apeforest commented on a change in pull request #15120: [bug] fix higher grad 
log 
URL: https://github.com/apache/incubator-mxnet/pull/15120#discussion_r295504687
 
 

 ##########
 File path: src/operator/tensor/elemwise_unary_op_basic.cc
 ##########
 @@ -1090,68 +1090,84 @@ 
MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR(_backward_log,
                                                   
unary_bwd<mshadow_op::log_grad>)
 .set_attr<nnvm::FGradient>("FGradient",
   [](const nnvm::NodePtr& n, const std::vector<nnvm::NodeEntry>& ograds) {
-    // For f(x) -> f = log
+    // ograds[0]: dL/dxgrad
+    // inputs[0]: dL/dy
+    // inputs[1]: x
+    // f(x) = y = log(x)
+    // f'(x) = 1/x
     // f''(x) = -1 * (f'(x) * f'(x))
-    auto gx = nnvm::NodeEntry{n};
-    auto ggx_mid = MakeNode("elemwise_mul", n->attrs.name + 
"_backward_mid_grad_grad",
-                            {gx, gx}, nullptr, &n);
-    auto ggx = MakeNode("negative", n->attrs.name + "_backward_grad_grad",
-                        {nnvm::NodeEntry{ggx_mid}}, nullptr, &n);
+    auto dydx_mul_dldy = nnvm::NodeEntry{n};  // f'(x) * head_grads
+    auto dlogx = MakeNode("reciprocal", n->attrs.name + "_dlogx",
+                            {n->inputs[1]}, nullptr, &n);
+    auto d2ydx2_mid = MakeNode("elemwise_mul", n->attrs.name + "_d2ydx2_mid",
+                            {dydx_mul_dldy, nnvm::NodeEntry{dlogx}}, nullptr, 
&n);
+    auto d2ydx2 = MakeNode("negative", n->attrs.name + "_d2ydx2",
+                        {nnvm::NodeEntry{d2ydx2_mid}}, nullptr, &n);
 
     std::vector<nnvm::NodeEntry> ret;
 
     ret.emplace_back(MakeNode("elemwise_mul", n->attrs.name + 
"_backward_grad_grad",
-                             {ograds[0], gx}, nullptr, &n));
+                             {ograds[0], nnvm::NodeEntry{dlogx}}, nullptr, 
&n));
     ret.emplace_back(MakeNode("elemwise_mul", n->attrs.name + 
"_backward_grad_grad_inp",
-                             {ograds[0], nnvm::NodeEntry{ggx}}, nullptr, &n));
+                             {ograds[0], nnvm::NodeEntry{d2ydx2}}, nullptr, 
&n));
     return ret;
   });
 
 MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR(_backward_log10,
                                                   
unary_bwd<mshadow_op::log10_grad>)
 .set_attr<nnvm::FGradient>("FGradient",
   [](const nnvm::NodePtr& n, const std::vector<nnvm::NodeEntry>& ograds) {
-    // For f(x) -> f = log10
+    // ograds[0]: dL/dxgrad
+    // inputs[0]: dL/dy
+    // inputs[1]: x
+    // f(x) = y = log10(x)
     // f'(x) = 1 / (log(10) * x)
     // f''(x) = -1 * (f'(x) * 1/x)
-    auto gx = nnvm::NodeEntry{n, 0, 0};
-    auto g_lx = MakeNode("reciprocal", n->attrs.name + "_backward_log_grad",
+    auto dydx_mul_dldy = nnvm::NodeEntry{n};  // f'(x) * head_grads
+    auto dydx = MakeNode("elemwise_div", n->attrs.name + "_dydx",
+                            {n->inputs[0]}, nullptr, &n);
+    auto dlogx = MakeNode("reciprocal", n->attrs.name + "_dlogx",
                             {n->inputs[1]}, nullptr, &n);
-    auto ggx_mid = MakeNode("elemwise_mul", n->attrs.name + 
"_backward_mid_grad_grad",
-                            {gx, nnvm::NodeEntry{g_lx}}, nullptr, &n);
-    auto ggx = MakeNode("negative", n->attrs.name + "_backward_grad_grad",
-                        {nnvm::NodeEntry{ggx_mid}}, nullptr, &n);
+    auto d2ydx2_mid = MakeNode("elemwise_mul", n->attrs.name + "_d2ydx2_mid",
+                            {dydx_mul_dldy, nnvm::NodeEntry{dlogx}}, nullptr, 
&n);
+    auto d2ydx2 = MakeNode("negative", n->attrs.name + "_d2ydx2",
+                        {nnvm::NodeEntry{d2ydx2_mid}}, nullptr, &n);
 
     std::vector<nnvm::NodeEntry> ret;
 
     ret.emplace_back(MakeNode("elemwise_mul", n->attrs.name + 
"_backward_grad_grad",
-                             {ograds[0], gx}, nullptr, &n));
+                             {ograds[0], nnvm::NodeEntry{dydx}}, nullptr, &n));
     ret.emplace_back(MakeNode("elemwise_mul", n->attrs.name + 
"_backward_grad_grad_inp",
-                             {ograds[0], nnvm::NodeEntry{ggx}}, nullptr, &n));
+                             {ograds[0], nnvm::NodeEntry{d2ydx2}}, nullptr, 
&n));
     return ret;
   });
 
 MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR(_backward_log2,
                                                   
unary_bwd<mshadow_op::log2_grad>)
 .set_attr<nnvm::FGradient>("FGradient",
   [](const nnvm::NodePtr& n, const std::vector<nnvm::NodeEntry>& ograds) {
-    // For f(x) -> f = log2
+    // ograds[0]: dL/dxgrad
+    // inputs[0]: dL/dy
+    // inputs[1]: x
+    // f(x) = y = log10(x)
 
 Review comment:
   ```suggestion
       // f(x) = y = log2(x)
   ```

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to