This is an automated email from the ASF dual-hosted git repository.

aradzinski pushed a commit to branch NLPCRAFT-513
in repository https://gitbox.apache.org/repos/asf/incubator-nlpcraft-website.git


The following commit(s) were added to refs/heads/NLPCRAFT-513 by this push:
     new 9f73954  WIP
9f73954 is described below

commit 9f7395422317f4246b8e3f5c3dd051d22c36d2c7
Author: Aaron Radzinski <[email protected]>
AuthorDate: Thu Nov 24 13:49:56 2022 -0800

    WIP
---
 key-concepts.html => key-concepts-old.html |   2 +-
 key-concepts.html                          | 458 +----------------------------
 2 files changed, 17 insertions(+), 443 deletions(-)

diff --git a/key-concepts.html b/key-concepts-old.html
similarity index 99%
copy from key-concepts.html
copy to key-concepts-old.html
index ec3a5ae..3bd5ed8 100644
--- a/key-concepts.html
+++ b/key-concepts-old.html
@@ -37,7 +37,7 @@ id: key_concepts
                 specifics of the user input processing.
             </li>
             <li>
-                {% scaladoc NCModelClient NCModelClient %} is responsible for 
communication with the data model.
+                {% scaladoc NCModelClient NCModelClient %} is responsible for 
interaction with the data model.
             </li>
         </ul>
 
diff --git a/key-concepts.html b/key-concepts.html
index ec3a5ae..b3b3b18 100644
--- a/key-concepts.html
+++ b/key-concepts.html
@@ -37,7 +37,7 @@ id: key_concepts
                 specifics of the user input processing.
             </li>
             <li>
-                {% scaladoc NCModelClient NCModelClient %} is responsible for 
communication with the data model.
+                {% scaladoc NCModelClient NCModelClient %} is responsible for 
interaction with the data model.
             </li>
         </ul>
 
@@ -56,7 +56,7 @@ id: key_concepts
     </section>
 
     <section id="terminology">
-        <h2 class="section-title">Terminology<a href="#"><i class="top-link 
fas fa-fw fa-angle-double-up"></i></a></h2>
+        <h2 class="section-title">Main Types<a href="#"><i class="top-link fas 
fa-fw fa-angle-double-up"></i></a></h2>
         <p>
             Let's start with the nomenclature of the main NLPCraft types:
         </p>
@@ -98,8 +98,10 @@ id: key_concepts
                 <td>
                     <code>Entity</code> typically represents a real-world 
object, such as a person, location, organization,
                     or product that can often be denoted with a proper name. 
It can be abstract or have a physical existence.
-                    Each <code>entity</code> consists of zero or more 
<code>tokens</code>. Combination of entities form one or more parsing
-                    <code>variants</code>.
+                    Each <code>entity</code> consists of zero or more 
<code>tokens</code> and therefore is represented by zero
+                    or more substrings from the original input text. Note that 
entities may have only a very loose mapping back
+                    to the original text as entities represent a higher-level 
abstractions compared to tokens. Combination of
+                    entities form one or more parsing <code>variants</code>.
                 </td>
             </tr>
             <tr>
@@ -122,462 +124,34 @@ id: key_concepts
                     The output of the pipeline is further passed as an input 
to <a href="intent-matching.html">intent matching</a>.
                 </td>
             </tr>
-            <tr>
-                <td><b>{% scaladoc NCModelCofig NCModelConfig %}</b></td>
-                <td>
-                    <code>Pipeline</code> is the main configuration property 
of the model. Pipeline consists of an ordered sequence
-                    of <a href="/pipeline-components.html">pipeline 
components</a>. User input starts at the first component of the
-                    pipeline as a simple text and exits the end of the 
pipeline as a one or more parsing <code>variants</code>.
-                    The output of the pipeline is further passed as an input 
to <a href="intent-matching.html">intent matching</a>.
-                </td>
-            </tr>
             <tr>
                 <td><b><a target="scaladoc" 
href="/apis/latest/">@NCIntent</a></b></td>
                 <td>
-                    <code>Variant</code> is a unique set of 
<code>entities</code>. In many cases, a <code>token</code> or a group
-                    of <code>tokens</code> can be recognized as more than one 
<code>entity</code> - resulting in multiple possible
-                    interpretations of the original sequence of tokens. Each 
such interpretation is defined as a parsing <code>variant</code>.
-                    For example, user input <b>"Look at this crane."</b> can 
be interpreted as two <code>variants</code>,
-                    one of them containing <code>entity</code> 
<b>BIRD<sub>[crane]</sub></b> and another containing <code>entity</code> 
<b>MACHINE<sub>[crane]</sub></b>.
+                    <a target="scaladoc" href="/apis/latest/">@NCIntent</a> 
annotation binds a declarative intent to its
+                    callback method. The intent generally refers to the goal 
that the end-user had in mind when speaking
+                    or typing the input utterance. The intent has a 
<em>declarative part or template</em> written in <a 
href="/intent-matching.html#idl">IDL - Intent Definition Language</a>
+                    that strictly defines a particular form the user input.
+                    Intent is also bound to a callback method that will be 
executed
+                    when that intent, i.e. its template, is detected as the 
best match for a given input.
                 </td>
             </tr>
 
