sandeep-krishnamurthy closed pull request #12099: Fix precision issue of test 
case test_rnnrelu_bidirectional
URL: https://github.com/apache/incubator-mxnet/pull/12099
 
 
   

This is a PR merged from a forked repository.
As GitHub hides the original diff on merge, it is displayed below for
the sake of provenance:

As this is a foreign pull request (from a fork), the diff is supplied
below (as it won't show otherwise due to GitHub magic):

diff --git a/tests/python/unittest/test_operator.py 
b/tests/python/unittest/test_operator.py
index 90e85d123d5..a33b882edfa 100644
--- a/tests/python/unittest/test_operator.py
+++ b/tests/python/unittest/test_operator.py
@@ -30,7 +30,7 @@
 from common import setup_module, with_seed, teardown, 
assert_raises_cudnn_disabled, assertRaises
 import unittest
 
-def check_rnn_consistency(cell1, cell2, T, N, I, H, grad_req):
+def check_rnn_consistency(cell1, cell2, T, N, I, H, grad_req, rtol=1e-2, 
atol=1e-4):
     dshape = (N, T, I)
     data = mx.sym.Variable('data')
 
@@ -53,18 +53,18 @@ def check_rnn_consistency(cell1, cell2, T, N, I, H, 
grad_req):
     # check inference
     mod1.forward(batch, is_train=False)
     mod2.forward(batch, is_train=False)
-    assert_allclose(mod1.get_outputs()[0].asnumpy(), 
mod2.get_outputs()[0].asnumpy(), rtol=1e-2, atol=1e-4)
+    assert_allclose(mod1.get_outputs()[0].asnumpy(), 
mod2.get_outputs()[0].asnumpy(), rtol=rtol, atol=atol)
 
     # check training
     mod1.forward(batch, is_train=True)
     mod2.forward(batch, is_train=True)
-    assert_allclose(mod1.get_outputs()[0].asnumpy(), 
mod2.get_outputs()[0].asnumpy(), rtol=1e-2, atol=1e-4)
+    assert_allclose(mod1.get_outputs()[0].asnumpy(), 
mod2.get_outputs()[0].asnumpy(), rtol=rtol, atol=atol)
 
     dy = mx.random.uniform(shape=mod1.get_outputs()[0].shape)
     mod1.backward(out_grads=[dy])
     mod2.backward(out_grads=[dy])
     if grad_req != 'null':
-        assert_allclose(mod1.get_input_grads()[0].asnumpy(), 
mod2.get_input_grads()[0].asnumpy(), rtol=1e-2, atol=1e-4)
+        assert_allclose(mod1.get_input_grads()[0].asnumpy(), 
mod2.get_input_grads()[0].asnumpy(), rtol=rtol, atol=atol)
     else:
         assert(mod1.get_input_grads()[0] == None)
         assert(mod2.get_input_grads()[0] == None)
@@ -195,9 +195,8 @@ def test_rnnrelu_sym():
     check_rnn_consistency(fused, stack, T, N, I, H, 'add')
     check_rnn_consistency(fused, stack, T, N, I, H, 'null')
 
-
[email protected]("test fails intermittently. temporarily disabled till it gets 
fixed. tracked at https://github.com/apache/incubator-mxnet/issues/11410";)
 @with_seed()
+@assert_raises_cudnn_disabled()
 def test_rnnrelu_bidirectional():
     T, N, I, H = 5, 20, 200, 200
 
@@ -214,9 +213,9 @@ def test_rnnrelu_bidirectional():
                 mx.rnn.RNNCell(H, activation='relu', prefix='r1_'),
                 output_prefix='bi_rnnrelu_1_'))
 
-    check_rnn_consistency(fused, stack, T, N, I, H, 'write')
-    check_rnn_consistency(fused, stack, T, N, I, H, 'add')
-    check_rnn_consistency(fused, stack, T, N, I, H, 'null')
+    check_rnn_consistency(fused, stack, T, N, I, H, 'write', rtol=1e-2, 
atol=1e-2)
+    check_rnn_consistency(fused, stack, T, N, I, H, 'add', rtol=1e-2, 
atol=1e-2)
+    check_rnn_consistency(fused, stack, T, N, I, H, 'null', rtol=1e-2, 
atol=1e-2)
 
 @with_seed()
 def test_lstm_dropout():


 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to