multivariate_time_series/src/config.py 
b/example/multivariate_time_series/src/config.py
deleted file mode 100644
index a182b955fa8..00000000000
--- a/example/multivariate_time_series/src/config.py
+++ /dev/null
@@ -1,52 +0,0 @@
-# Licensed to the Apache Software Foundation (ASF) under one
-# or more contributor license agreements.  See the NOTICE file
-# distributed with this work for additional information
-# regarding copyright ownership.  The ASF licenses this file
-# to you under the Apache License, Version 2.0 (the
-# "License"); you may not use this file except in compliance
-# with the License.  You may obtain a copy of the License at
-#
-#   http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing,
-# software distributed under the License is distributed on an
-# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-# KIND, either express or implied.  See the License for the
-# specific language governing permissions and limitations
-# under the License.
-
-import mxnet as mx
-import math
-
-#input data parameters
-max_training_examples = None  # limit the number of training examples used
-# the proportion of training, validation and testing examples
-split = [0.6, 0.2, 0.2]
-horizon = 3  # how many time steps ahead do we wish to predict?
-time_interval = 60 * 60  # seconds between feature values (data defined)
-
-#model hyperparameters
-batch_size = 128  # number of examples to pass into the network/use to compute 
gradient of the loss function
-num_epoch = 100  # how many times to backpropogate and update weights
-seasonal_period = 24 * 60 * 60  # seconds between important measurements (tune)
-# windowsize used to make a prediction
-q = max(24 * 7, math.ceil(seasonal_period / time_interval))
-# must be smaller than q!!!, size of filters sliding over the input data
-filter_list = [6]
-num_filter = 50  # number of each filter size
-recurrent_state_size = 50  # number of hidden units for each unrolled 
recurrent layer
-# number of hidden units for each unrolled recurrent layer
-recurrent_skip_state_size = 20
-optimizer = 'Adam'
-optimizer_params = {'learning_rate': 0.001,
-                    'beta1': 0.9,
-                    'beta2': 0.999}
-dropout = 0.1  # dropout probability after convolutional/recurrent and 
autoregressive layers
-# choose recurrent cells for the recurrent layer
-rcells = [mx.rnn.GRUCell(num_hidden=recurrent_state_size)]
-# choose recurrent cells for the recurrent_skip layer
-skiprcells = [mx.rnn.GRUCell(
-    num_hidden=recurrent_skip_state_size, prefix="skip_")]
-
-#computational parameters
-context = mx.cpu()  # train on cpu because maclyfe
diff --git a/example/multivariate_time_series/src/lstnet.py 
b/example/multivariate_time_series/src/lstnet.py
new file mode 100644
index 00000000000..5b86ac9f624
--- /dev/null
+++ b/example/multivariate_time_series/src/lstnet.py
@@ -0,0 +1,242 @@
+# !/usr/bin/env python
+
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements.  See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership.  The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License.  You may obtain a copy of the License at
+#
+#   http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied.  See the License for the
+# specific language governing permissions and limitations
+# under the License.
+
+# -*- coding: utf-8 -*-
+
+#Todo: Ensure skip connection implementation is correct
+
+import os
+import math
+import numpy as np
+import pandas as pd
+import mxnet as mx
+import argparse
+import logging
+import metrics
+
+logging.basicConfig(level=logging.DEBUG)
+
+parser = argparse.ArgumentParser(description="Deep neural network for 
multivariate time series forecasting",
+                                 
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+parser.add_argument('--data-dir', type=str, default='../data',
+                    help='relative path to input data')
+parser.add_argument('--max-records', type=int, default=None,
+                    help='total records before data split')
+parser.add_argument('--q', type=int, default=24*7,
+                    help='number of historical measurements included in each 
training example')
+parser.add_argument('--horizon', type=int, default=3,
+                    help='number of measurements ahead to predict')
+parser.add_argument('--splits', type=str, default="0.6,0.2",
+                    help='fraction of data to use for train & validation. 
remainder used for test.')
+parser.add_argument('--batch-size', type=int, default=128,
+                    help='the batch size.')