             </tbody>
         </table>
-
-        <figure>
-            <img alt="named entities" class="img-fluid" 
src="/images/text-tokens-entities2.png">
-            <figcaption><b>Fig 1.</b> Text -> Tokens -> Entities -> Parsing 
Variants.</figcaption>
-        </figure>
-
-        <p>
-            When <code>Variant</code> is prepared, the suitable  
<code>Intent</code> is trying to matched with it.
-        </p>
-
-        <table class="gradient-table">
-            <thead>
-            <tr>
-                <th>Term</th>
-                <th>Description</th>
-            </tr>
-            </thead>
-            <tbody>
-
-            <tr>
-                <td><code>Intent</code></td>
-                <td>
-                    <code>Intent</code> is user defined callback method and 
rule according to which this callback should be called.
-                    Most often rule is some template based on expected set of 
<code>entities</code> in user input,
-                    but it can be defined more flexible.
-                    Parameters extracted from user text input are passed into 
callback method.
-                    This method execution result is provided to user as answer 
on his request.
-                    <code>Intent</code> callbacks are methods defined in 
<code>Data Model</code> class annotated by
-                    <code>intent</code> rules via <a 
href="intent-matching.html">IDL</a>.
-                </td>
-            </tr>
-            <tr>
-                <td><code>IDL</code></td>
-                <td>
-                    IDL, Intent Definition Language, is a relatively 
straightforward declarative language which
-                    defines a match between the parsed user input represented 
as the collection of tokens,
-                    and the user-define callback method.
-                    IDL intents are bound to their callbacks via Java 
annotation and can be located
-                    in the same Java annotations or placed in model YAML/JSON 
file as well as in external *.idl files.
-                </td>
-            </tr>
-            <tr>
-                <td><code>Callback</code></td>
-                <td>
-                    The user defined Scala method which mapped to the 
<code>intent</code>.
-                    This method receives as its parameters normalized values 
from user input text according to
-                    IDL matched terms.
-                </td>
-            </tr>
-            </tbody>
-        </table>
-
-        <p>
-            So, <code>Data Model</code> must be able to do tree following 
things:
-        </p>
-
-        <ul>
-            <li>
-                Parse user input text as the <code>tokens</code>.
-                They are input for searching <code>named entities</code>.
-                <code>Tokens</code> parsing components should be included into 
<a href="#model-pipeline">Model pipeline</a>.
-            </li>
-            <li>
-                Find <code>named entities</code> based on these parsed 
<code>tokens</code>.
-                They are input for searching <code>intents</code>.
-                <code>Entity</code> parsing components should be included into 
<a href="#model-pipeline">Model pipeline</a>.
-            </li>
-            <li>
-                Prepare <code>intents</code> with their callbacks methods 
which contain business logic.
-                These methods should be defined directly in the model class 
definition or the model should have references on them.
-                It will be described below. Callback can de defined in model 
scala class directly or via references.
-                Look at the chapter <a href="intent-matching.html">Intent 
Matching</a> content for get more details.
-            </li>
-        </ul>
-
         <p>
-            As example, let's prepare the system which can call persons from 
your contact list.
-            Typical commands are: "<b>Please call to John Smith</b>" or 
"<b>Connect me with Barbara Dillan</b>".
-            For solving this task this model should be able to recognize in 
user text following entities:
-            <code>command</code> and <code>person</code> to apply this command.
+            Here's the illustration on how a user input text transforms into a 
set of parsing variants:
         </p>
-
-        <p>
-            So, when request "<b>Please call to John Smith</b>" received, our 
model should be able to:
-        </p>
-
-        <ul>
-            <li>
-                Parse tokens splitting user text input:
-                "<code>please</code>", "<code>call</code>", "<code>to</code>", 
"<code>john</code>", "<code>smith</code>".
