This is an automated email from the ASF dual-hosted git repository.
haoj pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/incubator-mxnet.git
The following commit(s) were added to refs/heads/master by this push:
new c3f5eea Numpy Tensordot and Dot Operator (#15820)
c3f5eea is described below
commit c3f5eeabf9bf9d37ac47a4f1c8cc93c292825d2a
Author: ckt624 <[email protected]>
AuthorDate: Tue Aug 13 02:16:25 2019 +0800
Numpy Tensordot and Dot Operator (#15820)
* Implements tensordot and dot.
* Change tests.
* Add spaces.
* Reorganize codes.
* Remove np_matrix_op.h
---
python/mxnet/ndarray/numpy/_op.py | 73 +++-
python/mxnet/numpy/multiarray.py | 59 ++-
python/mxnet/symbol/numpy/_symbol.py | 57 ++-
src/operator/numpy/np_dot-inl.h | 110 +++++
src/operator/numpy/np_dot.cc | 150 +++++++
src/operator/numpy/np_dot.cu | 37 ++
src/operator/numpy/np_tensordot_op-inl.h | 688 +++++++++++++++++++++++++++++++
src/operator/numpy/np_tensordot_op.cc | 235 +++++++++++
src/operator/numpy/np_tensordot_op.cu | 42 ++
tests/python/unittest/test_numpy_op.py | 183 ++++++++
10 files changed, 1631 insertions(+), 3 deletions(-)
diff --git a/python/mxnet/ndarray/numpy/_op.py
b/python/mxnet/ndarray/numpy/_op.py
index d7c06e7..caa9ba1 100644
--- a/python/mxnet/ndarray/numpy/_op.py
+++ b/python/mxnet/ndarray/numpy/_op.py
@@ -25,7 +25,7 @@ from ...util import set_module
from ...context import current_context
from . import _internal as _npi
-__all__ = ['zeros', 'ones', 'add', 'subtract', 'multiply', 'divide', 'mod',
'power']
+__all__ = ['zeros', 'ones', 'add', 'subtract', 'multiply', 'divide', 'mod',
'power', 'tensordot']
@set_module('mxnet.ndarray.numpy')
@@ -293,3 +293,74 @@ def power(x1, x2, out=None):
This is a scalar if both x1 and x2 are scalars.
"""
return _ufunc_helper(x1, x2, _npi.power, _np.power, _npi.power_scalar,
_npi.rpower_scalar, out)
+
+
+@set_module('mxnet.ndarray.numpy')
+def tensordot(a, b, axes=2):
+ r"""
+ tensordot(a, b, axes=2)
+ Compute tensor dot product along specified axes for arrays >= 1-D.
+ Given two tensors (arrays of dimension greater than or equal to one),
+ `a` and `b`, and an ndarray object containing two ndarray
+ objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s
+ elements (components) over the axes specified by ``a_axes`` and
+ ``b_axes``. The third argument can be a single non-negative
+ integer_like scalar, ``N``; if it is such, then the last ``N``
+ dimensions of `a` and the first ``N`` dimensions of `b` are summed
+ over.
+ Parameters
+ ----------
+ a, b : ndarray, len(shape) >= 1
+ Tensors to "dot".
+ axes : int or (2,) ndarray
+ * integer_like
+ If an int N, sum over the last N axes of `a` and the first N axes
+ of `b` in order. The sizes of the corresponding axes must match.
+ * (2,) ndarray
+ Or, a list of axes to be summed over, first sequence applying to `a`,
+ second to `b`. Both elements ndarray must be of the same length.
+ See Also
+ --------
+ dot, einsum
+ Notes
+ -----
+ Three common use cases are:
+ * ``axes = 0`` : tensor product :math:`a\otimes b`
+ * ``axes = 1`` : tensor dot product :math:`a\cdot b`
+ * ``axes = 2`` : (default) tensor double contraction :math:`a:b`
+ When `axes` is integer_like, the sequence for evaluation will be: first
+ the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and
+ Nth axis in `b` last.
+ When there is more than one axis to sum over - and they are not the last
+ (first) axes of `a` (`b`) - the argument `axes` should consist of
+ two sequences of the same length, with the first axis to sum over given
+ first in both sequences, the second axis second, and so forth.
+ Examples
+ --------
+ >>> a = np.arange(60.).reshape(3,4,5)
+ >>> b = np.arange(24.).reshape(4,3,2)
+ >>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
+ >>> c.shape
+ (5, 2)
+ >>> c
+ array([[ 4400., 4730.],
+ [ 4532., 4874.],
+ [ 4664., 5018.],
+ [ 4796., 5162.],
+ [ 4928., 5306.]])
+ """
+ if _np.isscalar(axes):
+ return _npi.tensordot_int_axes(a, b, axes)
+
+ if len(axes) != 2:
+ raise ValueError('Axes must consist of two arrays.')
+ a_axes_summed, b_axes_summed = axes
+ if _np.isscalar(a_axes_summed):
+ a_axes_summed = (a_axes_summed,)
+ if _np.isscalar(b_axes_summed):
+ b_axes_summed = (b_axes_summed,)
+
+ if len(a_axes_summed) != len(b_axes_summed):
+ raise ValueError('Axes length mismatch')
+
+ return _npi.tensordot(a, b, a_axes_summed, b_axes_summed)
diff --git a/python/mxnet/numpy/multiarray.py b/python/mxnet/numpy/multiarray.py
index 9e0c52d..f4b6e73 100644
--- a/python/mxnet/numpy/multiarray.py
+++ b/python/mxnet/numpy/multiarray.py
@@ -44,7 +44,7 @@ from ..ndarray import numpy as _mx_nd_np
from ..ndarray.numpy import _internal as _npi
__all__ = ['ndarray', 'empty', 'array', 'zeros', 'ones', 'add', 'subtract',
'multiply', 'divide',
- 'mod', 'power']
+ 'mod', 'power', 'tensordot']
# This function is copied from ndarray.py since pylint
@@ -1549,3 +1549,60 @@ def power(x1, x2, out=None):
This is a scalar if both x1 and x2 are scalars.
"""
return _mx_nd_np.power(x1, x2, out=out)
+
+
+@set_module('mxnet.numpy')
+def tensordot(a, b, axes=2):
+ r"""
+ tensordot(a, b, axes=2)
+ Compute tensor dot product along specified axes for arrays >= 1-D.
+ Given two tensors (arrays of dimension greater than or equal to one),
+ `a` and `b`, and an ndarray object containing two ndarray
+ objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s
+ elements (components) over the axes specified by ``a_axes`` and
+ ``b_axes``. The third argument can be a single non-negative
+ integer_like scalar, ``N``; if it is such, then the last ``N``
+ dimensions of `a` and the first ``N`` dimensions of `b` are summed
+ over.
+ Parameters
+ ----------
+ a, b : ndarray, len(shape) >= 1
+ Tensors to "dot".
+ axes : int or (2,) ndarray
+ * integer_like
+ If an int N, sum over the last N axes of `a` and the first N axes
+ of `b` in order. The sizes of the corresponding axes must match.
+ * (2,) ndarray
+ Or, a list of axes to be summed over, first sequence applying to `a`,
+ second to `b`. Both elements ndarray must be of the same length.
+ See Also
+ --------
+ dot, einsum
+ Notes
+ -----
+ Three common use cases are:
+ * ``axes = 0`` : tensor product :math:`a\otimes b`
+ * ``axes = 1`` : tensor dot product :math:`a\cdot b`
+ * ``axes = 2`` : (default) tensor double contraction :math:`a:b`
+ When `axes` is integer_like, the sequence for evaluation will be: first
+ the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and
+ Nth axis in `b` last.
+ When there is more than one axis to sum over - and they are not the last
+ (first) axes of `a` (`b`) - the argument `axes` should consist of
+ two sequences of the same length, with the first axis to sum over given
+ first in both sequences, the second axis second, and so forth.
+ Examples
+ --------
+ >>> a = np.arange(60.).reshape(3,4,5)
+ >>> b = np.arange(24.).reshape(4,3,2)
+ >>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
+ >>> c.shape
+ (5, 2)
+ >>> c
+ array([[ 4400., 4730.],
+ [ 4532., 4874.],
+ [ 4664., 5018.],
+ [ 4796., 5162.],
+ [ 4928., 5306.]])
+ """
+ return _mx_nd_np.tensordot(a, b, axes)
diff --git a/python/mxnet/symbol/numpy/_symbol.py
b/python/mxnet/symbol/numpy/_symbol.py
index 616f306..65db429 100644
--- a/python/mxnet/symbol/numpy/_symbol.py
+++ b/python/mxnet/symbol/numpy/_symbol.py
@@ -28,7 +28,7 @@ from ..symbol import Symbol
from .._internal import _set_np_symbol_class
from . import _internal as _npi
-__all__ = ['zeros', 'ones', 'add', 'subtract', 'multiply', 'divide', 'mod',
'power']
+__all__ = ['zeros', 'ones', 'add', 'subtract', 'multiply', 'divide', 'mod',
'power', 'tensordot']
def _num_outputs(sym):
@@ -1010,4 +1010,59 @@ def power(x1, x2, out=None):
return _ufunc_helper(x1, x2, _npi.power, _np.power, _npi.power_scalar,
_npi.rpower_scalar, out)
+@set_module('mxnet.symbol.numpy')
+def tensordot(a, b, axes=2):
+ r"""
+ tensordot(a, b, axes=2)
+ Compute tensor dot product along specified axes for arrays >= 1-D.
+ Given two tensors (arrays of dimension greater than or equal to one),
+ `a` and `b`, and an ndarray object containing two ndarray
+ objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s
+ elements (components) over the axes specified by ``a_axes`` and
+ ``b_axes``. The third argument can be a single non-negative
+ integer_like scalar, ``N``; if it is such, then the last ``N``
+ dimensions of `a` and the first ``N`` dimensions of `b` are summed
+ over.
+ Parameters
+ ----------
+ a, b : _Symbol
+ Tensors to "dot".