+parser.add_argument('--filter-list', type=str, default="6,12,18",
+                    help='unique filter sizes')
+parser.add_argument('--num-filters', type=int, default=100,
+                    help='number of each filter size')
+parser.add_argument('--recurrent-state-size', type=int, default=100,
+                    help='number of hidden units in each unrolled recurrent 
cell')
+parser.add_argument('--seasonal-period', type=int, default=24,
+                    help='time between seasonal measurements')
+parser.add_argument('--time-interval', type=int, default=1,
+                    help='time between each measurement')
+parser.add_argument('--gpus', type=str, default='',
+                    help='list of gpus to run, e.g. 0 or 0,2,5. empty means 
using cpu. ')
+parser.add_argument('--optimizer', type=str, default='adam',
+                    help='the optimizer type')
+parser.add_argument('--lr', type=float, default=0.001,
+                    help='initial learning rate')
+parser.add_argument('--dropout', type=float, default=0.2,
+                    help='dropout rate for network')
+parser.add_argument('--num-epochs', type=int, default=100,
+                    help='max num of epochs')
+parser.add_argument('--save-period', type=int, default=20,
+                    help='save checkpoint for every n epochs')
+parser.add_argument('--model_prefix', type=str, default='electricity_model',
+                    help='prefix for saving model params')
+
+def build_iters(data_dir, max_records, q, horizon, splits, batch_size):
+    """
+    Load & generate training examples from multivariate time series data
+    :return: data iters & variables required to define network architecture
+    """
+    # Read in data as numpy array
+    df = pd.read_csv(os.path.join(data_dir, "electricity.txt"), sep=",", 
header=None)
+    feature_df = df.iloc[:, :].astype(float)
+    x = feature_df.as_matrix()
+    x = x[:max_records] if max_records else x
+
+    # Construct training examples based on horizon and window
+    x_ts = np.zeros((x.shape[0] - q, q, x.shape[1]))
+    y_ts = np.zeros((x.shape[0] - q, x.shape[1]))
+    for n in range(x.shape[0]):
+        if n + 1 < q:
+            continue
+        elif n + 1 + horizon > x.shape[0]:
+            continue
+        else:
+            y_n = x[n + horizon, :]
+            x_n = x[n + 1 - q:n + 1, :]
+        x_ts[n-q] = x_n
+        y_ts[n-q] = y_n
+
+    # Split into training and testing data
+    training_examples = int(x_ts.shape[0] * splits[0])
+    valid_examples = int(x_ts.shape[0] * splits[1])
+    x_train, y_train = x_ts[:training_examples], \
+                       y_ts[:training_examples]
+    x_valid, y_valid = x_ts[training_examples:training_examples + 
valid_examples], \
+                       y_ts[training_examples:training_examples + 
valid_examples]
+    x_test, y_test = x_ts[training_examples + valid_examples:], \
+                     y_ts[training_examples + valid_examples:]
+
+    #build iterators to feed batches to network
+    train_iter = mx.io.NDArrayIter(data=x_train,
+                                   label=y_train,
+                                   batch_size=batch_size)
+    val_iter = mx.io.NDArrayIter(data=x_valid,
+                                 label=y_valid,
+                                 batch_size=batch_size)
+    test_iter = mx.io.NDArrayIter(data=x_test,
+                                  label=y_test,
+                                  batch_size=batch_size)
+    return train_iter, val_iter, test_iter
+
+def sym_gen(train_iter, q, filter_list, num_filter, dropout, rcells, 
skiprcells, seasonal_period, time_interval):
+
+    input_feature_shape = train_iter.provide_data[0][1]
+    X = mx.symbol.Variable(train_iter.provide_data[0].name)
+    Y = mx.sym.Variable(train_iter.provide_label[0].name)
+
+    # reshape data before applying convolutional layer (takes 4D shape incase 
you ever work with images)
+    conv_input = mx.sym.reshape(data=X, shape=(0, 1, q, -1))
+
+    ###############
+    # CNN Component
+    ###############
+    outputs = []
+    for i, filter_size in enumerate(filter_list):
+        # pad input array to ensure number output rows = number input rows 
after applying kernel
+        padi = mx.sym.pad(data=conv_input, mode="constant", constant_value=0,
+                          pad_width=(0, 0, 0, 0, filter_size - 1, 0, 0, 0))
+        convi = mx.sym.Convolution(data=padi, kernel=(filter_size, 
input_feature_shape[2]), num_filter=num_filter)
+        acti = mx.sym.Activation(data=convi, act_type='relu')
+        trans = mx.sym.reshape(mx.sym.transpose(data=acti, axes=(0, 2, 1, 3)), 
shape=(0, 0, 0))
+        outputs.append(trans)
+    cnn_features = mx.sym.Concat(*outputs, dim=2)
+    cnn_reg_features = mx.sym.Dropout(cnn_features, p=dropout)
+
+    ###############
+    # RNN Component
+    ###############
+    stacked_rnn_cells = mx.rnn.SequentialRNNCell()
+    for i, recurrent_cell in enumerate(rcells):
+        stacked_rnn_cells.add(recurrent_cell)
+        stacked_rnn_cells.add(mx.rnn.DropoutCell(dropout))
+    outputs, states = stacked_rnn_cells.unroll(length=q, 
inputs=cnn_reg_features, merge_outputs=False)
+    rnn_features = outputs[-1] #only take value from final unrolled cell for 
use later
+
