kalyc opened a new issue #13211: train_cifar10 example not working with MXNet 
v1.3
URL: https://github.com/apache/incubator-mxnet/issues/13211
 
 
   Note: Providing complete information in the most concise form is the best 
way to get help. This issue template serves as the checklist for essential 
information to most of the technical issues and bug reports. For non-technical 
issues and feature requests, feel free to present the information in what you 
believe is the best form.
   
   For Q & A and discussion, please start a discussion thread at 
https://discuss.mxnet.io 
   
   ## Description
   train_cifar10 example not working as described in the readme
   
   Following error message is thrown:
   ```
   Traceback (most recent call last):
     File "train_mnist.py", line 96, in <module>
       fit.fit(args, sym, get_mnist_iter)
     File 
"/home/ubuntu/incubator-mxnet/example/image-classification/common/fit.py", line 
220, in fit
       lr, lr_scheduler = _get_lr_scheduler(args, kv)
     File 
"/home/ubuntu/incubator-mxnet/example/image-classification/common/fit.py", line 
53, in _get_lr_scheduler
       base_lr=args.lr))
   TypeError: __init__() got an unexpected keyword argument 'base_lr'
   ```
   
   ## Environment info (Required)
   
   ```
   ----------Python Info----------
   Version      : 3.6.5
   Compiler     : GCC 7.2.0
   Build        : ('default', 'Apr 29 2018 16:14:56')
   Arch         : ('64bit', '')
   ------------Pip Info-----------
   Version      : 10.0.1
   Directory    : 
/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/pip
   ----------MXNet Info-----------
   Version      : 1.3.0
   Directory    : 
/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet
   Commit Hash   : b3be92f4a48bce62a5a8424271871c2f81c8f7f1
   ----------System Info----------
   Platform     : Linux-4.4.0-1070-aws-x86_64-with-debian-stretch-sid
   system       : Linux
   node         : ip-172-31-13-114
   release      : 4.4.0-1070-aws
   version      : #80-Ubuntu SMP Thu Oct 4 13:56:07 UTC 2018
   ----------Hardware Info----------
   machine      : x86_64
   processor    : x86_64
   Architecture:          x86_64
   CPU op-mode(s):        32-bit, 64-bit
   Byte Order:            Little Endian
   CPU(s):                32
   On-line CPU(s) list:   0-31
   Thread(s) per core:    2
   Core(s) per socket:    16
   Socket(s):             1
   NUMA node(s):          1
   Vendor ID:             GenuineIntel
   CPU family:            6
   Model:                 79
   Model name:            Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
   Stepping:              1
   CPU MHz:               2701.871
   CPU max MHz:           3000.0000
   CPU min MHz:           1200.0000
   BogoMIPS:              4600.06
   Hypervisor vendor:     Xen
   Virtualization type:   full
   L1d cache:             32K
   L1i cache:             32K
   L2 cache:              256K
   L3 cache:              46080K
   NUMA node0 CPU(s):     0-31
   Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge 
mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx pdpe1gb rdtscp lm 
constant_tsc rep_good nopl xtopology nonstop_tsc aperfmperf pni pclmulqdq ssse3 
fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave 
avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single kaiser 
fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx xsaveopt
   ----------Network Test----------
   Setting timeout: 10
   Timing for MXNet: https://github.com/apache/incubator-mxnet, DNS: 0.0018 
sec, LOAD: 0.5779 sec.
   Timing for Gluon Tutorial(en): http://gluon.mxnet.io, DNS: 0.0474 sec, LOAD: 
0.1173 sec.
   Timing for Gluon Tutorial(cn): https://zh.gluon.ai, DNS: 0.3806 sec, LOAD: 
0.1539 sec.
   Timing for FashionMNIST: 
https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz,
 DNS: 0.0098 sec, LOAD: 0.2449 sec.
   Timing for PYPI: https://pypi.python.org/pypi/pip, DNS: 0.0095 sec, LOAD: 
0.3935 sec.
   Timing for Conda: https://repo.continuum.io/pkgs/free/, DNS: 0.0009 sec, 
LOAD: 0.0534 sec.
   
   ```
   
   Package used (Python/R/Scala/Julia):
   Python
   
   For Scala user, please provide:
   1. Java version: (`java -version`)
   2. Maven version: (`mvn -version`)
   3. Scala runtime if applicable: (`scala -version`)
   
   For R user, please provide R `sessionInfo()`:
   
   ## Build info (Required if built from source)
   
   Compiler (gcc/clang/mingw/visual studio):
   
   MXNet commit hash:
   89f3091f06b3ab82aab27f6a48d6e2b6223b2a09
   
   Build config:
   (Paste the content of config.mk, or the build command.)
   
   ## Error Message:
   (Paste the complete error message, including stack trace.)
   
   ## Minimum reproducible example
   
   
   ## Steps to reproduce
   (Paste the commands you ran that produced the error.)
   
   1. Run `python train_cifar10.py --network resnet --num-layers 110 --
   batch-size 128 --gpus 0,1`
   
   
   ## What have you tried to solve it?
   
   1. Installed v1.3 from source on Base DLAMI
   2. Used DLAMI environment - `mxnet_p36` to test this example
   
   Error thrown in both the cases
   
   
   @mxnet-label-bot add[Example, Python]
   

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to