+ axes : int or (2,) ndarray
+ * integer_like
+ If an int N, sum over the last N axes of `a` and the first N axes
+ of `b` in order. The sizes of the corresponding axes must match.
+ * (2,) array_like
+ Or, a list of axes to be summed over, first sequence applying to `a`,
+ second to `b`. Both elements array_like must be of the same length.
+ Notes
+ -----
+ Three common use cases are:
+ * ``axes = 0`` : tensor product :math:`a\otimes b`
+ * ``axes = 1`` : tensor dot product :math:`a\cdot b`
+ * ``axes = 2`` : (default) tensor double contraction :math:`a:b`
+ When `axes` is integer_like, the sequence for evaluation will be: first
+ the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and
+ Nth axis in `b` last.
+ When there is more than one axis to sum over - and they are not the last
+ (first) axes of `a` (`b`) - the argument `axes` should consist of
+ two sequences of the same length, with the first axis to sum over given
+ first in both sequences, the second axis second, and so forth.
+ """
+ if _np.isscalar(axes):
+ return _npi.tensordot_int_axes(a, b, axes)
+
+ if len(axes) != 2:
+ raise ValueError('Axes must consist of two arrays.')
+ a_axes_summed, b_axes_summed = axes
+ if _np.isscalar(a_axes_summed):
+ a_axes_summed = (a_axes_summed,)
+ if _np.isscalar(b_axes_summed):
+ b_axes_summed = (b_axes_summed,)
+
+ if len(a_axes_summed) != len(b_axes_summed):
+ raise ValueError('Axes length mismatch')
+
+ return _npi.tensordot(a, b, a_axes_summed, b_axes_summed)
+
+
_set_np_symbol_class(_Symbol)
diff --git a/src/operator/numpy/np_dot-inl.h b/src/operator/numpy/np_dot-inl.h
new file mode 100644
index 0000000..a854777
--- /dev/null
+++ b/src/operator/numpy/np_dot-inl.h
@@ -0,0 +1,110 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements. See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership. The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied. See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+/*!
+ * \file np_dot-inl.h
+ * \brief Function definition of matrix numpy-compatible dot operator
+ */
+
+#ifndef MXNET_OPERATOR_NUMPY_NP_DOT_INL_H_
+#define MXNET_OPERATOR_NUMPY_NP_DOT_INL_H_
+
+#include <mxnet/operator_util.h>
+#include <vector>
+#include "../tensor/dot-inl.h"
+#include "../tensor/elemwise_binary_op.h"
+#include "../tensor/broadcast_reduce_op.h"
+#include "np_tensordot_op-inl.h"
+
+namespace mxnet {
+namespace op {
+
+template<typename xpu>
+inline void NumpyDotForward(const nnvm::NodeAttrs& attrs,
+ const OpContext& ctx,
+ const std::vector<TBlob>& inputs,
+ const std::vector<OpReqType>& req,
+ const std::vector<TBlob>& outputs) {
+ using namespace mshadow;
+ using namespace mxnet_op;
+
+ CHECK_EQ(inputs.size(), 2U);
+ CHECK_EQ(outputs.size(), 1U);
+
+ const TBlob& a = inputs[0];
+ const TBlob& b = inputs[1];
+ const TBlob& out = outputs[0];
+ const mxnet::TShape a_shape = a.shape_;
+ const mxnet::TShape b_shape = b.shape_;
+
+ MSHADOW_REAL_TYPE_SWITCH(out.type_flag_, DType, {
+ if (b_shape.ndim() < 3) {
+ // Case 1, 2, 3, 4, 5: a is N-D array (N >= 1) and b is vector or
matrix, sum product
+ // over the last axis of a and the first axis of b
+ TensordotIntAxesImpl<xpu>(1, ctx, a, b, out, req[0]);
+ } else {
+ // Case 3, 5.5: a is N-D array and b is M-D array (M > 2), sum product
over the last axis
+ // of a and the 2nd-to-last axis of b
+ const Tuple<int> a_axes_summed({a_shape.ndim() - 1});
+ const Tuple<int> b_axes_summed({b_shape.ndim() - 2});
+ TensordotImpl<xpu>(a_axes_summed, b_axes_summed, ctx, a, b, out, req);
+ }
+ });
+}
+
+template<typename xpu>
+inline void NumpyDotBackward(const nnvm::NodeAttrs& attrs,
+ const OpContext& ctx,
+ const std::vector<TBlob>& inputs,
+ const std::vector<OpReqType>& req,
+ const std::vector<TBlob>& outputs) {
+ using namespace mshadow;
+ using namespace mshadow_op;
+
+ CHECK_EQ(inputs.size(), 3U);
+ CHECK_EQ(outputs.size(), 2U);
+
+ const TBlob& ograd = inputs[0];
+ const TBlob& a = inputs[1];
+ const TBlob& b = inputs[2];
+ const TBlob& grad_a = outputs[0];
+ const TBlob& grad_b = outputs[1];
+ const mxnet::TShape a_shape = a.shape_;
+ const mxnet::TShape b_shape = b.shape_;
+
+ MSHADOW_REAL_TYPE_SWITCH(ograd.type_flag_, DType, {
+ if (b_shape.ndim() < 3) {
+ // Case 1, 2, 3, 4, 5: a is N-D array (N >= 1) and b is vector or
matrix, sum product
+ // over the last axis of a and the first axis of b
+ TensordotIntAxesBackwardImpl<xpu>(1, ctx, ograd, a, b, grad_a, grad_b,
req);
+ } else {
+ // Case 3, 5.5: a is N-D array and b is M-D array (M > 2), sum product
over the last axis
+ // of a and the 2nd-to-last axis of b
+ const Tuple<int> a_axes_summed({a_shape.ndim() - 1});
+ const Tuple<int> b_axes_summed({b_shape.ndim() - 2});
+ TensordotBackwardImpl<xpu>(a_axes_summed, b_axes_summed, ctx, ograd, a,
b, grad_a,
+ grad_b, req);
+ }
+ });
+}
+
+} // namespace op
+} // namespace mxnet
+
+#endif // MXNET_OPERATOR_NUMPY_NP_DOT_INL_H_
diff --git a/src/operator/numpy/np_dot.cc b/src/operator/numpy/np_dot.cc
new file mode 100644
index 0000000..627e688
--- /dev/null
+++ b/src/operator/numpy/np_dot.cc
@@ -0,0 +1,150 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements. See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership. The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied. See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+/*!
+ * \file np_dot.cc
+ * \brief CPU Implementation of numpy-compatible dot
+ */
+
+#include "./np_dot-inl.h"
+
+namespace mxnet {
+namespace op {
+
+inline bool NumpyDotShape(const nnvm::NodeAttrs& attrs,
+ mxnet::ShapeVector *in_attrs,
+ mxnet::ShapeVector *out_attrs) {
+ CHECK_EQ(in_attrs->size(), 2U);
+ CHECK_EQ(out_attrs->size(), 1U);
+
+ const mxnet::TShape& a_shape = in_attrs->at(0);
+ const mxnet::TShape& b_shape = in_attrs->at(1);
+
+ if (!ndim_is_known(a_shape) || !ndim_is_known(b_shape)) {
+ return false;
+ }
+
+ if (a_shape.ndim() == 1 && b_shape.ndim() == 1) {
+ // Case 1: both 1-D arrays, inner product of vectors
+ SHAPE_ASSIGN_CHECK(*in_attrs, 0, in_attrs->at(1));
+ SHAPE_ASSIGN_CHECK(*in_attrs, 1, in_attrs->at(0));
+ SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape(0, 0));
+ } else if (a_shape.ndim() == 2 && b_shape.ndim() == 2) {
+ // Case 2: both 2-D arrays, matrix multiplication
+ mxnet::TShape tmp_shape(2, -1);
+ tmp_shape[1] = b_shape[0];
+ SHAPE_ASSIGN_CHECK(*in_attrs, 0, tmp_shape);
+
+ tmp_shape[0] = a_shape[1];
+ tmp_shape[1] = -1;
+ SHAPE_ASSIGN_CHECK(*in_attrs, 1, tmp_shape);
+
+ tmp_shape[0] = a_shape[0];
+ tmp_shape[1] = b_shape[1];
+ SHAPE_ASSIGN_CHECK(*out_attrs, 0, tmp_shape);
+ } else if (a_shape.ndim() == 0 || b_shape.ndim() == 0) {
+ // Case 3 + 3.5: either of them is a scalar, just scale by one of them
+ mxnet::TShape oshape = (a_shape.ndim() == 0) ? b_shape : a_shape;
+ SHAPE_ASSIGN_CHECK(*out_attrs, 0, oshape);
+ } else if (b_shape.ndim() == 1) {
+ // Case 4: a is N-D array and b is 1-D array, sum product over the last
axis
+ TShape tmp_shape(a_shape.ndim(), -1);
+ tmp_shape[a_shape.ndim() - 1] = b_shape[0];
+ SHAPE_ASSIGN_CHECK(*in_attrs, 0, tmp_shape);
+
+ tmp_shape = TShape(1, -1);
+ tmp_shape[0] = a_shape[a_shape.ndim() - 1];
+ SHAPE_ASSIGN_CHECK(*in_attrs, 1, tmp_shape);
+
+ mxnet::TShape out_shape(a_shape.ndim() - 1, -1);
+ for (int i = 0; i < a_shape.ndim() - 1; ++i) {
+ out_shape[i] = a_shape[i];
+ }
+ SHAPE_ASSIGN_CHECK(*out_attrs, 0, out_shape);
+ } else {
+ // Case 5: a is N-D array and b is M-D array, sum product over the last
axis
+ // of a and the 2nd-to-last axis of b
+ TShape tmp_shape(a_shape.ndim(), -1);
+ tmp_shape[a_shape.ndim() - 1] = b_shape[b_shape.ndim() - 2];
+ SHAPE_ASSIGN_CHECK(*in_attrs, 0, tmp_shape);
+
+ tmp_shape = TShape(b_shape.ndim(), -1);
+ tmp_shape[b_shape.ndim() - 2] = a_shape[a_shape.ndim() - 1];
+ SHAPE_ASSIGN_CHECK(*in_attrs, 1, tmp_shape);
+
+ tmp_shape = TShape(a_shape.ndim() + b_shape.ndim() - 2, -1);
+ for (int i = 0; i < a_shape.ndim() - 1; ++i) {
+ tmp_shape[i] = a_shape[i];
+ }
+ for (int i = 0; i < b_shape.ndim() - 2; ++i) {
+ tmp_shape[i + a_shape.ndim() - 1] = b_shape[i];
+ }
+ tmp_shape[tmp_shape.ndim() - 1] = b_shape[b_shape.ndim() - 1];
+ SHAPE_ASSIGN_CHECK(*out_attrs, 0, tmp_shape);
+ }
+ return shape_is_known(*in_attrs) && shape_is_known(*out_attrs);
+}
+
+NNVM_REGISTER_OP(_np_dot)
+.describe(R"doc(Dot product of two arrays. Specifically,
+
+- If both a and b are 1-D arrays, it is inner product of vectors.