+    ####################
+    # Skip-RNN Component
+    ####################
+    stacked_rnn_cells = mx.rnn.SequentialRNNCell()
+    for i, recurrent_cell in enumerate(skiprcells):
+        stacked_rnn_cells.add(recurrent_cell)
+        stacked_rnn_cells.add(mx.rnn.DropoutCell(dropout))
+    outputs, states = stacked_rnn_cells.unroll(length=q, 
inputs=cnn_reg_features, merge_outputs=False)
+
+    # Take output from cells p steps apart
+    p = int(seasonal_period / time_interval)
+    output_indices = list(range(0, q, p))
+    outputs.reverse()
+    skip_outputs = [outputs[i] for i in output_indices]
+    skip_rnn_features = mx.sym.concat(*skip_outputs, dim=1)
+
+    ##########################
+    # Autoregressive Component
+    ##########################
+    auto_list = []
+    for i in list(range(input_feature_shape[2])):
+        time_series = mx.sym.slice_axis(data=X, axis=2, begin=i, end=i+1)
+        fc_ts = mx.sym.FullyConnected(data=time_series, num_hidden=1)
+        auto_list.append(fc_ts)
+    ar_output = mx.sym.concat(*auto_list, dim=1)
+
+    ######################
+    # Prediction Component
+    ######################
+    neural_components = mx.sym.concat(*[rnn_features, skip_rnn_features], 
dim=1)
+    neural_output = mx.sym.FullyConnected(data=neural_components, 
num_hidden=input_feature_shape[2])
+    model_output = neural_output + ar_output
+    loss_grad = mx.sym.LinearRegressionOutput(data=model_output, label=Y)
+    return loss_grad, [v.name for v in train_iter.provide_data], [v.name for v 
in train_iter.provide_label]
+
+def train(symbol, train_iter, valid_iter, data_names, label_names):
+    devs = mx.cpu() if args.gpus is None or args.gpus is '' else 
[mx.gpu(int(i)) for i in args.gpus.split(',')]
+    module = mx.mod.Module(symbol, data_names=data_names, 
label_names=label_names, context=devs)
+    module.bind(data_shapes=train_iter.provide_data, 
label_shapes=train_iter.provide_label)
+    module.init_params(mx.initializer.Uniform(0.1))
+    module.init_optimizer(optimizer=args.optimizer, 
optimizer_params={'learning_rate': args.lr})
+
+    for epoch in range(1, args.num_epochs+1):
+        train_iter.reset()
+        val_iter.reset()
+        for batch in train_iter:
+            module.forward(batch, is_train=True)  # compute predictions
+            module.backward()  # compute gradients
+            module.update() # update parameters
+
+        train_pred = module.predict(train_iter).asnumpy()
+        train_label = train_iter.label[0][1].asnumpy()
+        print('\nMetrics: Epoch %d, Training %s' % (epoch, 
metrics.evaluate(train_pred, train_label)))
+
+        val_pred = module.predict(val_iter).asnumpy()
+        val_label = val_iter.label[0][1].asnumpy()
+        print('Metrics: Epoch %d, Validation %s' % (epoch, 
metrics.evaluate(val_pred, val_label)))
+
+        if epoch % args.save_period == 0 and epoch > 1:
+            module.save_checkpoint(prefix=os.path.join("../models/", 
args.model_prefix), epoch=epoch, save_optimizer_states=False)
+        if epoch == args.num_epochs:
+            module.save_checkpoint(prefix=os.path.join("../models/", 
args.model_prefix), epoch=epoch, save_optimizer_states=False)
+ 
+if __name__ == '__main__':
+    # parse args
+    args = parser.parse_args()
+    args.splits = list(map(float, args.splits.split(',')))
+    args.filter_list = list(map(int, args.filter_list.split(',')))
+
+    # Check valid args
+    if not max(args.filter_list) <= args.q:
+        raise AssertionError("no filter can be larger than q")
+    if not args.q >= math.ceil(args.seasonal_period / args.time_interval):
+        raise AssertionError("size of skip connections cannot exceed q")
+
+    # Build data iterators
+    train_iter, val_iter, test_iter = build_iters(args.data_dir, 
args.max_records, args.q, args.horizon, args.splits, args.batch_size)
+
+    # Choose cells for recurrent layers: each cell will take the output of the 
previous cell in the list
+    rcells = [mx.rnn.GRUCell(num_hidden=args.recurrent_state_size)]
+    skiprcells = [mx.rnn.LSTMCell(num_hidden=args.recurrent_state_size)]
+
+    # Define network symbol
+    symbol, data_names, label_names = sym_gen(train_iter, args.q, 
args.filter_list, args.num_filters,
+                                              args.dropout, rcells, 
skiprcells, args.seasonal_period, args.time_interval)
+
+    # train cnn model
+    train(symbol, train_iter, val_iter, data_names, label_names)
diff --git a/example/multivariate_time_series/src/lstnet.sh 
b/example/multivariate_time_series/src/lstnet.sh
new file mode 100644
index 00000000000..e69de29bb2d
diff --git a/example/multivariate_time_series/src/metrics.py 
b/example/multivariate_time_series/src/metrics.py
new file mode 100644
index 00000000000..4818591068f
--- /dev/null
+++ b/example/multivariate_time_series/src/metrics.py
@@ -0,0 +1,55 @@
+# !/usr/bin/env python
+
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements.  See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership.  The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License.  You may obtain a copy of the License at
+#
+#   http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied.  See the License for the
+# specific language governing permissions and limitations
+# under the License.
