TaoLv commented on issue #15930: Fix dtype inference in arange_like operator
URL: https://github.com/apache/incubator-mxnet/pull/15930#issuecomment-523068244
 
 
   @eric-haibin-lin  do you think the below code snippet can be used as a test 
case?
   
   ```python
   import mxnet as mx
   import numpy as np
   
   dtypes = [np.float16, np.float32, np.float64]
   
   for t in dtypes:
       x = mx.sym.Variable('x', dtype=t)
       y = mx.sym.reshape(x, shape=(0, 0, -1))
       z = mx.sym.contrib.arange_like(y, axis=-1)
   
       mod = z.simple_bind(ctx=mx.gpu(0), x=(3, 4, 5, 6), graph_req='null')
   
       mod.arg_arrays[0][:] = 
np.random.normal(size=mod.arg_arrays[0].shape).astype(t)
       out = mod.forward(is_train=False)
       assert out[0].dtype == np.float32
   ```

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to