+
+- If both a and b are 2-D arrays, it is matrix multiplication.
+
+- If either a or b is 0-D (scalar), it is equivalent to multiply and using
numpy.multiply(a, b) or a * b is preferred.
+
+- If a is an N-D array and b is a 1-D array, it is a sum product over the last
axis of a and b.
+
+- If a is an N-D array and b is an M-D array (where M>=2), it is a sum product
over the last axis of a and the second-to-last axis of b:
+
+ Example ::
+
+ dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
+
+)doc" ADD_FILELINE)
+.set_num_inputs(2)
+.set_num_outputs(1)
+.set_attr<nnvm::FListInputNames>("FListInputNames",
+ [](const NodeAttrs& attrs) {
+ return std::vector<std::string>{"a", "b"};
+ })
+.set_attr<mxnet::FInferShape>("FInferShape", NumpyDotShape)
+.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<2, 1>)
+.set_attr<FResourceRequest>("FResourceRequest",
+ [](const NodeAttrs& attrs) {
+ return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
+ })
+.set_attr<FCompute>("FCompute<cpu>", NumpyDotForward<cpu>)
+.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_np_dot"})
+.add_argument("a", "NDArray-or-Symbol", "First input")
+.add_argument("b", "NDArray-or-Symbol", "Second input");
+
+NNVM_REGISTER_OP(_backward_np_dot)
+.set_num_inputs(3)
+.set_num_outputs(2)
+.set_attr<nnvm::TIsBackward>("TIsBackward", true)
+.set_attr<FResourceRequest>("FResourceRequest",
+ [](const NodeAttrs& attrs) {
+ return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
+ })
+.set_attr<FCompute>("FCompute<cpu>", NumpyDotBackward<cpu>);
+
+} // namespace op
+} // namespace mxnet
diff --git a/src/operator/numpy/np_dot.cu b/src/operator/numpy/np_dot.cu
new file mode 100644
index 0000000..9a9c69a
--- /dev/null
+++ b/src/operator/numpy/np_dot.cu
@@ -0,0 +1,37 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements. See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership. The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied. See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+/*!
+ * \file np_dot.cu
+ * \brief GPU Implementation of numpy-compatible dot
+ */
+
+#include "./np_dot-inl.h"
+
+namespace mxnet {
+namespace op {
+
+NNVM_REGISTER_OP(_np_dot)
+.set_attr<FCompute>("FCompute<gpu>", NumpyDotForward<gpu>);
+
+NNVM_REGISTER_OP(_backward_np_dot)
+.set_attr<FCompute>("FCompute<gpu>", NumpyDotBackward<gpu>);
+
+} // namespace op
+} // namespace mxnet
diff --git a/src/operator/numpy/np_tensordot_op-inl.h
b/src/operator/numpy/np_tensordot_op-inl.h
new file mode 100644
index 0000000..da38916
--- /dev/null
+++ b/src/operator/numpy/np_tensordot_op-inl.h
@@ -0,0 +1,688 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements. See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership. The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied. See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+/*!
+ * \file np_tensordot_op-inl.h
+ * \brief CPU Implementation of numpy-compatible tensordot
+ */
+#ifndef MXNET_OPERATOR_NUMPY_NP_TENSORDOT_OP_INL_H_
+#define MXNET_OPERATOR_NUMPY_NP_TENSORDOT_OP_INL_H_
+
+#include <vector>
+#include "../tensor/matrix_op-inl.h"
+
+namespace mxnet {
+namespace op {
+
+using namespace mshadow;
+
+struct TensordotParam : public dmlc::Parameter<TensordotParam> {
+ mxnet::Tuple<int> a_axes_summed, b_axes_summed;
+ DMLC_DECLARE_PARAMETER(TensordotParam) {
+ DMLC_DECLARE_FIELD(a_axes_summed);
+ DMLC_DECLARE_FIELD(b_axes_summed);
+ }
+};
+
+/**
+ * deals with negative axes.
+ */
+inline void ShiftAxes(Tuple<int>* axes_summed, const int ndim) {
+ for (auto& i : *axes_summed) {
+ i = (i + ndim) % ndim;
+ }
+}
+
+/**
+ * Gets matrix dimensions of a and b after transpose and reshape.
+ */
+inline void GetMatrixDimensions(int* ad1,
+ int* ad2,
+ int* bd1,
+ int* bd2,
+ const mxnet::Tuple<int>& a_axes_remained,
+ const mxnet::Tuple<int>& a_axes_summed,
+ const mxnet::Tuple<int>& b_axes_remained,
+ const mxnet::Tuple<int>& b_axes_summed,
+ const mxnet::TShape& a_shape,
+ const mxnet::TShape& b_shape) {
+ *ad1 = 1;
+ *ad2 = 1;
+ *bd1 = 1;
+ *bd2 = 1;
+
+ for (int i = 0; i < a_axes_remained.ndim(); i++) {
+ *ad1 *= a_shape[a_axes_remained[i]];
+ }
+ for (int i = 0; i < a_axes_summed.ndim(); i++) {
+ *ad2 *= a_shape[a_axes_summed[i]];
+ }
+ for (int i = 0; i < b_axes_summed.ndim(); i++) {
+ *bd1 *= b_shape[b_axes_summed[i]];
+ }
+ for (int i = 0; i < b_axes_remained.ndim(); i++) {
+ *bd2 *= b_shape[b_axes_remained[i]];
+ }
+}
+
+/**
+ * gets new axes of a and b after transpose and reshape.
+ */
+inline void GetReorderedAxes(const mxnet::Tuple<int>& a_axes_summed,
+ mxnet::Tuple<int>* a_axes_remained,
+ mxnet::Tuple<int>* a_axes,
+ const mxnet::Tuple<int>& b_axes_summed,
+ mxnet::Tuple<int>* b_axes_remained,
+ mxnet::Tuple<int>* b_axes,
+ const mxnet::TShape& a_shape,
+ const mxnet::TShape& b_shape) {
+ std::vector<int> a_axes_remained_vector;
+ for (int i = 0; i < a_shape.ndim(); i++) {
+ a_axes_remained_vector.push_back(i);
+ }
+ for (auto& i : a_axes_summed) {
+ a_axes_remained_vector.erase(std::find(a_axes_remained_vector.begin(),
+ a_axes_remained_vector.end(), i));
+ }
+ *a_axes_remained = mxnet::Tuple<int>(a_axes_remained_vector);
+
+ std::vector<int> a_axes_vector(a_axes_remained_vector);
+ for (auto& i : a_axes_summed) {
+ a_axes_vector.push_back(i);
+ }
+ *a_axes = mxnet::Tuple<int>(a_axes_vector);
+
+ std::vector<int> b_axes_remained_vector;
+ for (int i = 0; i < b_shape.ndim(); i++) {
+ b_axes_remained_vector.push_back(i);
+ }
+ for (auto& i : b_axes_summed) {
+ b_axes_remained_vector.erase(std::find(b_axes_remained_vector.begin(),
+ b_axes_remained_vector.end(), i));
+ }
+ *b_axes_remained = mxnet::Tuple<int>(b_axes_remained_vector);
+
+ std::vector<int> b_axes_vector;
+ for (auto& i : b_axes_summed) {
+ b_axes_vector.push_back(i);
+ }
+ for (auto& i : b_axes_remained_vector) {
+ b_axes_vector.push_back(i);
+ }
+ *b_axes = mxnet::Tuple<int>(b_axes_vector);
+}
+
+/**
+ * gets shapes of a and b after transpose and reshape.
+ */
+inline mxnet::TShape GetReorderedShape(const mxnet::TShape& shape, const
mxnet::Tuple<int>& axes) {
+ mxnet::TShape new_shape(shape);
+ for (int i = 0; i < axes.ndim(); i++) {
+ new_shape[i] = shape[axes[i]];
+ }
+ return new_shape;
+}
+
+/**
+ * gets matrix dot. Reshapes tensor a as ad1-by-ad2 matrix, tensor b as
bd1-by-bd2 matrix, then
+ * calculates matrix dot a * b and stores in tensor out.