+
+# -*- coding: utf-8 -*-
+
+import numpy as np
+import mxnet as mx
+
+def rse(label, pred):
+    """computes the root relative squared error (condensed using standard 
deviation formula)"""
+    numerator = np.sqrt(np.mean(np.square(label - pred), axis = None))
+    denominator = np.std(label, axis = None)
+    return numerator / denominator
+
+def rae(label, pred):
+    """computes the relative absolute error (condensed using standard 
deviation formula)"""
+    numerator = np.mean(np.abs(label - pred), axis=None)
+    denominator = np.mean(np.abs(label - np.mean(label, axis=None)), axis=None)
+    return numerator / denominator
+
+def corr(label, pred):
+    """computes the empirical correlation coefficient"""
+    numerator1 = label - np.mean(label, axis=0)
+    numerator2 = pred - np.mean(pred, axis = 0)
+    numerator = np.mean(numerator1 * numerator2, axis=0)
+    denominator = np.std(label, axis=0) * np.std(pred, axis=0)
+    return np.mean(numerator / denominator)
+
+def get_custom_metrics():
+    """
+    :return: mxnet metric object
+    """
+    _rse = mx.metric.create(rse)
+    _rae = mx.metric.create(rae)
+    _corr = mx.metric.create(corr)
+    return mx.metric.create([_rae, _rse, _corr])
+
+def evaluate(pred, label):
+    return {"RAE":rae(label, pred), "RSE":rse(label,pred),"CORR": 
corr(label,pred)}
\ No newline at end of file
diff --git a/example/multivariate_time_series/src/preprocess.py 
b/example/multivariate_time_series/src/preprocess.py
deleted file mode 100644
index 14a7b159f19..00000000000
--- a/example/multivariate_time_series/src/preprocess.py
+++ /dev/null
@@ -1,32 +0,0 @@
-# Licensed to the Apache Software Foundation (ASF) under one
-# or more contributor license agreements.  See the NOTICE file
-# distributed with this work for additional information
-# regarding copyright ownership.  The ASF licenses this file
-# to you under the Apache License, Version 2.0 (the
-# "License"); you may not use this file except in compliance
-# with the License.  You may obtain a copy of the License at
-#
-#   http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing,
-# software distributed under the License is distributed on an
-# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-# KIND, either express or implied.  See the License for the
-# specific language governing permissions and limitations
-# under the License.
-
-#read in the txt file
-import pandas as pd
-import numpy as np
-
-#read in the data
-df = pd.read_csv("../data/electricity.txt", sep=",", header = None)
-
-#extract feature values
-feature_df = df.iloc[:, :].astype(float)
-
-#convert to numpy matrix
-x = feature_df.as_matrix()
-
-#save files
-np.save("../data/electric.npy", x)
diff --git a/example/multivariate_time_series/src/train.py 
b/example/multivariate_time_series/src/train.py
deleted file mode 100644
index 094fa6edbe9..00000000000
--- a/example/multivariate_time_series/src/train.py
+++ /dev/null
@@ -1,481 +0,0 @@
-# Licensed to the Apache Software Foundation (ASF) under one
-# or more contributor license agreements.  See the NOTICE file
-# distributed with this work for additional information
-# regarding copyright ownership.  The ASF licenses this file
-# to you under the Apache License, Version 2.0 (the
-# "License"); you may not use this file except in compliance
-# with the License.  You may obtain a copy of the License at
-#
-#   http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing,
-# software distributed under the License is distributed on an
-# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-# KIND, either express or implied.  See the License for the
-# specific language governing permissions and limitations
-# under the License.
