anirudh2290 commented on a change in pull request #14641: [MKLDNN]Improve 
quantizeV2 and dequantize latency
URL: https://github.com/apache/incubator-mxnet/pull/14641#discussion_r276051592
 
 

 ##########
 File path: src/operator/quantization/mkldnn/mkldnn_quantize_v2-inl.h
 ##########
 @@ -137,21 +75,101 @@ static void MKLDNNQuantizeV2Compute(const 
nnvm::NodeAttrs& attrs, const OpContex
       }
     }
     if (req[0] != kWriteInplace) {
-      const_cast<NDArray&>(outputs[0]).CopyFrom(*inputs[0].GetMKLDNNData());
+      const_cast<NDArray &>(outputs[0]).CopyFrom(*inputs[0].GetMKLDNNData());
       MKLDNNStream::Get()->Submit();
     }
   } else {
-    auto out_type = GetOutputType(param);
+    if (in_buffer.IsView() && in_buffer.IsMKLDNNData()) in_buffer = 
inputs[0].Reorder2Default();
+    auto i_mem = in_buffer.GetMKLDNNData();
+
+    if (param_.min_calib_range.has_value() && 
param_.max_calib_range.has_value()) {
+      data_min = param_.min_calib_range.value();
+      data_max = param_.max_calib_range.value();
+    } else {
+      // no calib info
+      in_buffer = inputs[0].Reorder2Default();
+      auto in_ptr = in_buffer.data().dptr<float>();
+      auto nthreads = engine::OpenMP::Get()->GetRecommendedOMPThreadCount();
+      std::vector<float> data_maxs(nthreads, data_max);
+      std::vector<float> data_mins(nthreads, data_min);
+#pragma omp parallel for num_threads(nthreads)
+      for (index_t i = 0; i < static_cast<index_t>(in_buffer.shape().Size()); 
i++) {
+        int tid = omp_get_thread_num();
+        if (in_ptr[i] > data_maxs[tid]) data_maxs[tid] = in_ptr[i];
+        if (in_ptr[i] < data_mins[tid]) data_mins[tid] = in_ptr[i];
+      }
+      for (index_t i = 0; i < nthreads; i++) {
+        if (data_maxs[i] > data_max) data_max = data_maxs[i];
+        if (data_mins[i] < data_min) data_min = data_mins[i];
+      }
+    }
+
+    // Write output min/max
+    auto out_type = GetOutputType(param_);
     if (out_type == mshadow::kUint8) {
-      MKLDNNQuantizeComputeKer<float, uint8_t>(inputs, outputs, param, req);
+      quantized_range = kUint8Range;
+      *outputs[1].data().dptr<float>() = data_min;
+      *outputs[2].data().dptr<float>() = data_max;
     } else if (out_type == mshadow::kInt8) {
-      MKLDNNQuantizeComputeKer<float, int8_t>(inputs, outputs, param, req);
+      float real_range = MaxAbs(data_min, data_max);
+      quantized_range = kInt8Range;
+      *outputs[1].data().dptr<float>() = -real_range;
+      *outputs[2].data().dptr<float>() = real_range;
     } else {
       LOG(FATAL) << "mkldnn quantize op only supports int8 and uint8 as output 
type";
     }
+
+    if (initalized_ && (cached_data_min_ != data_min || cached_data_max_ != 
data_max))
+      initalized_ = false;
 
 Review comment:
   i see. reinitializing has its own cost associated with it and may impact 
perf, so if it doesn't change beyond a particular epsilon we may not need to 
reinitialize.

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to