+ */
+template<typename xpu>
+void MatrixDot(const OpContext& ctx,
+ const TBlob& a,
+ const TBlob& b,
+ const TBlob& out,
+ const OpReqType req,
+ const int ad1,
+ const int ad2,
+ const int bd1,
+ const int bd2,
+ const bool aT = false,
+ const bool bT = false) {
+ using namespace mshadow;
+ using namespace mshadow_op;
+
+ Stream<xpu> *s = ctx.get_stream<xpu>();
+
+ MSHADOW_REAL_TYPE_SWITCH(out.type_flag_, DType, {
+ Tensor<xpu, 2, DType> a_tensor = a.get_with_shape<xpu, 2,
DType>(Shape2(ad1, ad2), s);
+ Tensor<xpu, 2, DType> b_tensor = b.get_with_shape<xpu, 2,
DType>(Shape2(bd1, bd2), s);
+
+ if (aT && bT) {
+ CHECK_EQ(ad1, bd2);
+ Tensor<xpu, 2, DType> out_tensor = out.get_with_shape<xpu, 2,
DType>(Shape2(ad2, bd1), s);
+ ASSIGN_DISPATCH(out_tensor, req, dot(a_tensor.T(), b_tensor.T()));
+ } else if (aT && !bT) {
+ CHECK_EQ(ad1, bd1);
+ Tensor<xpu, 2, DType> out_tensor = out.get_with_shape<xpu, 2,
DType>(Shape2(ad2, bd2), s);
+ ASSIGN_DISPATCH(out_tensor, req, dot(a_tensor.T(), b_tensor));
+ } else if (!aT && bT) {
+ CHECK_EQ(ad2, bd2);
+ Tensor<xpu, 2, DType> out_tensor = out.get_with_shape<xpu, 2,
DType>(Shape2(ad1, bd1), s);
+ ASSIGN_DISPATCH(out_tensor, req, dot(a_tensor, b_tensor.T()));
+ } else {
+ CHECK_EQ(ad2, bd1);
+ Tensor<xpu, 2, DType> out_tensor = out.get_with_shape<xpu, 2,
DType>(Shape2(ad1, bd2), s);
+ ASSIGN_DISPATCH(out_tensor, req, dot(a_tensor, b_tensor));
+ }
+ });
+}
+
+/**
+ * Scalar multiply.
+ */
+template<int req>
+struct scalar_mul_kernel {
+ template<typename DType>
+ MSHADOW_XINLINE static void Map(int i, DType *out, const DType* tensor,
const DType *scalar) {
+ KERNEL_ASSIGN(out[i], req, tensor[i] * scalar[0]);
+ }
+};
+
+/**
+ * Calculates tensordot.
+ */
+template<typename xpu>
+void TensordotImpl(const Tuple<int>& a_axes_summed,
+ const Tuple<int>& b_axes_summed,
+ const OpContext& ctx,
+ const TBlob& a,
+ const TBlob& b,
+ const TBlob& out,
+ const std::vector<OpReqType>& req) {
+ if (req[0] == kNullOp) {
+ return;
+ }
+
+ if (out.shape_.Size() == 0U) {
+ return; // zero-size output, no need to launch kernel
+ }
+
+ const mxnet::TShape& a_shape = a.shape_;
+ const mxnet::TShape& b_shape = b.shape_;
+
+ mshadow::Stream<xpu> *s = ctx.get_stream<xpu>();
+ CHECK_EQ(out.type_flag_, a.type_flag_)
+ << "Binary function only support input/output with the same type";
+ CHECK_EQ(out.type_flag_, b.type_flag_)
+ << "Binary function only support input/output with the same type";
+ CHECK(out.type_flag_ == kFloat32 || out.type_flag_ == kFloat64 ||
+ (out.type_flag_ == kFloat16 && ctx.run_ctx.ctx.dev_mask() ==
mshadow::gpu::kDevMask))
+ << "Tensordot only supports float32/float64 for CPU, and
float16/float32/float64 for GPU";
+
+ MSHADOW_REAL_TYPE_SWITCH(out.type_flag_, DType, {
+ if (a_shape.Size() == 0U || b_shape.Size() == 0U) {
+ // 0-size input
+ if (req[0] != kAddTo) {
+ Tensor<xpu, 1, DType> out_data = out.get_with_shape<xpu, 1, DType>(
+ Shape1(out.shape_.Size()), s);
+ out_data = static_cast<DType>(0);
+ }
+ } else if (a_shape.ndim() == 0 && b_shape.ndim() == 0) {
+ // Both 0-D scalars, equivalent to multiply
+ Tensor<xpu, 1, DType> a_data = a.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> b_data = b.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> out_data = out.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ ASSIGN_DISPATCH(out_data, req[0], a_data * b_data);
+ } else if (a_shape.ndim() == 0 || b_shape.ndim() == 0) {
+ // Either of them is a scalar, just scale by one of them
+ const DType* tensor = (a_shape.ndim() == 0) ? b.dptr<DType>() :
a.dptr<DType>();
+ const DType* scalar = (a_shape.ndim() == 0) ? a.dptr<DType>() :
b.dptr<DType>();
+ MXNET_ASSIGN_REQ_SWITCH(req[0], Req, {
+ mxnet_op::Kernel<scalar_mul_kernel<Req>, xpu>::Launch(
+ s, out.Size(), out.dptr<DType>(), tensor, scalar);
+ });
+ } else {
+ // Two tensors of at least 1 dimensions.
+ Tuple<int> a_axes_remained;
+ Tuple<int> b_axes_remained;
+ Tuple<int> a_axes;
+ Tuple<int> b_axes;
+ GetReorderedAxes(a_axes_summed, &a_axes_remained, &a_axes,
b_axes_summed, &b_axes_remained,
+ &b_axes, a_shape, b_shape);
+
+ int ad1 = 1, ad2 = 1, bd1 = 1, bd2 = 1;
+ GetMatrixDimensions(&ad1, &ad2, &bd1, &bd2, a_axes_remained,
a_axes_summed,
+ b_axes_remained, b_axes_summed, a_shape, b_shape);
+
+ mxnet::TShape a_temp_shape = GetReorderedShape(a_shape, a_axes);
+ mxnet::TShape b_temp_shape = GetReorderedShape(b_shape, b_axes);
+
+ Tensor<xpu, 1, DType> workspace = ctx.requested[0].get_space_typed<xpu,
1, DType>
+ (Shape1(a.Size() + b.Size()), s);
+ DType* a_ptr = reinterpret_cast<DType*>(workspace.dptr_);
+ DType* b_ptr = reinterpret_cast<DType*>(workspace.dptr_ + a.Size());
+ TBlob a_res = TBlob(a_ptr, a_temp_shape, xpu::kDevMask);
+ TBlob b_res = TBlob(b_ptr, b_temp_shape, xpu::kDevMask);
+
+ mxnet::op::TransposeImpl<xpu>(ctx.run_ctx, a, a_res,
+ mxnet::TShape(a_axes.begin(),
a_axes.end()));
+ mxnet::op::TransposeImpl<xpu>(ctx.run_ctx, b, b_res,
+ mxnet::TShape(b_axes.begin(),
b_axes.end()));
+
+ MatrixDot<xpu>(ctx, a_res, b_res, out, req[0], ad1, ad2, bd1, bd2);
+ }
+ });
+}
+
+/**
+ * forward function
+ */
+template<typename xpu>
+void TensordotOpForward(const nnvm::NodeAttrs& attrs,
+ const OpContext& ctx,
+ const std::vector<TBlob>& inputs,
+ const std::vector<OpReqType>& req,
+ const std::vector<TBlob>& outputs) {
+ CHECK_EQ(inputs.size(), 2U);
+ CHECK_EQ(outputs.size(), 1U);
+ CHECK_EQ(req.size(), 1U);
+
+ const TBlob& a = inputs[0];
+ const TBlob& b = inputs[1];
+ const TBlob& out = outputs[0];
+ const mxnet::TShape a_shape = a.shape_;
+ const mxnet::TShape b_shape = b.shape_;
+
+ const TensordotParam& param = nnvm::get<TensordotParam>(attrs.parsed);
+ Tuple<int> a_axes_summed = param.a_axes_summed;
+ Tuple<int> b_axes_summed = param.b_axes_summed;
+ ShiftAxes(&a_axes_summed, a_shape.ndim());
+ ShiftAxes(&b_axes_summed, b_shape.ndim());
+
+ TensordotImpl<xpu>(a_axes_summed, b_axes_summed, ctx, a, b, out, req);
+}
+
+/**
+ * gets shapes for inverse transpose.
+ */
+inline mxnet::TShape GetReverseShape(const mxnet::Tuple<int>& shape) {
+ mxnet::TShape shape2(shape.begin(), shape.end());
+ for (int i = 0; i < shape.ndim(); i++) {
+ shape2[shape[i]] = i;
+ }
+ return shape2;
+}
+
+/**
+ * calculates tensordot derivative.
+ */
+template<typename xpu>
+void TensordotBackwardImpl(const Tuple<int>& a_axes_summed,
+ const Tuple<int>& b_axes_summed,
+ const OpContext& ctx,
+ const TBlob& out_grad,
+ const TBlob& a,
+ const TBlob& b,
+ const TBlob& grad_a,
+ const TBlob& grad_b,
+ const std::vector<OpReqType>& req) {
+ mshadow::Stream<xpu> *s = ctx.get_stream<xpu>();
+
+ const mxnet::TShape& a_shape = a.shape_;
+ const mxnet::TShape& b_shape = b.shape_;
+
+ if ((a_shape.Size() == 0U) || (b_shape.Size() == 0U)) {
+ return; // zero-size output, no need to launch kernel
+ }
+ MSHADOW_REAL_TYPE_SWITCH(out_grad.type_flag_, DType, {
+ if (a_shape.ndim() == 0 && b_shape.ndim() == 0) {
+ // Both 0-D scalars, equivalent to multiply
+ Tensor<xpu, 1, DType> out_grad_data = out_grad.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> a_data = a.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> b_data = b.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> grad_a_data = grad_a.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> grad_b_data = grad_b.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ ASSIGN_DISPATCH(grad_a_data, req[0], b_data * out_grad_data);
+ ASSIGN_DISPATCH(grad_b_data, req[1], a_data * out_grad_data);
+ } else if (a_shape.ndim() == 0 || b_shape.ndim() == 0) {
+ // Either of them is a scalar, just scale by one of them
+ const TBlob& tensor = (a_shape.ndim() == 0) ? b : a;
+ const TBlob& tensor_grad = (a_shape.ndim() == 0) ? grad_b : grad_a;
+ const TBlob& scalar = (a_shape.ndim() == 0) ? a : b;
+ const TBlob& scalar_grad = (a_shape.ndim() == 0) ? grad_a : grad_b;
+ Tensor<xpu, 1, DType> scalar_ = scalar.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> scalar_grad_ = scalar_grad.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> tensor_ = tensor.FlatTo1D<xpu, DType>(s);
+ Tensor<xpu, 1, DType> tensor_grad_ = tensor_grad.FlatTo1D<xpu, DType>(s);
+ Tensor<xpu, 1, DType> out_grad_ = out_grad.FlatTo1D<xpu, DType>(s);
+ const OpReqType& tensor_req = (a_shape.ndim() == 0) ? req[1] : req[0];
+ const OpReqType& scalar_req = (a_shape.ndim() == 0) ? req[0] : req[1];
+ ASSIGN_DISPATCH(tensor_grad_, tensor_req,
+ broadcast_scalar(scalar_, tensor_grad_.shape_) *
out_grad_);
+ Tensor<xpu, 1, DType> workspace =
+ ctx.requested[0].get_space_typed<xpu, 1,
DType>(Shape1(out_grad.shape_.Size()), s);
+ ASSIGN_DISPATCH(workspace, kWriteTo, tensor_ * out_grad_);
+
+ ReduceAxesComputeImpl<xpu, mshadow_op::sum, true>(
+ ctx, {TBlob(workspace)}, {scalar_req}, {TBlob(scalar_grad_)},
scalar_grad_.shape_);
+ } else {
+ // Two tensors of at least 1 dimensions.