-
-#modules
-import math
-import os
-import sys
-import numpy as np
-import math
-import mxnet as mx
-
-#custom modules
-import config
-
-##############################################
-#load input data
-##############################################
-
-if config.q < min(config.filter_list):
-    print("\n\n\n\t\tINCREASE q...")
-
-#read in multivariate time series data
-x = np.load("../data/electric.npy")
-
-print("\n\tlength of time series: ", x.shape[0])
-
-if config.max_training_examples:
-    x = x[:config.max_training_examples]
-
-##############################################
-# loop through data constructing features/labels
-##############################################
-
-#create arrays for storing values in
-x_ts = np.zeros((x.shape[0] - config.q,  config.q, x.shape[1]))
-y_ts = np.zeros((x.shape[0] - config.q, x.shape[1]))
-
-#loop through collecting records for ts analysis depending on q
-for n in list(range(x.shape[0])):
-
-    if n + 1 < config.q:
-        continue
-
-    if n + 1 + config.horizon > x.shape[0]:
-        continue
-
-    else:
-        y_n = x[n+config.horizon,:]
-        x_n = x[n+1 - config.q:n+1,:]
-
-    x_ts[n - config.q] = x_n
-    y_ts[n - config.q] = y_n
-
-#split into training and testing data
-training_examples = int(x_ts.shape[0] * config.split[0])
-valid_examples = int(x_ts.shape[0] * config.split[1])
-
-x_train = x_ts[:training_examples]
-y_train = y_ts[:training_examples]
-x_valid = x_ts[training_examples:training_examples + valid_examples]
-y_valid = y_ts[training_examples:training_examples + valid_examples]
-x_test = x_ts[training_examples + valid_examples:]
-y_test = y_ts[training_examples + valid_examples:]
-
-# print("\nsingle X, Y record example:\n\n")
-# print(x_train[:1])
-# print(y_train[:1])
-# print(x_train[1:2])
-# print(y_train[1:2])
-
-print("\ntraining examples: ", x_train.shape[0],
-        "\n\nvalidation examples: ", x_valid.shape[0],
-        "\n\ntest examples: ", x_test.shape[0], 
-        "\n\nwindow size: ", config.q,
-        "\n\nskip length p: ", config.seasonal_period / config.time_interval)
-
-###############################################
-#define input data iterators for training and testing
-###############################################
-
-train_iter = mx.io.NDArrayIter(data={'seq_data': x_train},
-                               label={'seq_label': y_train},
-                               batch_size=config.batch_size)
-
-val_iter = mx.io.NDArrayIter(data={'seq_data': x_valid},
-                             label={'seq_label': y_valid},
-                             batch_size=config.batch_size)
-
-test_iter = mx.io.NDArrayIter(data={'seq_data': x_test},
-                             label={'seq_label': y_test},
-                             batch_size=config.batch_size)
-
-#print input shapes
-input_feature_shape = train_iter.provide_data[0][1]
-input_label_shape = train_iter.provide_label[0][1]
-print("\nfeature input shape: ", input_feature_shape,
-      "\nlabel input shape: ", input_label_shape)
-
-
-####################################
-# define neural network graph
-####################################
-
-#create placeholders to refer to when creating network graph (names are 
defined in data iterators)
-seq_data = mx.symbol.Variable(train_iter.provide_data[0].name)
-seq_label = mx.sym.Variable(train_iter.provide_label[0].name)
-
-# scale input data so features are all between 0 and 1 (may not need this)
-normalized_seq_data = mx.sym.BatchNorm(data = seq_data)
-
-# reshape data before applying convolutional layer (takes 4D shape incase you 
ever work with images)
-conv_input = mx.sym.Reshape(data=seq_data, shape=(config.batch_size, 1, 
config.q, x.shape[1]))
-
-
-print("\n\t#################################\n\
-       #convolutional component:\n\
-       #################################\n")
-
-#create many convolutional filters to slide over the input
-outputs = []
-for i, filter_size in enumerate(config.filter_list):
-
-        # zero pad the input array, adding rows at the top only
-        # this ensures the number output rows = number input rows after 
applying kernel