-            </li>
-            <li>
-                Find two named entities:
-                <ul>
-                    <li>
-                        <code>command</code> by token "<code>call</code>".
-                    </li>
-                    <li>
-                        <code>person</code> by tokens "<code>john</code>" and 
"<code>smith</code>".
-                    </li>
-                </ul>
-            </li>
-            <li>
-                Have prepared intent:
-                <pre class="brush: scala, highlight: [1, 2, 5, 6]">
-                    @NCIntent("intent=call term(command)={# == 'command'} 
term(person)={# == 'person'}")
-                    def onCommand(
-                        ctx: NCContext,
-                        im: NCIntentMatch,
-                        @NCIntentTerm("command") command: NCEntity,
-                        @NCIntentTerm("person") person: NCEntity
-                    ): NCResult = ? // Implement business logic here.
-                </pre>
-
-                <ul>
-                    <li>
-                        <code>Line 1</code> defines intent <code>call</code> 
with two conditions
-                        which expects two named entities in user input text.
-                    </li>
-                    <li>
-                        <code>Line 2</code> defines related callback method 
<code>onCommand()</code>.
-                    </li>
-                    <li>
-                        <code>Lines 4 and 5</code> define two callback 
method's arguments which are corresponded to
-                        <code>call</code> intent terms conditions. You can 
extract normalized value
-                        <code>john smith</code> from the <code>person</code> 
parameter and use it in the method body
-                        for getting his phone number etc.
-                    </li>
-                </ul>
-            </li>
-        </ul>
-    </section>
-
-    <section id="model-configuration">
-        <h2 class="section-title">Model Configuration<a href="#"><i 
class="top-link fas fa-fw fa-angle-double-up"></i></a></h2>
-
-        <p>
-            <code>Data Model</code> configuration represented as
-            {% scaladoc NCModelConfig NCModelConfig %}
-            contains set of parameters which are described below.
-        </p>
-        <table class="gradient-table">
-            <thead>
-            <tr>
-                <th>Name</th>
-                <th>Description</th>
-            </tr>
-            </thead>
-            <tbody>
-            <tr>
-                <td><code>id</code>, <code>name</code> and 
<code>version</code></td>
-                <td>
-                    Mandatory model properties.
-                </td>
-            </tr>
-            <tr>
-                <td><code>description</code>, <code>origin</code></td>
-                <td>
-                    Optional model properties.
-                </td>
-            </tr>
-            <tr>
-                <td><code>conversationTimeout</code></td>
-                <td>
-                    Timeout of the user's conversation.
-                    If user doesn't communicate with the model this time 
period STM is going to be cleared.
-                    Loot at <a href="short-term-memory.html">Conversation</a> 
chapter to get more details.
-                    It is the mandatory parameter with default value.
-                </td>
-            </tr>
-            <tr>
-                <td><code>conversationDepth</code></td>
-                <td>
-                    Maximum supported depth the user's conversation.
-                    Loot at <a href="short-term-memory.html">Conversation</a> 
chapter to get more details.
-                    It is the mandatory parameter with default value.
-                </td>
-            </tr>
-            </tbody>
-        </table>
-    </section>
-
-    <section id="model-pipeline">
-        <h2 class="section-title">Model Pipeline<a href="#"><i class="top-link 
fas fa-fw fa-angle-double-up"></i></a></h2>
-
-        <p>
-            Model <code>Pipeline</code> is represented as {% scaladoc 
NCPipeline NCPipeline %} and
-            contains following components:
-        </p>
-
-        <table class="gradient-table">
-            <thead>
-            <tr>
-                <th>Component</th>
-                <th>Mandatory</th>
-                <th>Description</th>
-            </tr>
-            </thead>
-            <tbody>
-            <tr>
-                <td>{% scaladoc NCTokenParser NCTokenParser %}</td>
-                <td>Mandatory single</td>
-                <td>
-                    <code>Token parser</code> should be able to parse user 