+ Tuple<int> a_axes_remained;
+ Tuple<int> b_axes_remained;
+ Tuple<int> a_axes;
+ Tuple<int> b_axes;
+ GetReorderedAxes(a_axes_summed, &a_axes_remained, &a_axes,
b_axes_summed, &b_axes_remained,
+ &b_axes, a_shape, b_shape);
+
+ int ad1 = 1, ad2 = 1, bd1 = 1, bd2 = 1;
+ GetMatrixDimensions(&ad1, &ad2, &bd1, &bd2, a_axes_remained,
a_axes_summed,
+ b_axes_remained, b_axes_summed, a_shape, b_shape);
+
+ std::vector<int> a_T_axes;
+ for (int i = 0; i < a_axes_summed.ndim(); i++) {
+ a_T_axes.push_back(a_axes_summed[i]);
+ }
+ for (int i = 0; i < a_axes_remained.ndim(); i++) {
+ a_T_axes.push_back(a_axes_remained[i]);
+ }
+ mxnet::TShape a_temp_shape(GetReorderedShape(a_shape, a_axes));
+ mxnet::TShape a_T_temp_shape(GetReorderedShape(a_shape, a_T_axes));
+
+ std::vector<int> b_T_axes;
+ for (int i = 0; i < b_axes_remained.ndim(); i++) {
+ b_T_axes.push_back(b_axes_remained[i]);
+ }
+ for (int i = 0; i < b_axes_summed.ndim(); i++) {
+ b_T_axes.push_back(b_axes_summed[i]);
+ }
+ mxnet::TShape b_temp_shape(GetReorderedShape(b_shape, b_axes));
+ mxnet::TShape b_T_temp_shape(GetReorderedShape(b_shape, b_T_axes));
+
+ Tensor<xpu, 1, DType> workspace = ctx.requested[0].get_space_typed<xpu,
1, DType>
+ (Shape1((a.Size() + b.Size()) * 2), s);
+ DType* a_ptr = reinterpret_cast<DType*>(workspace.dptr_);
+ DType* a_ptr2 = reinterpret_cast<DType*>(workspace.dptr_ + a.Size());
+ DType* b_ptr = reinterpret_cast<DType*>(workspace.dptr_ + 2 * a.Size());
+ DType* b_ptr2 = reinterpret_cast<DType*>(workspace.dptr_ + 2 * a.Size()
+ b.Size());
+
+ TBlob a_res = TBlob(a_ptr, a_temp_shape, xpu::kDevMask);
+ TBlob b_res = TBlob(b_ptr, b_temp_shape, xpu::kDevMask);
+ TBlob a_res2 = TBlob(a_ptr2, a_T_temp_shape, xpu::kDevMask);
+ TBlob b_res2 = TBlob(b_ptr2, b_T_temp_shape, xpu::kDevMask);
+
+ mxnet::op::TransposeImpl<xpu>(ctx.run_ctx, a, a_res2,
+ mxnet::TShape(a_T_axes.begin(),
a_T_axes.end()));
+ mxnet::op::TransposeImpl<xpu>(ctx.run_ctx, b, b_res2,
+ mxnet::TShape(b_T_axes.begin(),
b_T_axes.end()));
+
+ MatrixDot<xpu>(ctx, a_res2, out_grad, b_res, req[1], ad2, ad1, ad1, bd2);
+ MatrixDot<xpu>(ctx, out_grad, b_res2, a_res, req[0], ad1, bd2, bd2, bd1);
+
+ mxnet::op::TransposeImpl<xpu>(ctx.run_ctx, a_res, grad_a,
GetReverseShape(a_axes));
+ mxnet::op::TransposeImpl<xpu>(ctx.run_ctx, b_res, grad_b,
GetReverseShape(b_axes));
+ }
+ });
+}
+
+/**
+ * backward function.
+ */
+template<typename xpu>
+void TensordotOpBackward(const nnvm::NodeAttrs& attrs,
+ const OpContext& ctx,
+ const std::vector<TBlob>& inputs,
+ const std::vector<OpReqType>& req,
+ const std::vector<TBlob>& outputs) {
+ CHECK_EQ(inputs.size(), 3U);
+ CHECK_EQ(outputs.size(), 2U);
+ CHECK_EQ(req.size(), 2U);
+
+ const TBlob& out_grad = inputs[0];
+ const TBlob& a = inputs[1];
+ const TBlob& b = inputs[2];
+ const TBlob& grad_a = outputs[0];
+ const TBlob& grad_b = outputs[1];
+ const mxnet::TShape a_shape = a.shape_;
+ const mxnet::TShape b_shape = b.shape_;
+
+ const TensordotParam& param = nnvm::get<TensordotParam>(attrs.parsed);
+ Tuple<int> a_axes_summed = param.a_axes_summed;
+ Tuple<int> b_axes_summed = param.b_axes_summed;
+ ShiftAxes(&a_axes_summed, a_shape.ndim());
+ ShiftAxes(&b_axes_summed, b_shape.ndim());
+
+ TensordotBackwardImpl<xpu>(a_axes_summed, b_axes_summed, ctx, out_grad, a,
b, grad_a,
+ grad_b, req);
+}
+
+struct TensordotIntAxesParam : public dmlc::Parameter<TensordotIntAxesParam> {
+ int axes;
+ DMLC_DECLARE_PARAMETER(TensordotIntAxesParam) {
+ DMLC_DECLARE_FIELD(axes);
+ }
+};
+
+/**
+ * gets summed axes of a and b from parameter axes.
+ */
+inline void GetSummedAxes(mxnet::Tuple<int>* a_axes_summed_ptr,
+ mxnet::Tuple<int>* b_axes_summed_ptr,
+ const int axes,
+ const mxnet::TShape& a_shape) {
+ std::vector<int> a_axes_summed_vector;
+ for (int i = 0; i < axes; i++) {
+ a_axes_summed_vector.push_back(a_shape.ndim() - axes + i);
+ }
+ *a_axes_summed_ptr = mxnet::Tuple<int>(a_axes_summed_vector);
+
+ std::vector<int> b_axes_summed_vector;
+ for (int i = 0; i < axes; i++) {
+ b_axes_summed_vector.push_back(i);
+ }
+ *b_axes_summed_ptr = mxnet::Tuple<int>(b_axes_summed_vector);
+}
+
+/**
+ * Calculates tensordot.
+ */
+template<typename xpu>
+void TensordotIntAxesImpl(const int axes,
+ const OpContext& ctx,
+ const TBlob& a,
+ const TBlob& b,
+ const TBlob& out,
+ const OpReqType req) {
+ if (req == kNullOp) {
+ return;
+ }
+
+ if (out.shape_.Size() == 0U) {
+ return; // zero-size output, no need to launch kernel
+ }
+
+ const mxnet::TShape& a_shape = a.shape_;
+ const mxnet::TShape& b_shape = b.shape_;
+
+ mshadow::Stream<xpu> *s = ctx.get_stream<xpu>();
+ CHECK_EQ(out.type_flag_, a.type_flag_)
+ << "Binary function only support input/output with the same type";
+ CHECK_EQ(out.type_flag_, b.type_flag_)
+ << "Binary function only support input/output with the same type";
+ CHECK(out.type_flag_ == kFloat32 || out.type_flag_ == kFloat64 ||
+ (out.type_flag_ == kFloat16 && ctx.run_ctx.ctx.dev_mask() ==
mshadow::gpu::kDevMask))
+ << "Tensordot only supports float32/float64 for CPU, and
float16/float32/float64 for GPU";
+
+ MSHADOW_REAL_TYPE_SWITCH(out.type_flag_, DType, {
+ if (a_shape.Size() == 0U || b_shape.Size() == 0U) {
+ // 0-size input
+ if (req != kAddTo) {
+ Tensor<xpu, 1, DType> out_data = out.get_with_shape<xpu, 1, DType>(
+ Shape1(out.shape_.Size()), s);
+ out_data = static_cast<DType>(0);
+ }
+ } else if (a_shape.ndim() == 0 && b_shape.ndim() == 0) {
+ // Both 0-D scalars, equivalent to multiply
+ Tensor<xpu, 1, DType> a_data = a.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> b_data = b.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> out_data = out.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ ASSIGN_DISPATCH(out_data, req, a_data * b_data);
+ } else if (a_shape.ndim() == 0 || b_shape.ndim() == 0) {
+ // Either of them is a scalar, just scale by one of them
+ const DType* tensor = (a_shape.ndim() == 0) ? b.dptr<DType>() :
a.dptr<DType>();
+ const DType* scalar = (a_shape.ndim() == 0) ? a.dptr<DType>() :
b.dptr<DType>();
+ MXNET_ASSIGN_REQ_SWITCH(req, Req, {
+ mxnet_op::Kernel<scalar_mul_kernel<Req>, xpu>::Launch(
+ s, out.Size(), out.dptr<DType>(), tensor, scalar);
+ });
+ } else {
+ // Two tensors of at least 1 dimensions.