-        padi = mx.sym.pad(data=conv_input, mode="constant", constant_value=0, 
-                            pad_width=(0, 0, 0, 0, filter_size - 1, 0, 0, 0))  
                
-        padi_shape = padi.infer_shape(seq_data=input_feature_shape)[1][0]
-
-        # apply convolutional layer (the result of each kernel position is a 
single number)
-        convi = mx.sym.Convolution(data=padi, kernel=(filter_size, 
x.shape[1]), num_filter=config.num_filter)
-        convi_shape = convi.infer_shape(seq_data=input_feature_shape)[1][0]
-
-        #apply relu activation function as per paper
-        acti = mx.sym.Activation(data=convi, act_type='relu')
-
-        #transpose output to shape in preparation for recurrent layer 
(batches, q, num filter, 1)
-        transposed_convi = mx.symbol.transpose(data=acti, axes= (0,2,1,3))
-        transposed_convi_shape = 
transposed_convi.infer_shape(seq_data=input_feature_shape)[1][0]
-
-        #reshape to (batches, q, num filter)
-        reshaped_transposed_convi = mx.sym.Reshape(data=transposed_convi, 
target_shape=(config.batch_size, config.q, config.num_filter))
-        reshaped_transposed_convi_shape = 
reshaped_transposed_convi.infer_shape(seq_data=input_feature_shape)[1][0]
-
-        #append resulting symbol to a list
-        outputs.append(reshaped_transposed_convi)
-
-        print("\n\tpadded input size: ", padi_shape)
-        print("\n\t\tfilter size: ", (filter_size, x.shape[1]), " , number of 
filters: ", config.num_filter)
-        print("\n\tconvi output layer shape (notice length is maintained): ", 
convi_shape)
-        print("\n\tconvi output layer after transposing: ", 
transposed_convi_shape)
-        print("\n\tconvi output layer after reshaping: ", 
reshaped_transposed_convi_shape)
-
-#concatenate symbols to (batch, total_filters, q, 1)
-conv_concat = mx.sym.Concat(*outputs, dim=2)
-conv_concat_shape = conv_concat.infer_shape(seq_data=input_feature_shape)[1][0]
-print("\nconcat output layer shape: ", conv_concat_shape)
-
-#apply a dropout layer
-conv_dropout = mx.sym.Dropout(conv_concat, p = config.dropout)
-
-print("\n\t#################################\n\
-       #recurrent component:\n\
-       #################################\n")
-
-#define a gated recurrent unit cell, which we can unroll into many symbols 
based on our desired time dependancy
-cell_outputs = []
-for i, recurrent_cell in enumerate(config.rcells):
-
-    #unroll the lstm cell, obtaining a symbol each time step
-    outputs, states = recurrent_cell.unroll(length=conv_concat_shape[1], 
inputs=conv_dropout, merge_outputs=False, layout="NTC")
-
-    #we only take the output from the recurrent layer at time t
-    output = outputs[-1]
-
-    #just ensures we can have multiple RNN layer types
-    cell_outputs.append(output)
-
-    print("\n\teach of the ", conv_concat_shape[1], " unrolled hidden cells in 
the RNN is of shape: ",
-          output.infer_shape(seq_data=input_feature_shape)[1][0], 
-          "\nNOTE: only the output from the unrolled cell at time t is 
used...")
-
-
-#concatenate output from each type of recurrent cell
-rnn_component = mx.sym.concat(*cell_outputs, dim=1)
-print("\nshape after combining RNN cell types: ", 
rnn_component.infer_shape(seq_data=input_feature_shape)[1][0])
-
-#apply a dropout layer to output
-rnn_dropout = mx.sym.Dropout(rnn_component, p=config.dropout)
-
-print("\n\t#################################\n\
-       #recurrent-skip component:\n\
-       #################################\n")
-
-# connect hidden cells that are a defined time interval apart,
-# because in practice very long term dependencies are not captured by LSTM/GRU
-# eg if you are predicting electricity consumption you want to connect data 
24hours apart
-# and if your data is every 60s you make a connection between the hidden 
states at time t and at time t + 24h
-# this connection would not be made by an LSTM since 24 is so many hidden 
states away
-
-#define number of cells to skip through to get a certain time interval back 
from current hidden state
-p =int(config.seasonal_period / config.time_interval)
-print("adding skip connections for cells ", p, " intervals apart...")
