reminisce commented on a change in pull request #14733: Enable zero-copy from 
numpy to MXNet NDArray
URL: https://github.com/apache/incubator-mxnet/pull/14733#discussion_r278266621
 
 

 ##########
 File path: python/mxnet/ndarray/ndarray.py
 ##########
 @@ -4115,3 +4115,105 @@ def from_dlpack(dlpack):
     # delete the deleter of the old dlpack
     ctypes.pythonapi.PyCapsule_SetDestructor(dlpack, None)
     return NDArray(handle=handle)
+
+class DLContext(ctypes.Structure):
+    _fields_ = [("device_type", ctypes.c_int),
+                ("device_id", ctypes.c_int)]
+
+
+class DLDataType(ctypes.Structure):
+    _fields_ = [("type_code", ctypes.c_uint8),
+                ("bits", ctypes.c_uint8),
+                ("lanes", ctypes.c_uint16)]
+    TYPE_MAP = {
+        "int32": (0, 32, 1),
+        "int64": (0, 64, 1),
+        "bool": (1, 1, 1),
+        "uint32": (1, 32, 1),
+        "uint64": (1, 64, 1),
+        "float32": (2, 32, 1),
+        "float64": (2, 64, 1),
+    }
+
+
+class DLTensor(ctypes.Structure):
+    _fields_ = [("data", ctypes.c_void_p),
+                ("ctx", DLContext),
+                ("ndim", ctypes.c_int),
+                ("dtype", DLDataType),
+                ("shape", ctypes.POINTER(ctypes.c_int64)),
+                ("strides", ctypes.POINTER(ctypes.c_int64)),
+                ("byte_offset", ctypes.c_uint64)]
+
+class DLManagedTensor(ctypes.Structure):
+    pass
+
+
+DeleterFunc = ctypes.CFUNCTYPE(None, ctypes.POINTER(DLManagedTensor))
+
+
+DLManagedTensor._fields_ = [("dl_tensor", DLTensor),           # pylint: 
disable=protected-access
+                            ("manager_ctx", ctypes.c_void_p),
+                            ("deleter", DeleterFunc)]
+
+
+@DeleterFunc
+def dl_managed_tensor_deleter(dl_managed_tensor_handle):
+    void_p = dl_managed_tensor_handle.contents.manager_ctx
+    pyobj = ctypes.cast(void_p, ctypes.py_object)
+    ctypes.pythonapi.Py_DecRef(pyobj)
+
+
+def from_numpy(ndarray, zero_copy=True):
+    """Returns an MXNet's NDArray backed by Numpy's ndarray.
+
+    Parameters
+    ----------
+    ndarray: numpy.ndarray
+        input data
+
+    zero_copy: bool
+        Whether we use DLPack's zero-copy conversion to convert to MXNet's 
NDArray.
+        This is only available for c-contiguous arrays, i.e. 
array.flags[C_CONTIGUOUS] == True.
+
+    Returns
+    -------
+    NDArray
+        a NDArray backed by a dlpack tensor
+
+    """
+
+    def make_manager_ctx(obj):
+        pyobj = ctypes.py_object(obj)
+        void_p = ctypes.c_void_p.from_buffer(pyobj)
+        ctypes.pythonapi.Py_IncRef(pyobj)
+        return void_p
+
+    def make_dl_tensor(array):
+        dl_tensor = DLTensor()
+        dl_tensor.data = array.ctypes.data_as(ctypes.c_void_p)
+        dl_tensor.ctx = DLContext(1, 0)
+        dl_tensor.ndim = array.ndim
+        dl_tensor.dtype = DLDataType.TYPE_MAP[str(array.dtype)]
+        dl_tensor.shape = array.ctypes.shape_as(ctypes.c_int64)
+        dl_tensor.strides = None
+        dl_tensor.byte_offset = 0
+        return dl_tensor
 
 Review comment:
   Oh, I meant where incref for numpy object happened. NVM, just saw line 4189, 
missed reading that before.

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to