+ Tuple<int> a_axes_summed;
+ Tuple<int> b_axes_summed;
+ GetSummedAxes(&a_axes_summed, &b_axes_summed, axes, a_shape);
+
+ Tuple<int> a_axes_remained;
+ Tuple<int> b_axes_remained;
+ Tuple<int> a_axes;
+ Tuple<int> b_axes;
+ GetReorderedAxes(a_axes_summed, &a_axes_remained, &a_axes,
b_axes_summed, &b_axes_remained,
+ &b_axes, a_shape, b_shape);
+
+ int ad1 = 1, ad2 = 1, bd1 = 1, bd2 = 1;
+ GetMatrixDimensions(&ad1, &ad2, &bd1, &bd2, a_axes_remained,
a_axes_summed,
+ b_axes_remained, b_axes_summed, a_shape, b_shape);
+ MatrixDot<xpu>(ctx, a, b, out, req, ad1, ad2, bd1, bd2);
+ }
+ });
+}
+
+/**
+ * forward function
+ */
+template<typename xpu>
+void TensordotIntAxesOpForward(const nnvm::NodeAttrs& attrs,
+ const OpContext& ctx,
+ const std::vector<TBlob>& inputs,
+ const std::vector<OpReqType>& req,
+ const std::vector<TBlob>& outputs) {
+ CHECK_EQ(inputs.size(), 2U);
+ CHECK_EQ(outputs.size(), 1U);
+ CHECK_EQ(req.size(), 1U);
+
+ const TBlob& a = inputs[0];
+ const TBlob& b = inputs[1];
+ const TBlob& out = outputs[0];
+
+ const TensordotIntAxesParam& param =
nnvm::get<TensordotIntAxesParam>(attrs.parsed);
+ const int axes = param.axes;
+
+ TensordotIntAxesImpl<xpu>(axes, ctx, a, b, out, req[0]);
+}
+
+template<typename xpu>
+void TensordotIntAxesBackwardImpl(const int axes,
+ const OpContext& ctx,
+ const TBlob& out_grad,
+ const TBlob& a,
+ const TBlob& b,
+ const TBlob& grad_a,
+ const TBlob& grad_b,
+ const std::vector<OpReqType>& req) {
+ const mxnet::TShape& a_shape = a.shape_;
+ const mxnet::TShape& b_shape = b.shape_;
+
+ if ((a_shape.Size() == 0U) || (b_shape.Size() == 0U)) {
+ return; // zero-size output, no need to launch kernel
+ }
+
+ mshadow::Stream<xpu> *s = ctx.get_stream<xpu>();
+
+ MSHADOW_REAL_TYPE_SWITCH(out_grad.type_flag_, DType, {
+ if (a_shape.ndim() == 0 && b_shape.ndim() == 0) {
+ // Both 0-D scalars, equivalent to multiply
+ Tensor<xpu, 1, DType> out_grad_data = out_grad.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> a_data = a.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> b_data = b.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> grad_a_data = grad_a.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> grad_b_data = grad_b.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ ASSIGN_DISPATCH(grad_a_data, req[0], b_data * out_grad_data);
+ ASSIGN_DISPATCH(grad_b_data, req[1], a_data * out_grad_data);
+ } else if (a_shape.ndim() == 0 || b_shape.ndim() == 0) {
+ // Either of them is a scalar, just scale by one of them
+ const TBlob& tensor = (a_shape.ndim() == 0) ? b : a;
+ const TBlob& tensor_grad = (a_shape.ndim() == 0) ? grad_b : grad_a;
+ const TBlob& scalar = (a_shape.ndim() == 0) ? a : b;
+ const TBlob& scalar_grad = (a_shape.ndim() == 0) ? grad_a : grad_b;
+ Tensor<xpu, 1, DType> scalar_ = scalar.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> scalar_grad_ = scalar_grad.get_with_shape<xpu, 1,
DType>(Shape1(1), s);
+ Tensor<xpu, 1, DType> tensor_ = tensor.FlatTo1D<xpu, DType>(s);
+ Tensor<xpu, 1, DType> tensor_grad_ = tensor_grad.FlatTo1D<xpu, DType>(s);
+ Tensor<xpu, 1, DType> out_grad_ = out_grad.FlatTo1D<xpu, DType>(s);
+ const OpReqType& tensor_req = (a_shape.ndim() == 0) ? req[1] : req[0];
+ const OpReqType& scalar_req = (a_shape.ndim() == 0) ? req[0] : req[1];
+ ASSIGN_DISPATCH(tensor_grad_, tensor_req,
+ broadcast_scalar(scalar_, tensor_grad_.shape_) *
out_grad_);
+ Tensor<xpu, 1, DType> workspace =
+ ctx.requested[0].get_space_typed<xpu, 1,
DType>(Shape1(out_grad.shape_.Size()), s);
+ ASSIGN_DISPATCH(workspace, kWriteTo, tensor_ * out_grad_);
+
+ ReduceAxesComputeImpl<xpu, mshadow_op::sum, true>(
+ ctx, {TBlob(workspace)}, {scalar_req}, {TBlob(scalar_grad_)},
scalar_grad_.shape_);
+ } else {
+ // Two tensors of at least 1 dimensions.
+ Tuple<int> a_axes_summed;
+ Tuple<int> b_axes_summed;
+ GetSummedAxes(&a_axes_summed, &b_axes_summed, axes, a_shape);
+
+ Tuple<int> a_axes_remained;
+ Tuple<int> b_axes_remained;
+ Tuple<int> a_axes;
+ Tuple<int> b_axes;
+ GetReorderedAxes(a_axes_summed, &a_axes_remained, &a_axes,
b_axes_summed, &b_axes_remained,
+ &b_axes, a_shape, b_shape);
+
+ int ad1 = 1, ad2 = 1, bd1 = 1, bd2 = 1;
+ GetMatrixDimensions(&ad1, &ad2, &bd1, &bd2, a_axes_remained,
a_axes_summed,
+ b_axes_remained, b_axes_summed, a_shape, b_shape);
+
+ MatrixDot<xpu>(ctx, a, out_grad, grad_b, req[1], ad1, ad2, ad1, bd2,
true, false);
+ MatrixDot<xpu>(ctx, out_grad, b, grad_a, req[0], ad1, bd2, bd1, bd2,
false, true);
+ }
+ });
+}
+
+/**
+ * backward function.
+ */
+template<typename xpu>
+void TensordotIntAxesOpBackward(const nnvm::NodeAttrs& attrs,
+ const OpContext& ctx,
+ const std::vector<TBlob>& inputs,
+ const std::vector<OpReqType>& req,
+ const std::vector<TBlob>& outputs) {
+ CHECK_EQ(inputs.size(), 3U);
+ CHECK_EQ(outputs.size(), 2U);
+ CHECK_EQ(req.size(), 2U);
+
+ const TBlob& out_grad = inputs[0];
+ const TBlob& a = inputs[1];
+ const TBlob& b = inputs[2];
+ const TBlob& grad_a = outputs[0];
+ const TBlob& grad_b = outputs[1];
+
+ const TensordotIntAxesParam& param =
nnvm::get<TensordotIntAxesParam>(attrs.parsed);
+ const int axes = param.axes;
+
+ TensordotIntAxesBackwardImpl<xpu>(axes, ctx, out_grad, a, b, grad_a, grad_b,
req);
+}
+
+} // namespace op
+} // namespace mxnet
+
+#endif // MXNET_OPERATOR_NUMPY_NP_TENSORDOT_OP_INL_H_
diff --git a/src/operator/numpy/np_tensordot_op.cc
b/src/operator/numpy/np_tensordot_op.cc
new file mode 100644
index 0000000..50c1647
--- /dev/null
+++ b/src/operator/numpy/np_tensordot_op.cc
@@ -0,0 +1,235 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements. See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership. The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied. See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+/*!
+ * \file np_tensordot_op.cc
+ * \brief CPU Implementation of numpy-compatible tensordot
+ */
+
+#include <string>
+#include "np_tensordot_op-inl.h"
+
+namespace mxnet {
+namespace op {
+
+bool TensordotOpShape(const nnvm::NodeAttrs& attrs,
+ mxnet::ShapeVector *in_attrs,
+ mxnet::ShapeVector *out_attrs) {
+ CHECK_EQ(in_attrs->size(), 2U);
+ CHECK_EQ(out_attrs->size(), 1U);
+
+ const mxnet::TShape& a_shape = in_attrs->at(0);
+ const mxnet::TShape& b_shape = in_attrs->at(1);
+
+ if (!ndim_is_known(a_shape) || !ndim_is_known(b_shape)) {
+ return false;
+ }
+
+ if (a_shape.ndim() == 0) {
+ // a is scalar
+ SHAPE_ASSIGN_CHECK(*out_attrs, 0, b_shape);
+ SHAPE_ASSIGN_CHECK(*in_attrs, 1, out_attrs->at(0));
+ } else if (b_shape.ndim() == 0) {
+ // b is scalar
+ SHAPE_ASSIGN_CHECK(*out_attrs, 0, a_shape);
+ SHAPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0));
+ } else {
+ // Two tensors of at least 1 dimensions.