input plain text and split this text
-                    into <code>tokens</code> list.
-                    NLPCraft provides two default English language 
implementations of token parser.
-                    Also, project contains examples for <a 
href="examples/light_switch_fr.html">French</a> and
-                    <a href="examples/light_switch_ru.html">Russia</a> 
languages token parser implementations.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCTokenEnricher NCTokenEnricher %}</td>
-                <td>Optional list</td>
-                <td>
-                    <code>Tokens enricher</code> is a component which allow to 
add additional properties for prepared tokens,
-                    like part of speech, quote, stop-words flags or any other.
-                    NLPCraft provides built-in English language set of token 
enrichers implementations.
-                    Here is an <a 
href="custom-components.html#token-enrichers">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCTokenValidator NCTokenValidator %}</td>
-                <td>Optional list</td>
-                <td>
-                    <code>Token validator</code> is a component which allow to 
inspect prepared tokens and
-                    throw an exception to break user input processing.
-                    Here is an <a 
href="custom-components.html#token-validators">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCEntityParser NCEntityParser %}</td>
-                <td>Mandatory list</td>
-                <td>
-                    <code>Entity parser</code> is a component which allow to 
find user defined named entities
-                    based on prepared tokens as input.
-                    NLPCraft provides wrappers for named-entity recognition 
components of
-                    <a href="https://opennlp.apache.org/";>Apache OpenNLP</a> 
and
-                    <a href="https://nlp.stanford.edu/";>Stanford NLP</a> and 
its own implementations.
-                    Note that at least one entity parser must be defined.
-                    Here is an <a 
href="custom-components.html#entity-parsers">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCEntityEnricher NCEntityEnricher %}</td>
-                <td>Optional list</td>
-                <td>
-                    <code>Entity enricher</code> is component which allows to 
add additional properties for prepared entities.
-                    Can be useful for extending existing entity enrichers 
functionality.
-                    Here is an <a 
href="custom-components.html#entity-enrichers">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCEntityMapper NCEntityMapper %}</td>
-                <td>Optional list</td>
-                <td>
-                    <code>Entity mappers</code> is component which allows to 
map one set of entities to another after the entities
-                    were parsed and enriched. Can be useful for building 
complex parsers based on existing.
-                    Here is an <a 
href="custom-components.html#entity-mappers">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCEntityValidator NCEntityValidator %}</td>
-                <td>Optional list</td>
-                <td>
-                    <code>Entity validator</code> is a component which allow 
to inspect prepared entities and
-                    throw an exception to break user input processing.
-                    Here is an <a 
href="custom-components.html#entity-validators">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCVariantFilter NCVariantFilter %}</td>
-                <td>Optional single</td>
-                <td>
-                    <code>Variant filter</code> is a component which allows 
filtering detected variants and
-                    rejecting undesirable.
-                    Here is an <a 
href="custom-components.html#variant-filters">example</a>.
-                </td>
-            </tr>
-            </tbody>
-        </table>
-
         <figure>
-            <img alt="pipeline" class="img-fluid" src="/images/pipeline.png">
-            <figcaption><b>Fig 2.</b> Pipeline</figcaption>
+            <img alt="named entities" class="img-fluid" 
src="/images/text-tokens-entities2.png">
+            <figcaption><b>Fig 1.</b> Text -> Tokens -> Entities -> Parsing 
Variants.</figcaption>
         </figure>
-
-        <p>
-            Below {% scaladoc NCModel NCModel %} creation example.
-            {% scaladoc NCPipeline NCPipeline %} is prepared using
-            {% scaladoc NCPipelineBuilder NCPipelineBuilder %} class helper.
-        </p>
-
-        <pre class="brush: scala, highlight: []">
-            val pipeline =