-
-#define a gated recurrent unit cell, which we can unroll into many symbols 
based on our desired time dependancy
-skipcell_outputs = []
-for i, recurrent_cell in enumerate(config.skiprcells):
-
-    #unroll the rnn cell, obtaining an output and state symbol each time
-    outputs, states = recurrent_cell.unroll(length=conv_concat_shape[1], 
inputs=conv_dropout, merge_outputs=False, layout="NTC")
-
-    #for each unrolled timestep
-    counter = 0
-    connected_outputs = []
-    for i, current_cell in enumerate(reversed(outputs)):
-
-        #try adding a concatenated skip connection
-        try:
-
-            #get seasonal cell p steps apart
-            skip_cell = outputs[i + p]
-
-            #connect this cell to is seasonal neighbour
-            cell_pair = [current_cell, skip_cell]
-            concatenated_pair = mx.sym.concat(*cell_pair, dim=1)
-
-            #prepend symbol to a list
-            connected_outputs.insert(0, concatenated_pair)
-
-            counter += 1
-
-        except IndexError:
-
-            #prepend symbol to a list without skip connection
-            connected_outputs.insert(0, current_cell)
-
-    selected_outputs = []
-    for i, current_cell in enumerate(connected_outputs):
-
-        t = i + 1
-
-        #use p hidden states of Recurrent-skip component from time stamp t − p 
+ 1 to t as outputs
-        if t > conv_concat_shape[1] - p:
-
-            selected_outputs.append(current_cell)
-
-    #concatenate outputs
-    concatenated_output = mx.sym.concat(*selected_outputs, dim=1)
-
-    #append to list
-    skipcell_outputs.append(concatenated_output)
-
-print("\n\t", len(selected_outputs), " hidden cells used in output of shape: ",
-        concatenated_pair.infer_shape(seq_data=input_feature_shape)[1][0], " 
after adding skip connections")
-
-print("\n\tconcatenated output shape for each skipRNN cell type: ",
-      concatenated_output.infer_shape(seq_data=input_feature_shape)[1][0])
-
-#concatenate output from each type of recurrent cell
-skiprnn_component = mx.sym.concat(*skipcell_outputs, dim=1)
-print("\ncombined flattened recurrent-skip shape : ", 
skiprnn_component.infer_shape(seq_data=input_feature_shape)[1][0])
-
-#apply a dropout layer
-skiprnn_dropout = mx.sym.Dropout(skiprnn_component, p=config.dropout)
-
-print("\n\t#################################\n\
-       #autoregressive component:\n\
-       #################################\n")
-
-#AR component simply says the next prediction 
-# is the some constant times all the previous values available for that time 
series
-
-auto_list = []
-for i in list(range(x.shape[1])):
-
-    #get a symbol representing data in each individual time series
-    time_series = mx.sym.slice_axis(data = seq_data, axis = 2, begin = i, end 
= i+1)
-
-    #pass to a fully connected layer
-    fc_ts = mx.sym.FullyConnected(data=time_series, num_hidden=1)
-
-    auto_list.append(fc_ts)
-
-print("\neach time series shape: ", 
time_series.infer_shape(seq_data=input_feature_shape)[1][0])
-
-
-#concatenate fully connected outputs
-ar_output = mx.sym.concat(*auto_list, dim=1)
-print("\nar component shape: ", 
ar_output.infer_shape(seq_data=input_feature_shape)[1][0])
-
-#do not apply activation function since we want this to be linear
-
-print("\n\t#################################\n\
-       #combine AR and NN components:\n\
-       #################################\n")
-
-#combine model components
-neural_components = mx.sym.concat(*[rnn_dropout, skiprnn_dropout], dim = 1)
-
-#pass to fully connected layer to map to a single value
-neural_output = mx.sym.FullyConnected(data=neural_components, 
num_hidden=x.shape[1])
-print("\nNN output shape : ", 
neural_output.infer_shape(seq_data=input_feature_shape)[1][0])
-
-#sum the output from AR and deep learning
-model_output = neural_output + ar_output
-print("\nshape after adding autoregressive output: ", 
model_output.infer_shape(seq_data=input_feature_shape)[1][0])  
-
-#########################################
-# loss function
-#########################################
-
-#compute the gradient of the L2 loss
-loss_grad = mx.sym.LinearRegressionOutput(data = model_output, label = 
seq_label)
-
-#set network point to back so name is interpretable
-batmans_NN = loss_grad
-
-#########################################
-# create a trainable module on CPU/GPUs
-#########################################
-
-model = mx.mod.Module(symbol=batmans_NN,
-                      context=config.context,
-                      data_names=[v.name for v in train_iter.provide_data],
-                      label_names=[v.name for v in train_iter.provide_label])
-
-
-####################################