+ const TensordotParam& param = nnvm::get<TensordotParam>(attrs.parsed);
+ Tuple<int> a_axes_summed = param.a_axes_summed;
+ Tuple<int> b_axes_summed = param.b_axes_summed;
+ ShiftAxes(&a_axes_summed, a_shape.ndim());
+ ShiftAxes(&b_axes_summed, b_shape.ndim());
+
+ Tuple<int> a_axes_remained;
+ Tuple<int> b_axes_remained;
+ Tuple<int> a_axes;
+ Tuple<int> b_axes;
+ GetReorderedAxes(a_axes_summed, &a_axes_remained, &a_axes, b_axes_summed,
&b_axes_remained,
+ &b_axes, a_shape, b_shape);
+
+ CHECK_EQ(a_axes_summed.ndim(), b_axes_summed.ndim());
+
+ mxnet::TShape out_shape(a_axes_remained.ndim() + b_axes_remained.ndim(),
-1);
+ for (int i = 0; i < a_axes_remained.ndim(); i++) {
+ out_shape[i] = a_shape[a_axes_remained[i]];
+ }
+ for (int i = 0; i < b_axes_remained.ndim(); i++) {
+ out_shape[a_axes_remained.ndim() + i] = b_shape[b_axes_remained[i]];
+ }
+ SHAPE_ASSIGN_CHECK(*out_attrs, 0, out_shape);
+
+ mxnet::TShape tem_shape1(a_axes.ndim(), -1);
+ for (int i = 0; i < a_axes_remained.ndim(); i++) {
+ tem_shape1[a_axes_remained[i]] = out_shape[i];
+ }
+ for (int i = 0; i < a_axes_summed.ndim(); i++) {
+ tem_shape1[a_axes_summed[i]] = b_shape[b_axes_summed[i]];
+ }
+ SHAPE_ASSIGN_CHECK(*in_attrs, 0, tem_shape1);
+
+ mxnet::TShape tem_shape2(b_axes.ndim(), -1);
+ for (int i = 0; i < b_axes_remained.ndim(); i++) {
+ tem_shape2[b_axes_remained[i]] = out_shape[a_axes_remained.ndim() + i];
+ }
+ for (int i = 0; i < b_axes_summed.ndim(); i++) {
+ tem_shape2[b_axes_summed[i]] = a_shape[a_axes_summed[i]];
+ }
+ SHAPE_ASSIGN_CHECK(*in_attrs, 1, tem_shape2);
+ }
+
+ return shape_is_known(*in_attrs) && shape_is_known(*out_attrs);
+}
+
+DMLC_REGISTER_PARAMETER(TensordotParam);
+
+NNVM_REGISTER_OP(_npi_tensordot)
+.set_attr_parser(mxnet::op::ParamParser<TensordotParam>)
+.set_num_inputs(2)
+.set_num_outputs(1)
+.set_attr<nnvm::FListInputNames>("FListInputNames",
+ [](const NodeAttrs& attrs) {
+ return std::vector<std::string>{"a", "b"};
+ })
+.set_attr<mxnet::FInferShape>("FInferShape", TensordotOpShape)
+.set_attr<nnvm::FInferType>("FInferType", mxnet::op::ElemwiseType<2, 1>)
+.set_attr<FResourceRequest>("FResourceRequest",
+ [](const NodeAttrs& attrs) {
+ return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
+ })
+.set_attr<FCompute>("FCompute<cpu>", TensordotOpForward<cpu>)
+.set_attr<nnvm::FGradient>("FGradient",
mxnet::op::ElemwiseGradUseIn{"_backward_npi_tensordot"})
+.add_argument("a", "NDArray-or-Symbol", "First input")
+.add_argument("b", "NDArray-or-Symbol", "Second input")
+.add_arguments(TensordotParam::__FIELDS__());
+
+NNVM_REGISTER_OP(_backward_npi_tensordot)
+.set_attr_parser(mxnet::op::ParamParser<TensordotParam>)
+.set_num_inputs(3)
+.set_num_outputs(2)
+.set_attr<nnvm::TIsBackward>("TIsBackward", true)
+.set_attr<FResourceRequest>("FResourceRequest",
+ [](const NodeAttrs& attrs) {
+ return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
+ })
+.set_attr<FCompute>("FCompute<cpu>", TensordotOpBackward<cpu>);
+
+bool TensordotIntAxesOpShape(const nnvm::NodeAttrs& attrs,
+ mxnet::ShapeVector *in_attrs,
+ mxnet::ShapeVector *out_attrs) {
+ CHECK_EQ(in_attrs->size(), 2U);
+ CHECK_EQ(out_attrs->size(), 1U);
+
+ const mxnet::TShape& a_shape = in_attrs->at(0);
+ const mxnet::TShape& b_shape = in_attrs->at(1);
+
+ if (!ndim_is_known(a_shape) || !ndim_is_known(b_shape)) {
+ return false;
+ }
+
+ if (a_shape.ndim() == 0) {
+ SHAPE_ASSIGN_CHECK(*out_attrs, 0, b_shape);
+ SHAPE_ASSIGN_CHECK(*in_attrs, 1, out_attrs->at(0));
+ } else if (b_shape.ndim() == 0) {
+ SHAPE_ASSIGN_CHECK(*out_attrs, 0, a_shape);
+ SHAPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0));
+ } else {
+ const TensordotIntAxesParam& param =
nnvm::get<TensordotIntAxesParam>(attrs.parsed);
+ const int& axes = param.axes;
+
+ Tuple<int> a_axes_summed;
+ Tuple<int> b_axes_summed;
+ GetSummedAxes(&a_axes_summed, &b_axes_summed, axes, a_shape);
+
+ Tuple<int> a_axes_remained;
+ Tuple<int> b_axes_remained;
+ Tuple<int> a_axes;
+ Tuple<int> b_axes;
+ GetReorderedAxes(a_axes_summed, &a_axes_remained, &a_axes, b_axes_summed,
&b_axes_remained,
+ &b_axes, a_shape, b_shape);
+
+ CHECK_EQ(a_axes_summed.ndim(), b_axes_summed.ndim());
+
+ mxnet::TShape out_shape(a_axes_remained.ndim() + b_axes_remained.ndim(),
-1);
+ for (int i = 0; i < a_axes_remained.ndim(); i++) {
+ out_shape[i] = a_shape[a_axes_remained[i]];
+ }
+ for (int i = 0; i < b_axes_remained.ndim(); i++) {
+ out_shape[a_axes_remained.ndim() + i] = b_shape[b_axes_remained[i]];
+ }
+ SHAPE_ASSIGN_CHECK(*out_attrs, 0, out_shape);
+
+ mxnet::TShape tem_shape1(a_axes.ndim(), -1);
+ for (int i = 0; i < a_axes_remained.ndim(); i++) {
+ tem_shape1[a_axes_remained[i]] = out_shape[i];
+ }
+ for (int i = 0; i < a_axes_summed.ndim(); i++) {
+ tem_shape1[a_axes_summed[i]] = b_shape[b_axes_summed[i]];
+ }
+ SHAPE_ASSIGN_CHECK(*in_attrs, 0, tem_shape1);
+
+ mxnet::TShape tem_shape2(b_axes.ndim(), -1);
+ for (int i = 0; i < b_axes_remained.ndim(); i++) {
+ tem_shape2[b_axes_remained[i]] = out_shape[a_axes_remained.ndim() + i];
+ }
+ for (int i = 0; i < b_axes_summed.ndim(); i++) {
+ tem_shape2[b_axes_summed[i]] = a_shape[a_axes_summed[i]];
+ }
+ SHAPE_ASSIGN_CHECK(*in_attrs, 1, tem_shape2);
+ }
+
+ return shape_is_known(*in_attrs) && shape_is_known(*out_attrs);
+}
+
+DMLC_REGISTER_PARAMETER(TensordotIntAxesParam);
+
+NNVM_REGISTER_OP(_npi_tensordot_int_axes)
+.set_attr_parser(mxnet::op::ParamParser<TensordotIntAxesParam>)
+.set_num_inputs(2)
+.set_num_outputs(1)
+.set_attr<nnvm::FListInputNames>("FListInputNames",
+ [](const NodeAttrs& attrs) {
+ return std::vector<std::string>{"a", "b"};
+ })
+.set_attr<mxnet::FInferShape>("FInferShape", TensordotIntAxesOpShape)
+.set_attr<nnvm::FInferType>("FInferType", mxnet::op::ElemwiseType<2, 1>)
+.set_attr<FResourceRequest>("FResourceRequest",
+ [](const NodeAttrs& attrs) {
+ return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
+ })
+.set_attr<FCompute>("FCompute<cpu>", TensordotIntAxesOpForward<cpu>)
+.set_attr<nnvm::FGradient>("FGradient",
+ mxnet::op::ElemwiseGradUseIn{"_backward_npi_tensordot_int_axes"})
+.add_argument("a", "NDArray-or-Symbol", "First input")
+.add_argument("b", "NDArray-or-Symbol", "Second input")
+.add_arguments(TensordotIntAxesParam::__FIELDS__());
+
+NNVM_REGISTER_OP(_backward_npi_tensordot_int_axes)
+.set_attr_parser(mxnet::op::ParamParser<TensordotIntAxesParam>)
+.set_num_inputs(3)
+.set_num_outputs(2)
+.set_attr<nnvm::TIsBackward>("TIsBackward", true)
+.set_attr<FResourceRequest>("FResourceRequest",
+ [](const NodeAttrs& attrs) {
+ return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
+ })
+.set_attr<FCompute>("FCompute<cpu>", TensordotIntAxesOpBackward<cpu>);
+
+} // namespace op
+} // namespace mxnet
diff --git a/src/operator/numpy/np_tensordot_op.cu
b/src/operator/numpy/np_tensordot_op.cu
new file mode 100644
index 0000000..e1d8a0b
--- /dev/null
+++ b/src/operator/numpy/np_tensordot_op.cu
@@ -0,0 +1,42 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements. See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership. The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied. See the License for the
+ * specific language governing permissions and limitations
+ * under the License.ΓΈ
+ */
+
+/*!
