eric-haibin-lin commented on a change in pull request #11229: [MXNET-379] L1 
Normalization
URL: https://github.com/apache/incubator-mxnet/pull/11229#discussion_r195276671
 
 

 ##########
 File path: tests/python/unittest/test_operator.py
 ##########
 @@ -2879,6 +2879,32 @@ def npy_layer_norm(data, gamma, beta, axis=1, eps=1E-5):
                                grad_nodes={'data': req, 'gamma': req, 'beta': 
req},
                                numeric_eps=1e-2, rtol=1e-2, atol=1e-2)
 
+@with_seed()
+def test_l1_norm():
+    ctx = default_context()
+    data = mx.symbol.Variable('data')
+    in_data_dim = random_sample([4,5,6], 1)[0]
+    in_shape = rand_shape_nd(in_data_dim)
+    for dtype in [np.float16, np.float32, np.float64]:
+        in_data = np.random.uniform(-1, 1, in_shape).astype(dtype)
+        for i in range(in_data_dim):
+            for keep_dims in [True, False]:
+                norm_sym = mx.symbol.norm(data=data, ord=1, axis=i, 
keepdims=keep_dims)
+                npy_out = np.sum(abs(in_data), axis=i, keepdims=keep_dims)
+                check_symbolic_forward(norm_sym, [in_data], [npy_out],
+                                       rtol=1e-2 if dtype is np.float16 else 
1e-5,
+                                       atol=1e-5, ctx=ctx)
+                # check gradient
+                #check_numeric_gradient(norm_sym, [in_data], numeric_eps=1e-3, 
rtol=1e-2, atol=1e-3)
+                if i < in_data_dim-1:
+                    norm_sym = mx.symbol.norm(data=data, ord=1, axis=(i, i+1), 
keepdims=keep_dims)
+                    npy_out = np.sum(abs(in_data), axis=(i, i+1), 
keepdims=keep_dims)
+                    check_symbolic_forward(norm_sym, [in_data], [npy_out],
+                                       rtol=1e-2 if dtype is np.float16 else 
1e-5,
+                                       atol=1e-5, ctx=ctx)
+                    # check gradient
+                    #check_numeric_gradient(norm_sym, [in_data], 
numeric_eps=1e-3, rtol=1e-2, atol=1e-3)
 
 Review comment:
   Also - check_symbolic_backward?

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

Reply via email to