http://git-wip-us.apache.org/repos/asf/incubator-mynewt-newtmgr/blob/9975ef7a/newtmgr/vendor/github.com/ugorji/go/codec/encode.go
----------------------------------------------------------------------
diff --git a/newtmgr/vendor/github.com/ugorji/go/codec/encode.go 
b/newtmgr/vendor/github.com/ugorji/go/codec/encode.go
deleted file mode 100644
index c2cef81..0000000
--- a/newtmgr/vendor/github.com/ugorji/go/codec/encode.go
+++ /dev/null
@@ -1,1461 +0,0 @@
-// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
-// Use of this source code is governed by a MIT license found in the LICENSE 
file.
-
-package codec
-
-import (
-       "encoding"
-       "fmt"
-       "io"
-       "reflect"
-       "sort"
-       "sync"
-)
-
-const (
-       defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
-)
-
-// AsSymbolFlag defines what should be encoded as symbols.
-type AsSymbolFlag uint8
-
-const (
-       // AsSymbolDefault is default.
-       // Currently, this means only encode struct field names as symbols.
-       // The default is subject to change.
-       AsSymbolDefault AsSymbolFlag = iota
-
-       // AsSymbolAll means encode anything which could be a symbol as a 
symbol.
-       AsSymbolAll = 0xfe
-
-       // AsSymbolNone means do not encode anything as a symbol.
-       AsSymbolNone = 1 << iota
-
-       // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
-       AsSymbolMapStringKeysFlag
-
-       // AsSymbolStructFieldName means encode struct field names as symbols.
-       AsSymbolStructFieldNameFlag
-)
-
-// encWriter abstracts writing to a byte array or to an io.Writer.
-type encWriter interface {
-       writeb([]byte)
-       writestr(string)
-       writen1(byte)
-       writen2(byte, byte)
-       atEndOfEncode()
-}
-
-// encDriver abstracts the actual codec (binc vs msgpack, etc)
-type encDriver interface {
-       IsBuiltinType(rt uintptr) bool
-       EncodeBuiltin(rt uintptr, v interface{})
-       EncodeNil()
-       EncodeInt(i int64)
-       EncodeUint(i uint64)
-       EncodeBool(b bool)
-       EncodeFloat32(f float32)
-       EncodeFloat64(f float64)
-       // encodeExtPreamble(xtag byte, length int)
-       EncodeRawExt(re *RawExt, e *Encoder)
-       EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
-       EncodeArrayStart(length int)
-       EncodeMapStart(length int)
-       EncodeString(c charEncoding, v string)
-       EncodeSymbol(v string)
-       EncodeStringBytes(c charEncoding, v []byte)
-       //TODO
-       //encBignum(f *big.Int)
-       //encStringRunes(c charEncoding, v []rune)
-
-       reset()
-}
-
-type encDriverAsis interface {
-       EncodeAsis(v []byte)
-}
-
-type encNoSeparator struct{}
-
-func (_ encNoSeparator) EncodeEnd() {}
-
-type ioEncWriterWriter interface {
-       WriteByte(c byte) error
-       WriteString(s string) (n int, err error)
-       Write(p []byte) (n int, err error)
-}
-
-type ioEncStringWriter interface {
-       WriteString(s string) (n int, err error)
-}
-
-type EncodeOptions struct {
-       // Encode a struct as an array, and not as a map
-       StructToArray bool
-
-       // Canonical representation means that encoding a value will always 
result in the same
-       // sequence of bytes.
-       //
-       // This only affects maps, as the iteration order for maps is random.
-       //
-       // The implementation MAY use the natural sort order for the map keys 
if possible:
-       //
-       //     - If there is a natural sort order (ie for number, bool, string 
or []byte keys),
-       //       then the map keys are first sorted in natural order and then 
written
-       //       with corresponding map values to the strema.
-       //     - If there is no natural sort order, then the map keys will 
first be
-       //       encoded into []byte, and then sorted,
-       //       before writing the sorted keys and the corresponding map 
values to the stream.
-       //
-       Canonical bool
-
-       // CheckCircularRef controls whether we check for circular references
-       // and error fast during an encode.
-       //
-       // If enabled, an error is received if a pointer to a struct
-       // references itself either directly or through one of its fields 
(iteratively).
-       //
-       // This is opt-in, as there may be a performance hit to checking 
circular references.
-       CheckCircularRef bool
-
-       // RecursiveEmptyCheck controls whether we descend into interfaces, 
structs and pointers
-       // when checking if a value is empty.
-       //
-       // Note that this may make OmitEmpty more expensive, as it incurs a lot 
more reflect calls.
-       RecursiveEmptyCheck bool
-
-       // Raw controls whether we encode Raw values.
-       // This is a "dangerous" option and must be explicitly set.
-       // If set, we blindly encode Raw values as-is, without checking
-       // if they are a correct representation of a value in that format.
-       // If unset, we error out.
-       Raw bool
-
-       // AsSymbols defines what should be encoded as symbols.
-       //
-       // Encoding as symbols can reduce the encoded size significantly.
-       //
-       // However, during decoding, each string to be encoded as a symbol must
-       // be checked to see if it has been seen before. Consequently, encoding 
time
-       // will increase if using symbols, because string comparisons has a 
clear cost.