+ * \file np_tensordot_inplace.cu
+ * \brief GPU Implementation of numpy-compatible tensordot
+ */
+
+#include "np_tensordot_op-inl.h"
+namespace mxnet {
+namespace op {
+
+NNVM_REGISTER_OP(_npi_tensordot)
+.set_attr<FCompute>("FCompute<gpu>", TensordotOpForward<gpu>);
+
+NNVM_REGISTER_OP(_backward_npi_tensordot)
+.set_attr<FCompute>("FCompute<gpu>", TensordotOpBackward<gpu>);
+
+NNVM_REGISTER_OP(_npi_tensordot_int_axes)
+.set_attr<FCompute>("FCompute<gpu>", TensordotIntAxesOpForward<gpu>);
+
+NNVM_REGISTER_OP(_backward_npi_tensordot_int_axes)
+.set_attr<FCompute>("FCompute<gpu>", TensordotIntAxesOpBackward<gpu>);
+
+} // namespace op
+} // namespace mxnet
diff --git a/tests/python/unittest/test_numpy_op.py
b/tests/python/unittest/test_numpy_op.py
index c172336..b0388d7 100644
--- a/tests/python/unittest/test_numpy_op.py
+++ b/tests/python/unittest/test_numpy_op.py
@@ -32,6 +32,189 @@ import collections
@with_seed()
@use_np
+def test_np_tensordot():
+ class TestTensordot(HybridBlock):
+ def __init__(self, axes):
+ super(TestTensordot, self).__init__()
+ self._axes = axes
+
+ def hybrid_forward(self, F, a, b):
+ return F.np.tensordot(a, b, self._axes)
+
+ def tensordot_backward(a, b, axes=2):
+ if (a.ndim < 1) or (b.ndim < 1):
+ raise ValueError('An input is zero-dim')
+
+ if _np.isscalar(axes):
+ a_axes_summed = [i + a.ndim - axes for i in range(axes)]
+ b_axes_summed = [i for i in range(axes)]
+ else:
+ if len(axes) != 2:
+ raise ValueError('Axes must consist of two arrays.')
+ a_axes_summed, b_axes_summed = axes
+ if _np.isscalar(a_axes_summed):
+ a_axes_summed = a_axes_summed,
+ if _np.isscalar(b_axes_summed):
+ b_axes_summed = b_axes_summed,
+
+ for i in range(len(a_axes_summed)):
+ a_axes_summed[i] = (a_axes_summed[i] + a.ndim) % a.ndim
+
+ for i in range(len(b_axes_summed)):
+ b_axes_summed[i] = (b_axes_summed[i] + b.ndim) % b.ndim
+
+ if len(a_axes_summed) != len(b_axes_summed):
+ raise ValueError('Axes length mismatch')
+
+ a_axes_remained = []
+ for i in range(a.ndim):
+ if not (i in a_axes_summed):
+ a_axes_remained.append(i)
+ a_axes = a_axes_remained[:] + a_axes_summed[:]
+
+ b_axes_remained = []
+ for i in range(b.ndim):
+ if not (i in b_axes_summed):
+ b_axes_remained.append(i)
+ b_axes = b_axes_summed[:] + b_axes_remained[:]
+
+ ad1 = _np.prod([a.shape[i] for i in a_axes_remained]) if
len(a_axes_remained) > 0 else 1
+ ad2 = _np.prod([a.shape[i] for i in a_axes_summed]) if
len(a_axes_summed) > 0 else 1
+ bd1 = _np.prod([b.shape[i] for i in b_axes_summed]) if
len(b_axes_summed) > 0 else 1
+ bd2 = _np.prod([b.shape[i] for i in b_axes_remained]) if
len(b_axes_remained) > 0 else 1
+
+ out_grad = _np.ones((ad1, bd2))
+
+ new_a = _np.transpose(a, a_axes)
+ new_a_shape = new_a.shape[:]
+ new_a = new_a.reshape((ad1, ad2))
+ new_b = _np.transpose(b, b_axes)
+ new_b_shape = new_b.shape[:]
+ new_b = new_b.reshape((bd1, bd2))
+
+ reverse_a_axes = [0 for i in a_axes]
+ for i in range(len(a_axes)):
+ reverse_a_axes[a_axes[i]] = i
+
+ reverse_b_axes = [0 for i in b_axes]
+ for i in range(len(b_axes)):
+ reverse_b_axes[b_axes[i]] = i
+
+ grad_b = _np.dot(new_a.T, out_grad).reshape(new_b_shape)
+ grad_b = _np.transpose(grad_b, reverse_b_axes)
+ grad_a = _np.dot(out_grad, new_b.T).reshape(new_a_shape)
+ grad_a = _np.transpose(grad_a, reverse_a_axes)
+
+ return [grad_a, grad_b]
+
+ # test non zero size input
+ tensor_shapes = [
+ ((3, 5), (5, 4), 1), # (a_shape, b_shape, axes)
+ ((3,), (3,), 1),
+ ((3, 4, 5, 3, 2), (5, 3, 2, 1, 2), 3),
+ ((3, 5, 4, 3, 2), (2, 3, 5, 1, 2), [[1, 3, 4], [2, 1, 0]]),
+ ((3, 5, 4), (5, 4, 3), [[1, 0, 2], [0, 2, 1]]),
+ ((3, 5, 4), (5, 3, 4), [[2, 0], [-1, -2]]),
+ ((2, 2), (2, 2), 2),
+ ((3, 5, 4), (5, ), [[-2], [0]]),
+ ((3, 5, 4), (5, ), [[1], [0]]),
+ ((2,), (2, 3), 1),
+ ((3,), (3,), 0),
+ ((2,), (2, 3), 0),
+ ((3, 5, 4), (5, ), 0),
+ ((2, 3, 4), (4, 3, 2), [[], []]),
+ ((3, 0), (0, 5), 1),
+ ((3, 0), (0, 4), [[1], [0]]),
+ ((0, 3), (3, 5), 1),
+ ((0, 3), (5, 0), [[0], [1]])
+ ]
+
+ for hybridize in [True, False]:
+ for a_shape, b_shape, axes in tensor_shapes:
+ for dtype in [_np.float32, _np.float64]:
+ test_tensordot = TestTensordot(axes)
+ if hybridize:
+ test_tensordot.hybridize()
+ a = rand_ndarray(shape = a_shape, dtype =
dtype).as_np_ndarray()
+ b = rand_ndarray(shape = b_shape, dtype =
dtype).as_np_ndarray()
+ a.attach_grad()
+ b.attach_grad()
+
+ np_out = _np.tensordot(a.asnumpy(), b.asnumpy(), axes)
+ with mx.autograd.record():
+ mx_out = test_tensordot(a, b)
+ assert mx_out.shape == np_out.shape
+ assert_almost_equal(mx_out.asnumpy(), np_out, rtol = 1e-3,
atol = 1e-5)
+ mx_out.backward()
+ np_backward = tensordot_backward(a.asnumpy(), b.asnumpy(),
axes)
+ assert_almost_equal(a.grad.asnumpy(), np_backward[0], rtol =
1e-3, atol=1e-5)
+ assert_almost_equal(b.grad.asnumpy(), np_backward[1], rtol =
1e-3, atol=1e-5)
+
+ # Test imperative once again
+ mx_out = np.tensordot(a, b, axes)
+ np_out = _np.tensordot(a.asnumpy(), b.asnumpy(), axes)
+ assert_almost_equal(mx_out.asnumpy(), np_out, rtol=1e-3,
atol=1e-5)
+
+ # test numeric gradient
+ if (_np.prod(a_shape) > 0 and _np.prod(b_shape) > 0):
+ a_sym = mx.sym.Variable("a").as_np_ndarray()
+ b_sym = mx.sym.Variable("b").as_np_ndarray()
+ mx_sym = mx.sym.np.tensordot(a_sym, b_sym,
axes).as_nd_ndarray()
+ check_numeric_gradient(mx_sym, [a.as_nd_ndarray(),
b.as_nd_ndarray()],
+ rtol=1e-1, atol=1e-1, dtype = dtype)
+
+
+@with_seed()
+@use_np
+def test_np_dot():
+ shapes = [
+ ((3, 0), (0, 4)),
+ ((3,), (3,)), # Case 1
+ ((3, 4), (4, 5)), # Case 2
+ ((), ()), # Case 3
+ ((3, 4, 5), ()), # Case 3.5.1
+ ((), (3, 4, 5)), # Case 3.5.2
+ ((3, 4, 5), (5, )), # Case 4
+ ((3, 4, 5), (5, 2)), # Case 5
+ ((5,), (5, 2)),
+ ((3, 5, 4), (5, 4, 3)),
+ ((3, 4), (5, 4, 3)),
+ ((4,), (5, 4, 3))
+ ]
+
+ eps = 1e-3
+
+ for shape_a, shape_b in shapes:
+ np_a = _np.random.uniform(-1.0, 1.0, shape_a)
+ np_a[abs(np_a) < eps] = 2 * eps
+ np_b = _np.random.uniform(-1.0, 1.0, shape_b)
+ np_b[abs(np_b) < eps] = 2 * eps
+ a = mx.nd.array(np_a)
+ b = mx.nd.array(np_b)
+ np_res = _np.dot(np_a, np_b)
+ mx_res = np.dot(a.as_np_ndarray(), b.as_np_ndarray())
+ assert mx_res.shape == np_res.shape
+ assert_almost_equal(np_res, mx_res.asnumpy(), rtol=1e-5, atol=1e-5)
+ mx_a = mx.sym.Variable("a")
+ mx_b = mx.sym.Variable("b")
+ mx_sym = mx.sym.np.dot(mx_a.as_np_ndarray(),
mx_b.as_np_ndarray()).as_nd_ndarray()
+ if (len(shape_a) > 0 and len(shape_b) > 0 and _np.prod(shape_a) > 0
and _np.prod(shape_b) > 0):
+ check_numeric_gradient(mx_sym, {"a": a, "b": b}, numeric_eps=eps,
rtol=1e-2, atol=1e-3)
+
+ bad_shapes = [((4, 5), (2, 3)), ((3, 4, 5), (6, ))]
+
+ for shape_a, shape_b in bad_shapes:
+ a = mx.nd.array(random.random()) if len(shape_a) == 0 else
rand_ndarray(shape_a)
+ b = mx.nd.array(random.random()) if len(shape_b) == 0 else
rand_ndarray(shape_b)
+ try:
+ mx_res = np.dot(a.as_np_ndarray(), b.as_np_ndarray())
+ except mx.base.MXNetError:
+ continue
+ assert False
+
+
+@with_seed()
+@use_np
def test_np_sum():
class TestSum(HybridBlock):
def __init__(self, axis=None, dtype=None, keepdims=False):