-#define evaluation metrics to show when training
-#####################################
-
-#root relative squared error
-def rse(label, pred):
-    """computes the root relative squared error
-    (condensed using standard deviation formula)"""
-
-    #compute the root of the sum of the squared error
-    numerator = np.sqrt(np.mean(np.square(label - pred), axis = None))
-    #numerator = np.sqrt(np.sum(np.square(label - pred), axis=None))
-
-    #compute the RMSE if we were to simply predict the average of the previous 
values
-    denominator = np.std(label, axis = None)
-    #denominator = np.sqrt(np.sum(np.square(label - np.mean(label, axis = 
None)), axis=None))
-
-    return numerator / denominator
-
-
-_rse = mx.metric.create(rse)
-
-#relative absolute error
-def rae(label, pred):
-    """computes the relative absolute error
-    (condensed using standard deviation formula)"""
-
-    #compute the root of the sum of the squared error
-    numerator = np.mean(np.abs(label - pred), axis=None)
-    #numerator = np.sum(np.abs(label - pred), axis = None)
-
-    #compute AE if we were to simply predict the average of the previous values
-    denominator = np.mean(np.abs(label - np.mean(label, axis=None)), axis=None)
-    #denominator = np.sum(np.abs(label - np.mean(label, axis = None)), 
axis=None)
-
-    return numerator / denominator
-
-_rae = mx.metric.create(rae)
-
-#empirical correlation coefficient
-def corr(label, pred):
-    """computes the empirical correlation coefficient"""
-
-    #compute the root of the sum of the squared error
-    numerator1 = label - np.mean(label, axis=0)
-    numerator2 = pred - np.mean(pred, axis = 0)
-    numerator = np.mean(numerator1 * numerator2, axis=0)
-
-    #compute the root of the sum of the squared error if we were to simply 
predict the average of the previous values
-    denominator = np.std(label, axis=0) * np.std(pred, axis=0)
-
-    #value passed here should be 321 numbers
-    return np.mean(numerator / denominator)
-
-_corr = mx.metric.create(corr)
-
-#use mxnet native metric function
-# eval_metrics = mx.metric.CompositeEvalMetric()
-# for child_metric in [_rse, _rae, _corr]:
-#     eval_metrics.add(child_metric)
-
-
-#create a composite metric manually as a sanity check whilst training
-def metrics(label, pred):
-    return ["RSE: ", rse(label, pred), "RAE: ", rae(label, pred), "CORR: ", 
corr(label, pred)]
-
-################
-# #fit the model
-################
-
-# allocate memory given the input data and label shapes
-model.bind(data_shapes=train_iter.provide_data,
-           label_shapes=train_iter.provide_label)
-
-# initialize parameters by uniform random numbers
-model.init_params()
-
-# optimizer
-model.init_optimizer(optimizer=config.optimizer, 
optimizer_params=config.optimizer_params)
-
-# train n epochs, i.e. going over the data iter one pass
-try:
-
-    for epoch in range(config.num_epoch):
-        
-        train_iter.reset()
-        val_iter.reset()
-        #eval_metrics.reset()
-
-        for batch in train_iter:
-            model.forward(batch, is_train=True)             # compute 
predictions
-            model.backward()                                # compute gradients
-            model.update()                                  # update parameters
-            #model.update_metric(eval_metrics, batch.label)  # update metrics
-
-        # compute train metrics
-        pred = model.predict(train_iter).asnumpy()
-        label = y_train
-
-        print('\n', 'Epoch %d, Training %s' % (epoch, metrics(label, pred)))
-        #print('Epoch %d, Training %s' % (epoch, eval_metrics.get()))
-        
-        # compute test metrics
-        pred = model.predict(val_iter).asnumpy()
-        label = y_valid
-
-        print('Epoch %d, Validation %s' % (epoch, metrics(label, pred)))
-
-
-################
-# save model after epochs or if user exits early
-################
-
-except KeyboardInterrupt:
-    print('\n' * 5, '-' * 89)
-    print('Exiting from training early, saving model...')
-
-    model.save_checkpoint(
-        prefix='elec_model',
-        epoch=config.num_epoch,
-        save_optimizer_states=False)
-    print('\n' * 5, '-' * 89)
-
-model.save_checkpoint(
-    prefix='elec_model',
-    epoch=config.num_epoch,
-    save_optimizer_states=False,
-    )
-
-
-# #################################
-# #  save predictions on input data
-# #################################
-
-# val_pred = model.predict(val_iter).asnumpy()
-
-# np.save("../results/val_pred.npy", val_pred)
-# np.save("../results/val_label.npy", y_valid)
-
-
-


 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

Reply via email to