-       //
-       // Sample values:
-       //   AsSymbolNone
-       //   AsSymbolAll
-       //   AsSymbolMapStringKeys
-       //   AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
-       AsSymbols AsSymbolFlag
-}
-
-// ---------------------------------------------
-
-type simpleIoEncWriterWriter struct {
-       w  io.Writer
-       bw io.ByteWriter
-       sw ioEncStringWriter
-       bs [1]byte
-}
-
-func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
-       if o.bw != nil {
-               return o.bw.WriteByte(c)
-       }
-       // _, err = o.w.Write([]byte{c})
-       o.bs[0] = c
-       _, err = o.w.Write(o.bs[:])
-       return
-}
-
-func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
-       if o.sw != nil {
-               return o.sw.WriteString(s)
-       }
-       // return o.w.Write([]byte(s))
-       return o.w.Write(bytesView(s))
-}
-
-func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
-       return o.w.Write(p)
-}
-
-// ----------------------------------------
-
-// ioEncWriter implements encWriter and can write to an io.Writer 
implementation
-type ioEncWriter struct {
-       w ioEncWriterWriter
-       s simpleIoEncWriterWriter
-       // x [8]byte // temp byte array re-used internally for efficiency
-}
-
-func (z *ioEncWriter) writeb(bs []byte) {
-       if len(bs) == 0 {
-               return
-       }
-       n, err := z.w.Write(bs)
-       if err != nil {
-               panic(err)
-       }
-       if n != len(bs) {
-               panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, 
Wrote: %v", len(bs), n))
-       }
-}
-
-func (z *ioEncWriter) writestr(s string) {
-       n, err := z.w.WriteString(s)
-       if err != nil {
-               panic(err)
-       }
-       if n != len(s) {
-               panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, 
Wrote: %v", len(s), n))
-       }
-}
-
-func (z *ioEncWriter) writen1(b byte) {
-       if err := z.w.WriteByte(b); err != nil {
-               panic(err)
-       }
-}
-
-func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
-       z.writen1(b1)
-       z.writen1(b2)
-}
-
-func (z *ioEncWriter) atEndOfEncode() {}
-
-// ----------------------------------------
-
-// bytesEncWriter implements encWriter and can write to an byte slice.
-// It is used by Marshal function.
-type bytesEncWriter struct {
-       b   []byte
-       c   int     // cursor
-       out *[]byte // write out on atEndOfEncode
-}
-
-func (z *bytesEncWriter) writeb(s []byte) {
-       if len(s) == 0 {
-               return
-       }
-       oc, a := z.growNoAlloc(len(s))
-       if a {
-               z.growAlloc(len(s), oc)
-       }
-       copy(z.b[oc:], s)
-}
-
-func (z *bytesEncWriter) writestr(s string) {
-       if len(s) == 0 {
-               return
-       }
-       oc, a := z.growNoAlloc(len(s))
-       if a {
-               z.growAlloc(len(s), oc)
-       }
-       copy(z.b[oc:], s)
-}
-
-func (z *bytesEncWriter) writen1(b1 byte) {
-       oc, a := z.growNoAlloc(1)
-       if a {
-               z.growAlloc(1, oc)
-       }
-       z.b[oc] = b1
-}
-
-func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
-       oc, a := z.growNoAlloc(2)
-       if a {
-               z.growAlloc(2, oc)
-       }
-       z.b[oc+1] = b2
-       z.b[oc] = b1
-}
-
-func (z *bytesEncWriter) atEndOfEncode() {
-       *(z.out) = z.b[:z.c]
-}
-
-// have a growNoalloc(n int), which can be inlined.
-// if allocation is needed, then call growAlloc(n int)
-
-func (z *bytesEncWriter) growNoAlloc(n int) (oldcursor int, allocNeeded bool) {
-       oldcursor = z.c
-       z.c = z.c + n
-       if z.c > len(z.b) {
-               if z.c > cap(z.b) {
-                       allocNeeded = true
-               } else {
-                       z.b = z.b[:cap(z.b)]
-               }
-       }
-       return
-}
-
-func (z *bytesEncWriter) growAlloc(n int, oldcursor int) {
-       // appendslice logic (if cap < 1024, *2, else *1.25): more expensive. 
many copy calls.
-       // bytes.Buffer model (2*cap + n): much better
-       // bs := make([]byte, 2*cap(z.b)+n)
-       bs := make([]byte, growCap(cap(z.b), 1, n))
-       copy(bs, z.b[:oldcursor])
-       z.b = bs
-}
-
-// ---------------------------------------------
-
-type encFnInfo struct {
-       e     *Encoder
-       ti    *typeInfo
-       xfFn  Ext
-       xfTag uint64
-       seq   seqType
-}
-
-func (f *encFnInfo) builtin(rv reflect.Value) {
-       f.e.e.EncodeBuiltin(f.ti.rtid, rv.Interface())
-}
-
-func (f *encFnInfo) raw(rv reflect.Value) {
-       f.e.raw(rv.Interface().(Raw))
-}
-
-func (f *encFnInfo) rawExt(rv reflect.Value) {
-       // rev := rv.Interface().(RawExt)
-       // f.e.e.EncodeRawExt(&rev, f.e)
-       var re *RawExt
-       if rv.CanAddr() {
-               re = rv.Addr().Interface().(*RawExt)
-       } else {
-               rev := rv.Interface().(RawExt)
-               re = &rev
-       }
-       f.e.e.EncodeRawExt(re, f.e)
-}
-
-func (f *encFnInfo) ext(rv reflect.Value) {
-       // if this is a struct|array and it was addressable, then pass the 
address directly (not the value)
-       if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && 
rv.CanAddr() {
-               rv = rv.Addr()
-       }
-       f.e.e.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
-}
-
-func (f *encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) 
(v interface{}, proceed bool) {
-       if indir == 0 {
-               v = rv.Interface()
-       } else if indir == -1 {
-               // If a non-pointer was passed to Encode(), then that value is 
not addressable.
-               // Take addr if addressable, else copy value to an addressable 
value.
