scotty3005 opened a new issue #14933: predict error in MXFeedForwardModel
URL: https://github.com/apache/incubator-mxnet/issues/14933
 
 
   ## Description
   Trying to get predictions for a simple regression model I geet the error 
posted in the relative section. I am working with R on ArchLinux.
   
   ## Environment info (Required)
   R version 3.5.3 (2019-03-11)
   Platform: x86_64-pc-linux-gnu (64-bit)
   Running under: Arch Linux
   
   Matrix products: default
   BLAS: /usr/lib/libopenblasp-r0.3.5.so
   LAPACK: /usr/lib/liblapack.so.3.8.0
   
   locale:
    [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C              
    [3] LC_TIME=en_GB.UTF-8        LC_COLLATE=C              
    [5] LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
    [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                 
    [9] LC_ADDRESS=C               LC_TELEPHONE=C            
   [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
   
   attached base packages:
   [1] stats     graphics  grDevices utils     datasets  methods   base     
   
   other attached packages:
   [1] mxnet_1.5.0
   
   loaded via a namespace (and not attached):
    [1] Rcpp_1.0.1         plyr_1.8.4         pillar_1.3.1       compiler_3.5.3 
   
    [5] RColorBrewer_1.1-2 influenceR_0.1.0   viridis_0.5.1      tools_3.5.3    
   
    [9] digest_0.6.18      jsonlite_1.6       viridisLite_0.3.0  tibble_2.1.1   
   
   [13] gtable_0.2.0       rgexf_0.15.3       pkgconfig_2.0.2    rlang_0.3.4    
   
   [17] igraph_1.2.4.1     rstudioapi_0.10    gridExtra_2.3      downloader_0.4 
   
   [21] DiagrammeR_1.0.1   dplyr_0.8.0.1      stringr_1.4.0      
htmlwidgets_1.3   
   [25] hms_0.4.2          grid_3.5.3         tidyselect_0.2.5   glue_1.3.1     
   
   [29] R6_2.4.0           Rook_1.1-1         XML_3.98-1.16      readr_1.3.1    
   
   [33] purrr_0.3.2        tidyr_0.8.3        ggplot2_3.0.0      magrittr_1.5   
   
   [37] codetools_0.2-16   scales_1.0.0       htmltools_0.3.6    
assertthat_0.2.1  
   [41] colorspace_1.3-2   brew_1.0-6         stringi_1.4.3      
visNetwork_2.0.6  
   [45] lazyeval_0.2.2     munsell_0.5.0      crayon_1.3.4      
   
   ## Build info (Required if built from source)
   
   Compiler: gcc
   
   MXNet commit hash:
   b22ee951ae45f7d34b9ae79433f318db5b6bc5ac
   
   Build config:
   
   ifndef CC
   export CC = gcc
   endif
   ifndef CXX
   export CXX = g++
   endif
   ifndef NVCC
   export NVCC = nvcc
   endif
   DEV = 0
   DEBUG = 0
   USE_SIGNAL_HANDLER =
   ADD_LDFLAGS =
   ADD_CFLAGS =
   E_CUDA = 0
   USE_CUDA_PATH = NONE
   ENABLE_CUDA_RTC = 1
   USE_CUDNN = 0
   USE_NVTX = 0
   USE_NCCL = 0
   USE_NCCL_PATH = NONE
   USE_OPENCV = 1
   USE_OPENCV_INC_PATH = NONE
   USE_OPENCV_LIB_PATH = NONE
   USE_LIBJPEG_TURBO = 0
   USE_LIBJPEG_TURBO_PATH = NONE
   USE_OPENMP = 1
   USE_MKLDNN =
   USE_NNPACK = 0
   UNAME_S := $(shell uname -s)
   ifeq ($(UNAME_S), Darwin)
   USE_BLAS = apple
   else
   USE_BLAS = atlas
   endif
   USE_LAPACK = 1
   USE_LAPACK_PATH =
   USE_INTEL_PATH = NONE
   ifeq ($(USE_BLAS), mkl)
   USE_STATIC_MKL = 1
   else
   USE_STATIC_MKL = NONE
   endif
   ARCH := $(shell uname -a)
   ifneq (,$(filter $(ARCH), armv6l armv7l powerpc64le ppc64le aarch64))
        USE_SSE=0
        USE_F16C=0
   else
        USE_SSE=1
   endif
   USE_F16C =
   USE_DIST_KVSTORE = 0
   USE_HDFS = 0
   LIBJVM=$(JAVA_HOME)/jre/lib/amd64/server
   USE_S3 = 0
   USE_OPERATOR_TUNING = 1
   USE_GPERFTOOLS = 0
   USE_GPERFTOOLS_PATH =
   USE_GPERFTOOLS_STATIC =
   USE_JEMALLOC = 1
   USE_JEMALLOC_PATH =
   USE_JEMALLOC_STATIC =
   EXTRA_OPERATORS =
   USE_CPP_PACKAGE = 0
   USE_INT64_TENSOR_SIZE = 0
   
   ## Error Message:
   Error in symbol$infer.shape(list(...)) : 
     Error in operator logisticregressionoutput0: [17:10:24] 
include/mxnet/./tuple.h:202: Check failed: i >= 0 && i < ndim(): index = 0 must 
be in range [0, -1)
   Stack trace:
     [bt] (0) 
/home/filippo/R/x86_64-pc-linux-gnu-library/3.5/mxnet/libs/libmxnet.so(dmlc::LogMessageFatal::~LogMessageFatal()+0x43)
 [0x7fd298e1d563]
     [bt] (1) 
/home/filippo/R/x86_64-pc-linux-gnu-library/3.5/mxnet/libs/libmxnet.so(mxnet::op::RegressionOpShape(nnvm::NodeAttrs
 const&, std::vector<mxnet::TShape, std::allocator<mxnet::TShape> >*, 
std::vector<mxnet::TShape, std::allocator<mxnet::TShape> >*)+0x621) 
[0x7fd29b2f9b91]
     [bt] (2) 
/home/filippo/R/x86_64-pc-linux-gnu-library/3.5/mxnet/libs/libmxnet.so(+0x24ddd09)
 [0x7fd29ad21d09]
     [bt] (3) 
/home/filippo/R/x86_64-pc-linux-gnu-library/3.5/mxnet/libs/libmxnet.so(mxnet::exec::InferShape(nnvm::Graph&&,
 std::vector<mxnet::TShape, std::allocator<mxnet::TShape> >&&, 
std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > 
const&)+0x1677) [0x
   
   ## Minimum reproducible example
   library(mxnet)
   
   X0 = matrix(rnorm(2000, -10), ncol=2)
   X1 = matrix(rnorm(2000, 10), ncol=2)
   X = rbind(X0, X1)
   Y = c(rep(0, 1000), rep(1, 1000))
   
   ii = sample(1:nrow(X))
   X = X[ii,]
   Y = Y[ii]
   
   
   mdl = mx.symbol.Variable('data')
   mdl = mx.symbol.FullyConnected(mdl, num_hidden=1)
   mdl = mx.symbol.LogisticRegressionOutput(mdl)
   
   mdl = mx.model.FeedForward.create(
       mdl,
       X = X,
       y=Y,
       array.batch.size=100,
       num.round=100,
       #eval.data=list(data = X, label = Y),
       eval.metric = mx.metric.logloss,
       array.layout = 'rowmajor'
   )
   
   predict(mdl, X, array.layout='rowmajor')
   
   

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to