-               if rv.CanAddr() {
-                       v = rv.Addr().Interface()
-               } else {
-                       rv2 := reflect.New(rv.Type())
-                       rv2.Elem().Set(rv)
-                       v = rv2.Interface()
-                       // fmt.Printf("rv.Type: %v, rv2.Type: %v, v: %v\n", 
rv.Type(), rv2.Type(), v)
-               }
-       } else {
-               for j := int8(0); j < indir; j++ {
-                       if rv.IsNil() {
-                               f.e.e.EncodeNil()
-                               return
-                       }
-                       rv = rv.Elem()
-               }
-               v = rv.Interface()
-       }
-       return v, true
-}
-
-func (f *encFnInfo) selferMarshal(rv reflect.Value) {
-       if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); 
proceed {
-               v.(Selfer).CodecEncodeSelf(f.e)
-       }
-}
-
-func (f *encFnInfo) binaryMarshal(rv reflect.Value) {
-       if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); 
proceed {
-               bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
-               f.e.marshal(bs, fnerr, false, c_RAW)
-       }
-}
-
-func (f *encFnInfo) textMarshal(rv reflect.Value) {
-       if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); 
proceed {
-               // debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
-               bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
-               f.e.marshal(bs, fnerr, false, c_UTF8)
-       }
-}
-
-func (f *encFnInfo) jsonMarshal(rv reflect.Value) {
-       if v, proceed := f.getValueForMarshalInterface(rv, f.ti.jmIndir); 
proceed {
-               bs, fnerr := v.(jsonMarshaler).MarshalJSON()
-               f.e.marshal(bs, fnerr, true, c_UTF8)
-       }
-}
-
-func (f *encFnInfo) kBool(rv reflect.Value) {
-       f.e.e.EncodeBool(rv.Bool())
-}
-
-func (f *encFnInfo) kString(rv reflect.Value) {
-       f.e.e.EncodeString(c_UTF8, rv.String())
-}
-
-func (f *encFnInfo) kFloat64(rv reflect.Value) {
-       f.e.e.EncodeFloat64(rv.Float())
-}
-
-func (f *encFnInfo) kFloat32(rv reflect.Value) {
-       f.e.e.EncodeFloat32(float32(rv.Float()))
-}
-
-func (f *encFnInfo) kInt(rv reflect.Value) {
-       f.e.e.EncodeInt(rv.Int())
-}
-
-func (f *encFnInfo) kUint(rv reflect.Value) {
-       f.e.e.EncodeUint(rv.Uint())
-}
-
-func (f *encFnInfo) kInvalid(rv reflect.Value) {
-       f.e.e.EncodeNil()
-}
-
-func (f *encFnInfo) kErr(rv reflect.Value) {
-       f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
-}
-
-func (f *encFnInfo) kSlice(rv reflect.Value) {
-       ti := f.ti
-       // array may be non-addressable, so we have to manage with care
-       //   (don't call rv.Bytes, rv.Slice, etc).
-       // E.g. type struct S{B [2]byte};
-       //   Encode(S{}) will bomb on "panic: slice of unaddressable array".
-       e := f.e
-       if f.seq != seqTypeArray {
-               if rv.IsNil() {
-                       e.e.EncodeNil()
-                       return
-               }
-               // If in this method, then there was no extension function 
defined.
-               // So it's okay to treat as []byte.
-               if ti.rtid == uint8SliceTypId {
-                       e.e.EncodeStringBytes(c_RAW, rv.Bytes())
-                       return
-               }
-       }
-       cr := e.cr
-       rtelem := ti.rt.Elem()
-       l := rv.Len()
-       if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
-               switch f.seq {
-               case seqTypeArray:
-                       // if l == 0 { e.e.encodeStringBytes(c_RAW, nil) } else
-                       if rv.CanAddr() {
-                               e.e.EncodeStringBytes(c_RAW, rv.Slice(0, 
l).Bytes())
-                       } else {
-                               var bs []byte
-                               if l <= cap(e.b) {
-                                       bs = e.b[:l]
-                               } else {
-                                       bs = make([]byte, l)
-                               }
-                               reflect.Copy(reflect.ValueOf(bs), rv)
-                               // TODO: Test that reflect.Copy works instead 
of manual one-by-one
-                               // for i := 0; i < l; i++ {
-                               //      bs[i] = byte(rv.Index(i).Uint())
-                               // }
-                               e.e.EncodeStringBytes(c_RAW, bs)
-                       }
-               case seqTypeSlice:
-                       e.e.EncodeStringBytes(c_RAW, rv.Bytes())
-               case seqTypeChan:
-                       bs := e.b[:0]
-                       // do not use range, so that the number of elements 
encoded
-                       // does not change, and encoding does not hang waiting 
on someone to close chan.
-                       // for b := range rv.Interface().(<-chan byte) {
-                       //      bs = append(bs, b)
-                       // }
-                       ch := rv.Interface().(<-chan byte)
-                       for i := 0; i < l; i++ {
-                               bs = append(bs, <-ch)
-                       }
-                       e.e.EncodeStringBytes(c_RAW, bs)
-               }
-               return
-       }
-
-       if ti.mbs {
-               if l%2 == 1 {
-                       e.errorf("mapBySlice requires even slice length, but 
got %v", l)
-                       return
-               }
-               e.e.EncodeMapStart(l / 2)
-       } else {
-               e.e.EncodeArrayStart(l)
-       }
-
-       if l > 0 {
-               for rtelem.Kind() == reflect.Ptr {
-                       rtelem = rtelem.Elem()
-               }
-               // if kind is reflect.Interface, do not pre-determine the
-               // encoding type, because preEncodeValue may break it down to
-               // a concrete type and kInterface will bomb.
-               var fn *encFn
-               if rtelem.Kind() != reflect.Interface {
-                       rtelemid := reflect.ValueOf(rtelem).Pointer()
-                       fn = e.getEncFn(rtelemid, rtelem, true, true)
-               }
-               // TODO: Consider perf implication of encoding odd index values 
as symbols if type is string
-               for j := 0; j < l; j++ {
-                       if cr != nil {
-                               if ti.mbs {
-                                       if j%2 == 0 {
-                                               
cr.sendContainerState(containerMapKey)
-                                       } else {
-                                               
cr.sendContainerState(containerMapValue)
-                                       }
-                               } else {
-                                       
cr.sendContainerState(containerArrayElem)
-                               }
-                       }
-                       if f.seq == seqTypeChan {
-                               if rv2, ok2 := rv.Recv(); ok2 {
-                                       e.encodeValue(rv2, fn)
-                               } else {
-                                       e.encode(nil) // WE HAVE TO DO 
SOMETHING, so nil if nothing received.
-                               }
-                       } else {
-                               e.encodeValue(rv.Index(j), fn)
-                       }
-               }
-       }
-
-       if cr != nil {
-               if ti.mbs {
-                       cr.sendContainerState(containerMapEnd)
-               } else {
-                       cr.sendContainerState(containerArrayEnd)
-               }
-       }
-}
-
-func (f *encFnInfo) kStruct(rv reflect.Value) {
-       fti := f.ti
-       e := f.e
-       cr := e.cr
-       tisfi := fti.sfip
-       toMap := !(fti.toArray || e.h.StructToArray)
-       newlen := len(fti.sfi)
-
-       // Use sync.Pool to reduce allocating slices unnecessarily.
-       // The cost of sync.Pool is less than the cost of new allocation.
-       pool, poolv, fkvs := encStructPoolGet(newlen)
-
-       // if toMap, use the sorted array. If toArray, use unsorted array (to 
match sequence in struct)
-       if toMap {
-               tisfi = fti.sfi
-       }
-       newlen = 0
-       var kv stringRv
-       recur := e.h.RecursiveEmptyCheck
-       for _, si := range tisfi {
-               kv.r = si.field(rv, false)
-               if toMap {
-                       if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
-                               continue
-                       }
-                       kv.v = si.encName
-               } else {
-                       // use the zero value.
-                       // if a reference or struct, set to nil (so you do not 
output too much)
-                       if si.omitEmpty && isEmptyValue(kv.r, recur, recur) {
-                               switch kv.r.Kind() {
-                               case reflect.Struct, reflect.Interface, 
reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
-                                       kv.r = reflect.Value{} //encode as nil
-                               }
-                       }
-               }
-               fkvs[newlen] = kv
-               newlen++
-       }
-
-       // debugf(">>>> kStruct: newlen: %v", newlen)
-       // sep := !e.be
-       ee := e.e //don't dereference every time
-
-       if toMap {
-               ee.EncodeMapStart(newlen)
-               // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
-               asSymbols := e.h.AsSymbols == AsSymbolDefault || 
e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
-               for j := 0; j < newlen; j++ {
-                       kv = fkvs[j]
-                       if cr != nil {
-                               cr.sendContainerState(containerMapKey)
-                       }
-                       if asSymbols {
-                               ee.EncodeSymbol(kv.v)
-                       } else {
-                               ee.EncodeString(c_UTF8, kv.v)
-                       }
-                       if cr != nil {
-                               cr.sendContainerState(containerMapValue)
-                       }
-                       e.encodeValue(kv.r, nil)
-               }
-               if cr != nil {
-                       cr.sendContainerState(containerMapEnd)
-               }
-       } else {
-               ee.EncodeArrayStart(newlen)
-               for j := 0; j < newlen; j++ {
-                       kv = fkvs[j]
-                       if cr != nil {
-                               cr.sendContainerState(containerArrayElem)
-                       }
-                       e.encodeValue(kv.r, nil)
-               }
-               if cr != nil {
-                       cr.sendContainerState(containerArrayEnd)
-               }
-       }
-
-       // do not use defer. Instead, use explicit pool return at end of 
function.
-       // defer has a cost we are trying to avoid.
-       // If there is a panic and these slices are not returned, it is ok.
-       if pool != nil {
-               pool.Put(poolv)
-       }
-}
-
-// func (f *encFnInfo) kPtr(rv reflect.Value) {
-//     debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
-//     if rv.IsNil() {
-//             f.e.e.encodeNil()
-//             return
-//     }
-//     f.e.encodeValue(rv.Elem())
-// }
-
-// func (f *encFnInfo) kInterface(rv reflect.Value) {
-//     println("kInterface called")
-//     debug.PrintStack()
-//     if rv.IsNil() {
-//             f.e.e.EncodeNil()
-//             return
-//     }
-//     f.e.encodeValue(rv.Elem(), nil)
-// }
-
-func (f *encFnInfo) kMap(rv reflect.Value) {
-       ee := f.e.e
-       if rv.IsNil() {
-               ee.EncodeNil()
-               return
-       }
-
-       l := rv.Len()
-       ee.EncodeMapStart(l)
-       e := f.e
-       cr := e.cr
-       if l == 0 {
-               if cr != nil {
-                       cr.sendContainerState(containerMapEnd)
-               }
-               return
-       }
-       var asSymbols bool
-       // determine the underlying key and val encFn's for the map.
-       // This eliminates some work which is done for each loop iteration i.e.
-       // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
-       //
-       // However, if kind is reflect.Interface, do not pre-determine the
-       // encoding type, because preEncodeValue may break it down to
-       // a concrete type and kInterface will bomb.
-       var keyFn, valFn *encFn
-       ti := f.ti
-       rtkey := ti.rt.Key()
-       rtval := ti.rt.Elem()
-       rtkeyid := reflect.ValueOf(rtkey).Pointer()
-       // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
-       var keyTypeIsString = rtkeyid == stringTypId
-       if keyTypeIsString {
-               asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
-       } else {
-               for rtkey.Kind() == reflect.Ptr {
-                       rtkey = rtkey.Elem()
-               }
-               if rtkey.Kind() != reflect.Interface {
-                       rtkeyid = reflect.ValueOf(rtkey).Pointer()
-                       keyFn = e.getEncFn(rtkeyid, rtkey, true, true)
-               }
-       }
-       for rtval.Kind() == reflect.Ptr {
-               rtval = rtval.Elem()
-       }
-       if rtval.Kind() != reflect.Interface {
-               rtvalid := reflect.ValueOf(rtval).Pointer()
-               valFn = e.getEncFn(rtvalid, rtval, true, true)
-       }
-       mks := rv.MapKeys()
-       // for j, lmks := 0, len(mks); j < lmks; j++ {
-
-       if e.h.Canonical {
-               e.kMapCanonical(rtkeyid, rtkey, rv, mks, valFn, asSymbols)
-       } else {
-               for j := range mks {
-                       if cr != nil {
-                               cr.sendContainerState(containerMapKey)
-                       }
-                       if keyTypeIsString {
-                               if asSymbols {
-                                       ee.EncodeSymbol(mks[j].String())
-                               } else {
-                                       ee.EncodeString(c_UTF8, mks[j].String())
-                               }
-                       } else {
-                               e.encodeValue(mks[j], keyFn)
-                       }
-                       if cr != nil {
-                               cr.sendContainerState(containerMapValue)
-                       }
-                       e.encodeValue(rv.MapIndex(mks[j]), valFn)
-               }
-       }
-       if cr != nil {
-               cr.sendContainerState(containerMapEnd)
-       }
-}
-
-func (e *Encoder) kMapCanonical(rtkeyid uintptr, rtkey reflect.Type, rv 
reflect.Value, mks []reflect.Value, valFn *encFn, asSymbols bool) {
-       ee := e.e
-       cr := e.cr
-       // we previously did out-of-band if an extension was registered.
-       // This is not necessary, as the natural kind is sufficient for 
ordering.
-
-       if rtkeyid == uint8SliceTypId {
-               mksv := make([]bytesRv, len(mks))
-               for i, k := range mks {
-                       v := &mksv[i]
-                       v.r = k
-                       v.v = k.Bytes()
-               }
-               sort.Sort(bytesRvSlice(mksv))
-               for i := range mksv {
-                       if cr != nil {
-                               cr.sendContainerState(containerMapKey)
-                       }
-                       ee.EncodeStringBytes(c_RAW, mksv[i].v)
-                       if cr != nil {
-                               cr.sendContainerState(containerMapValue)
-                       }
-                       e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-               }
-       } else {
-               switch rtkey.Kind() {
-               case reflect.Bool:
-                       mksv := make([]boolRv, len(mks))
-                       for i, k := range mks {
-                               v := &mksv[i]
-                               v.r = k
-                               v.v = k.Bool()
-                       }
-                       sort.Sort(boolRvSlice(mksv))
-                       for i := range mksv {
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapKey)
-                               }
-                               ee.EncodeBool(mksv[i].v)
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapValue)
-                               }
-                               e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-                       }
-               case reflect.String:
-                       mksv := make([]stringRv, len(mks))
-                       for i, k := range mks {
-                               v := &mksv[i]
-                               v.r = k
-                               v.v = k.String()
-                       }
-                       sort.Sort(stringRvSlice(mksv))
-                       for i := range mksv {
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapKey)
-                               }
-                               if asSymbols {
-                                       ee.EncodeSymbol(mksv[i].v)
-                               } else {
-                                       ee.EncodeString(c_UTF8, mksv[i].v)
-                               }
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapValue)
-                               }
-                               e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-                       }
-               case reflect.Uint8, reflect.Uint16, reflect.Uint32, 
reflect.Uint64, reflect.Uint, reflect.Uintptr:
-                       mksv := make([]uintRv, len(mks))
-                       for i, k := range mks {
-                               v := &mksv[i]
-                               v.r = k
-                               v.v = k.Uint()
-                       }
-                       sort.Sort(uintRvSlice(mksv))
-                       for i := range mksv {
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapKey)
-                               }
-                               ee.EncodeUint(mksv[i].v)
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapValue)
-                               }
-                               e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-                       }
-               case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, 
reflect.Int:
-                       mksv := make([]intRv, len(mks))
-                       for i, k := range mks {
-                               v := &mksv[i]
-                               v.r = k
-                               v.v = k.Int()
-                       }
-                       sort.Sort(intRvSlice(mksv))
-                       for i := range mksv {
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapKey)
-                               }
-                               ee.EncodeInt(mksv[i].v)
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapValue)
-                               }
-                               e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-                       }
-               case reflect.Float32:
-                       mksv := make([]floatRv, len(mks))
-                       for i, k := range mks {
-                               v := &mksv[i]
-                               v.r = k
-                               v.v = k.Float()
-                       }
-                       sort.Sort(floatRvSlice(mksv))
-                       for i := range mksv {
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapKey)
-                               }
-                               ee.EncodeFloat32(float32(mksv[i].v))
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapValue)
-                               }
-                               e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-                       }
-               case reflect.Float64:
-                       mksv := make([]floatRv, len(mks))
-                       for i, k := range mks {
-                               v := &mksv[i]
-                               v.r = k
-                               v.v = k.Float()
-                       }
-                       sort.Sort(floatRvSlice(mksv))
-                       for i := range mksv {
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapKey)
-                               }
-                               ee.EncodeFloat64(mksv[i].v)
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapValue)
-                               }
-                               e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
-                       }
-               default:
-                       // out-of-band
-                       // first encode each key to a []byte first, then sort 
them, then record
-                       var mksv []byte = make([]byte, 0, len(mks)*16) // 
temporary byte slice for the encoding
-                       e2 := NewEncoderBytes(&mksv, e.hh)
-                       mksbv := make([]bytesRv, len(mks))
-                       for i, k := range mks {
-                               v := &mksbv[i]
-                               l := len(mksv)
-                               e2.MustEncode(k)
-                               v.r = k
-                               v.v = mksv[l:]
-                               // fmt.Printf(">>>>> %s\n", mksv[l:])
-                       }
-                       sort.Sort(bytesRvSlice(mksbv))
-                       for j := range mksbv {
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapKey)
-                               }
-                               e.asis(mksbv[j].v)
-                               if cr != nil {
-                                       cr.sendContainerState(containerMapValue)
-                               }
-                               e.encodeValue(rv.MapIndex(mksbv[j].r), valFn)
-                       }
-               }
-       }
-}
-
-// --------------------------------------------------
-
-// encFn encapsulates the captured variables and the encode function.
-// This way, we only do some calculations one times, and pass to the
-// code block that should be called (encapsulated in a function)
-// instead of executing the checks every time.
-type encFn struct {
-       i encFnInfo
-       f func(*encFnInfo, reflect.Value)
-}
-
-// --------------------------------------------------
-
-type encRtidFn struct {
-       rtid uintptr
-       fn   encFn
-}
-
-// An Encoder writes an object to an output stream in the codec format.
-type Encoder struct {
-       // hopefully, reduce derefencing cost by laying the encWriter inside 
the Encoder
-       e encDriver
-       // NOTE: Encoder shouldn't call it's write methods,
-       // as the handler MAY need to do some coordination.
-       w  encWriter
-       s  []encRtidFn
-       ci set
-       be bool // is binary encoding
-       js bool // is json handle
-
-       wi ioEncWriter
-       wb bytesEncWriter
-
-       h  *BasicHandle
-       hh Handle
-
-       cr containerStateRecv
-       as encDriverAsis
-
-       f map[uintptr]*encFn
-       b [scratchByteArrayLen]byte
-}
-
-// NewEncoder returns an Encoder for encoding into an io.Writer.
-//
-// For efficiency, Users are encouraged to pass in a memory buffered writer
-// (eg bufio.Writer, bytes.Buffer).
-func NewEncoder(w io.Writer, h Handle) *Encoder {
-       e := newEncoder(h)
-       e.Reset(w)
-       return e
-}
-
-// NewEncoderBytes returns an encoder for encoding directly and efficiently
-// into a byte slice, using zero-copying to temporary slices.
-//
-// It will potentially replace the output byte slice pointed to.
-// After encoding, the out parameter contains the encoded contents.
-func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
-       e := newEncoder(h)
-       e.ResetBytes(out)
-       return e
-}
-
-func newEncoder(h Handle) *Encoder {
-       e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
-       _, e.js = h.(*JsonHandle)
-       e.e = h.newEncDriver(e)
-       e.as, _ = e.e.(encDriverAsis)
-       e.cr, _ = e.e.(containerStateRecv)
-       return e
-}
-
-// Reset the Encoder with a new output stream.
-//
-// This accommodates using the state of the Encoder,
-// where it has "cached" information about sub-engines.
-func (e *Encoder) Reset(w io.Writer) {
-       ww, ok := w.(ioEncWriterWriter)
-       if ok {
-               e.wi.w = ww
-       } else {
-               sww := &e.wi.s
-               sww.w = w
-               sww.bw, _ = w.(io.ByteWriter)
-               sww.sw, _ = w.(ioEncStringWriter)
-               e.wi.w = sww
-               //ww = bufio.NewWriterSize(w, defEncByteBufSize)
-       }
-       e.w = &e.wi
-       e.e.reset()
-}
-
-func (e *Encoder) ResetBytes(out *[]byte) {
-       in := *out
-       if in == nil {
-               in = make([]byte, defEncByteBufSize)
-       }
-       e.wb.b, e.wb.out, e.wb.c = in, out, 0
-       e.w = &e.wb
-       e.e.reset()
-}
-
-// func (e *Encoder) sendContainerState(c containerState) {
-//     if e.cr != nil {
-//             e.cr.sendContainerState(c)
-//     }
-// }
-
-// Encode writes an object into a stream.
-//
-// Encoding can be configured via the struct tag for the fields.
-// The "codec" key in struct field's tag value is the key name,
-// followed by an optional comma and options.
-// Note that the "json" key is used in the absence of the "codec" key.
-//
-// To set an option on all fields (e.g. omitempty on all fields), you
-// can create a field called _struct, and set flags on it.
-//
-// Struct values "usually" encode as maps. Each exported struct field is 
encoded unless:
-//    - the field's tag is "-", OR
-//    - the field is empty (empty or the zero value) and its tag specifies the 
"omitempty" option.
-//
-// When encoding as a map, the first string in the tag (before the comma)
-// is the map key string to use when encoding.
-//
-// However, struct values may encode as arrays. This happens when:
-//    - StructToArray Encode option is set, OR
-//    - the tag on the _struct field sets the "toarray" option
-//
-// Values with types that implement MapBySlice are encoded as stream maps.
-//
-// The empty values (for omitempty option) are false, 0, any nil pointer
-// or interface value, and any array, slice, map, or string of length zero.
-//
-// Anonymous fields are encoded inline except:
-//    - the struct tag specifies a replacement name (first value)
-//    - the field is of an interface type
-//
-// Examples:
-//
-//      // NOTE: 'json:' can be used as struct tag key, in place 'codec:' 
below.
-//      type MyStruct struct {
-//          _struct bool    `codec:",omitempty"`   //set omitempty for every 
field
-//          Field1 string   `codec:"-"`            //skip this field
-//          Field2 int      `codec:"myName"`       //Use key "myName" in 
encode stream
-//          Field3 int32    `codec:",omitempty"`   //use key "Field3". Omit if 
empty.
-//          Field4 bool     `codec:"f4,omitempty"` //use key "f4". Omit if 
empty.
-//          io.Reader                              //use key "Reader".
-//          MyStruct        `codec:"my1"           //use key "my1".
-//          MyStruct                               //inline it
-//          ...
-//      }
-//
-//      type MyStruct struct {
-//          _struct bool    `codec:",omitempty,toarray"`   //set omitempty for 
every field
-//                                                         //and encode struct 
as an array
-//      }
-//
-// The mode of encoding is based on the type of the value. When a value is 
seen:
-//   - If a Selfer, call its CodecEncodeSelf method
-//   - If an extension is registered for it, call that extension function
-//   - If it implements encoding.(Binary|Text|JSON)Marshaler, call its 
Marshal(Binary|Text|JSON) method
-//   - Else encode it based on its reflect.Kind
-//
-// Note that struct field names and keys in map[string]XXX will be treated as 
symbols.
-// Some formats support symbols (e.g. binc) and will properly encode the string
-// only once in the stream, and use a tag to refer to it thereafter.
-func (e *Encoder) Encode(v interface{}) (err error) {
-       defer panicToErr(&err)
-       e.encode(v)
-       e.w.atEndOfEncode()
-       return
-}
-
-// MustEncode is like Encode, but panics if unable to Encode.
-// This provides insight to the code location that triggered the error.
-func (e *Encoder) MustEncode(v interface{}) {
-       e.encode(v)
-       e.w.atEndOfEncode()
-}
-
-func (e *Encoder) encode(iv interface{}) {
-       // if ics, ok := iv.(Selfer); ok {
-       //      ics.CodecEncodeSelf(e)
-       //      return
-       // }
-
-       switch v := iv.(type) {
-       case nil:
-               e.e.EncodeNil()
-       case Selfer:
-               v.CodecEncodeSelf(e)
-       case Raw:
-               e.raw(v)
-       case reflect.Value:
-               e.encodeValue(v, nil)
-
-       case string:
-               e.e.EncodeString(c_UTF8, v)
-       case bool:
-               e.e.EncodeBool(v)
-       case int:
-               e.e.EncodeInt(int64(v))
-       case int8:
-               e.e.EncodeInt(int64(v))
-       case int16:
-               e.e.EncodeInt(int64(v))
-       case int32:
-               e.e.EncodeInt(int64(v))
-       case int64:
-               e.e.EncodeInt(v)
-       case uint:
-               e.e.EncodeUint(uint64(v))
-       case uint8:
-               e.e.EncodeUint(uint64(v))
-       case uint16:
-               e.e.EncodeUint(uint64(v))
-       case uint32:
-               e.e.EncodeUint(uint64(v))
-       case uint64:
-               e.e.EncodeUint(v)
-       case float32:
-               e.e.EncodeFloat32(v)
-       case float64:
-               e.e.EncodeFloat64(v)
-
-       case []uint8:
-               e.e.EncodeStringBytes(c_RAW, v)
-
-       case *string:
-               e.e.EncodeString(c_UTF8, *v)
-       case *bool:
-               e.e.EncodeBool(*v)
-       case *int:
-               e.e.EncodeInt(int64(*v))
-       case *int8:
-               e.e.EncodeInt(int64(*v))
-       case *int16:
-               e.e.EncodeInt(int64(*v))
-       case *int32:
-               e.e.EncodeInt(int64(*v))
-       case *int64:
-               e.e.EncodeInt(*v)
-       case *uint:
-               e.e.EncodeUint(uint64(*v))
-       case *uint8:
-               e.e.EncodeUint(uint64(*v))
-       case *uint16:
-               e.e.EncodeUint(uint64(*v))
-       case *uint32:
-               e.e.EncodeUint(uint64(*v))
-       case *uint64:
-               e.e.EncodeUint(*v)
-       case *float32:
-               e.e.EncodeFloat32(*v)
-       case *float64:
-               e.e.EncodeFloat64(*v)
-
-       case *[]uint8:
-               e.e.EncodeStringBytes(c_RAW, *v)
-
-       default:
-               const checkCodecSelfer1 = true // in case T is passed, where *T 
is a Selfer, still checkCodecSelfer
-               if !fastpathEncodeTypeSwitch(iv, e) {
-                       e.encodeI(iv, false, checkCodecSelfer1)
-               }
-       }
-}
-
-func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, sptr 
uintptr, proceed bool) {
-       // use a goto statement instead of a recursive function for 
ptr/interface.
-TOP:
-       switch rv.Kind() {
-       case reflect.Ptr:
-               if rv.IsNil() {
-                       e.e.EncodeNil()
-                       return
-               }
-               rv = rv.Elem()
-               if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
-                       // TODO: Movable pointers will be an issue here. Future 
problem.
-                       sptr = rv.UnsafeAddr()
-                       break TOP
-               }
-               goto TOP
-       case reflect.Interface:
-               if rv.IsNil() {
-                       e.e.EncodeNil()
-                       return
-               }
-               rv = rv.Elem()
-               goto TOP
-       case reflect.Slice, reflect.Map:
-               if rv.IsNil() {
-                       e.e.EncodeNil()
-                       return
-               }
-       case reflect.Invalid, reflect.Func:
-               e.e.EncodeNil()
-               return
-       }
-
-       proceed = true
-       rv2 = rv
-       return
-}
-
-func (e *Encoder) doEncodeValue(rv reflect.Value, fn *encFn, sptr uintptr,
-       checkFastpath, checkCodecSelfer bool) {
-       if sptr != 0 {
-               if (&e.ci).add(sptr) {
-                       e.errorf("circular reference found: # %d", sptr)
-               }
-       }
-       if fn == nil {
-               rt := rv.Type()
-               rtid := reflect.ValueOf(rt).Pointer()
-               // fn = e.getEncFn(rtid, rt, true, true)
-               fn = e.getEncFn(rtid, rt, checkFastpath, checkCodecSelfer)
-       }
-       fn.f(&fn.i, rv)
-       if sptr != 0 {
-               (&e.ci).remove(sptr)
-       }
-}
-
-func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer 
bool) {
-       if rv, sptr, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
-               e.doEncodeValue(rv, nil, sptr, checkFastpath, checkCodecSelfer)
-       }
-}
-
-func (e *Encoder) encodeValue(rv reflect.Value, fn *encFn) {
-       // if a valid fn is passed, it MUST BE for the dereferenced type of rv
-       if rv, sptr, proceed := e.preEncodeValue(rv); proceed {
-               e.doEncodeValue(rv, fn, sptr, true, true)
-       }
-}
-
-func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, 
checkCodecSelfer bool) (fn *encFn) {
-       // rtid := reflect.ValueOf(rt).Pointer()
-       var ok bool
-       if useMapForCodecCache {
-               fn, ok = e.f[rtid]
-       } else {
-               for i := range e.s {
-                       v := &(e.s[i])
-                       if v.rtid == rtid {
-                               fn, ok = &(v.fn), true
-                               break
-                       }
-               }
-       }
-       if ok {
-               return
-       }
-
-       if useMapForCodecCache {
-               if e.f == nil {
-                       e.f = make(map[uintptr]*encFn, initCollectionCap)
-               }
-               fn = new(encFn)
-               e.f[rtid] = fn
-       } else {
-               if e.s == nil {
-                       e.s = make([]encRtidFn, 0, initCollectionCap)
-               }
-               e.s = append(e.s, encRtidFn{rtid: rtid})
-               fn = &(e.s[len(e.s)-1]).fn
-       }
-
-       ti := e.h.getTypeInfo(rtid, rt)
-       fi := &(fn.i)
-       fi.e = e
-       fi.ti = ti
-
-       if checkCodecSelfer && ti.cs {
-               fn.f = (*encFnInfo).selferMarshal
-       } else if rtid == rawTypId {
-               fn.f = (*encFnInfo).raw
-       } else if rtid == rawExtTypId {
-               fn.f = (*encFnInfo).rawExt
-       } else if e.e.IsBuiltinType(rtid) {
-               fn.f = (*encFnInfo).builtin
-       } else if xfFn := e.h.getExt(rtid); xfFn != nil {
-               fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
-               fn.f = (*encFnInfo).ext
-       } else if supportMarshalInterfaces && e.be && ti.bm {
-               fn.f = (*encFnInfo).binaryMarshal
-       } else if supportMarshalInterfaces && !e.be && e.js && ti.jm {
-               //If JSON, we should check JSONMarshal before textMarshal
-               fn.f = (*encFnInfo).jsonMarshal
-       } else if supportMarshalInterfaces && !e.be && ti.tm {
-               fn.f = (*encFnInfo).textMarshal
-       } else {
-               rk := rt.Kind()
-               if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk 
== reflect.Slice) {
-                       if rt.PkgPath() == "" { // un-named slice or map
-                               if idx := fastpathAV.index(rtid); idx != -1 {
-                                       fn.f = fastpathAV[idx].encfn
-                               }
-                       } else {
-                               ok = false
-                               // use mapping for underlying type if there
-                               var rtu reflect.Type
-                               if rk == reflect.Map {
-                                       rtu = reflect.MapOf(rt.Key(), rt.Elem())
-                               } else {
-                                       rtu = reflect.SliceOf(rt.Elem())
-                               }
-                               rtuid := reflect.ValueOf(rtu).Pointer()
-                               if idx := fastpathAV.index(rtuid); idx != -1 {
-                                       xfnf := fastpathAV[idx].encfn
-                                       xrt := fastpathAV[idx].rt
-                                       fn.f = func(xf *encFnInfo, xrv 
reflect.Value) {
-                                               xfnf(xf, xrv.Convert(xrt))
-                                       }
-                               }
-                       }
-               }
-               if fn.f == nil {
-                       switch rk {
-                       case reflect.Bool:
-                               fn.f = (*encFnInfo).kBool
-                       case reflect.String:
-                               fn.f = (*encFnInfo).kString
-                       case reflect.Float64:
-                               fn.f = (*encFnInfo).kFloat64
-                       case reflect.Float32:
-                               fn.f = (*encFnInfo).kFloat32
-                       case reflect.Int, reflect.Int8, reflect.Int64, 
reflect.Int32, reflect.Int16:
-                               fn.f = (*encFnInfo).kInt
-                       case reflect.Uint8, reflect.Uint64, reflect.Uint, 
reflect.Uint32, reflect.Uint16, reflect.Uintptr:
-                               fn.f = (*encFnInfo).kUint
-                       case reflect.Invalid:
-                               fn.f = (*encFnInfo).kInvalid
-                       case reflect.Chan:
-                               fi.seq = seqTypeChan
-                               fn.f = (*encFnInfo).kSlice
-                       case reflect.Slice:
-                               fi.seq = seqTypeSlice
-                               fn.f = (*encFnInfo).kSlice
-                       case reflect.Array:
-                               fi.seq = seqTypeArray
-                               fn.f = (*encFnInfo).kSlice
-                       case reflect.Struct:
-                               fn.f = (*encFnInfo).kStruct
-                               // reflect.Ptr and reflect.Interface are 
handled already by preEncodeValue
-                               // case reflect.Ptr:
-                               //      fn.f = (*encFnInfo).kPtr
-                               // case reflect.Interface:
-                               //      fn.f = (*encFnInfo).kInterface
-                       case reflect.Map:
-                               fn.f = (*encFnInfo).kMap
-                       default:
-                               fn.f = (*encFnInfo).kErr
-                       }
-               }
-       }
-
-       return
-}
-
-func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
-       if fnerr != nil {
-               panic(fnerr)
-       }
-       if bs == nil {
-               e.e.EncodeNil()
-       } else if asis {
-               e.asis(bs)
-       } else {
-               e.e.EncodeStringBytes(c, bs)
-       }
-}
-
-func (e *Encoder) asis(v []byte) {
-       if e.as == nil {
-               e.w.writeb(v)
-       } else {
-               e.as.EncodeAsis(v)
-       }
-}
-
-func (e *Encoder) raw(vv Raw) {
-       v := []byte(vv)
-       if !e.h.Raw {
-               e.errorf("Raw values cannot be encoded: %v", v)
-       }
-       if e.as == nil {
-               e.w.writeb(v)
-       } else {
-               e.as.EncodeAsis(v)
-       }
-}
-
-func (e *Encoder) errorf(format string, params ...interface{}) {
-       err := fmt.Errorf(format, params...)
-       panic(err)
-}
-
-// ----------------------------------------
-
-const encStructPoolLen = 5
-
-// encStructPool is an array of sync.Pool.
-// Each element of the array pools one of encStructPool(8|16|32|64).
-// It allows the re-use of slices up to 64 in length.
-// A performance cost of encoding structs was collecting
-// which values were empty and should be omitted.
-// We needed slices of reflect.Value and string to collect them.
-// This shared pool reduces the amount of unnecessary creation we do.
-// The cost is that of locking sometimes, but sync.Pool is efficient
-// enough to reduce thread contention.
-var encStructPool [encStructPoolLen]sync.Pool
-
-func init() {
-       encStructPool[0].New = func() interface{} { return new([8]stringRv) }
-       encStructPool[1].New = func() interface{} { return new([16]stringRv) }
-       encStructPool[2].New = func() interface{} { return new([32]stringRv) }
-       encStructPool[3].New = func() interface{} { return new([64]stringRv) }
-       encStructPool[4].New = func() interface{} { return new([128]stringRv) }
-}
-
-func encStructPoolGet(newlen int) (p *sync.Pool, v interface{}, s []stringRv) {
-       // if encStructPoolLen != 5 { // constant chec, so removed at build 
time.
-       //      panic(errors.New("encStructPoolLen must be equal to 4")) // 
defensive, in case it is changed
-       // }
-       // idxpool := newlen / 8
-       if newlen <= 8 {
-               p = &encStructPool[0]
-               v = p.Get()
-               s = v.(*[8]stringRv)[:newlen]
-       } else if newlen <= 16 {
-               p = &encStructPool[1]
-               v = p.Get()
-               s = v.(*[16]stringRv)[:newlen]
-       } else if newlen <= 32 {
-               p = &encStructPool[2]
-               v = p.Get()
-               s = v.(*[32]stringRv)[:newlen]
-       } else if newlen <= 64 {
-               p = &encStructPool[3]
-               v = p.Get()
-               s = v.(*[64]stringRv)[:newlen]
-       } else if newlen <= 128 {
-               p = &encStructPool[4]
-               v = p.Get()
-               s = v.(*[128]stringRv)[:newlen]
-       } else {
-               s = make([]stringRv, newlen)
-       }
-       return
-}
-
-// ----------------------------------------
-
-// func encErr(format string, params ...interface{}) {
-//     doPanic(msgTagEnc, format, params...)
-// }


Reply via email to