-                new NCPipelineBuilder().
-                    withTokenParser(new NCFrTokenParser()).
-                    withTokenEnricher(new NCFrLemmaPosTokenEnricher()).
-                    withTokenEnricher(new NCFrStopWordsTokenEnricher()).
-                    withEntityParser(new 
NCFrSemanticEntityParser("lightswitch_model_fr.yaml")).
-                    build
-            val cfg = NCModelConfig("nlpcraft.lightswitch.fr.ex", "LightSwitch 
Example Model FR", "1.0")
-
-            val mdl = new NCModel(cfg, pipeline):
-                // Add your callbacks definition or references on them here.
-        </pre>
-
-        <p>
-            This flexible system allows to create any pipelines on any 
language.
-            You can collect NLPCraft predefined components, write your own and 
easy reuse custom components.
-        </p>
-    </section>
-
-    <section id="model-behavior">
-        <h2 class="section-title">Model Behavior Overriding<a href="#"><i 
class="top-link fas fa-fw fa-angle-double-up"></i></a></h2>
-
-        <p>
-            There are also several {% scaladoc NCModel NCModel %}
-            callbacks that you can override to affect model behavior during
-            <a href="/intent-matching.html#model_callbacks">intent matching</a>
-            to perform logging, debugging, statistic or usage collection, 
explicit update or initialization of
-            conversation context, security audit or validation:
-        </p>
-        <table class="gradient-table">
-            <thead>
-            <tr>
-                <th>Method</th>
-                <th>Description</th>
-            </tr>
-            </thead>
-            <tbody>
-            <tr>
-                <td>{% scaladoc NCModel#onContext-38d onContext() %}</td>
-                <td>
-                    Overriding this method allows to prepare result before 
intent matching.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModel#onMatchedIntent-946 onMatchedIntent() 
%}</td>
-                <td>
-                    Overriding this method allows to reject matched intent and 
continue matching process.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModel#onResult-fffffaf3 onResult() %}</td>
-                <td>
-                    Overriding this method allows to replace callback method 
execution result.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModel#onRejection-4fa onRejection() %}</td>
-                <td>
-                    Overriding this method allows to change operation result 
when rejection occurs.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModel#onError-fffff759 onError() %}</td>
-                <td>
-                    Overriding this method allows to change operation result 
when any error occurs.
-                </td>
-            </tr>
-            </tbody>
-        </table>
-    </section>
-
-    <section id="client">
-        <h2 class="section-title">Client Responsibility<a href="#"><i 
class="top-link fas fa-fw fa-angle-double-up"></i></a></h2>
-
-        <p>
-            <code>Client</code>  represented as {% scaladoc NCModelClient 
NCModelClient %}
-            is necessary for communication with the <code>Data Model</code>. 
Base client methods  are described below.
-        </p>
-
-        <table class="gradient-table">
-            <thead>
-            <tr>
-                <th>Method</th>
-                <th>Description</th>
-            </tr>
-            </thead>
-            <tbody>
-            <tr>
-                <td>{% scaladoc NCModelClient#ask-fffff9ce ask() %}</td>
-                <td>
-                    Passes user text input to the model and receives back 
execution
-                    {% scaladoc NCResult NCResult %} or
-                    rejection exception if there isn't any triggered intents.
-                    {% scaladoc NCResult NCResult %} is wrapper on
-                    callback method execution result with additional 
information.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModelClient#debugAsk-fffff96c debugAsk() 
%}</td>
-                <td>
-                    Passes user text input to the model and receives back 
callback and its parameters or
-                    rejection exception if there isn't any triggered intents.
-                    Main difference from <code>ask</code> that triggered 
intent callback method is not called.
-                    This method and this parameter can be useful in tests 
scenarios.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModelClient#clearStm-571 clearStm() %}</td>
-                <td>
-                    Clears STM state. Memory is cleared wholly or with some 
predicate.
-                    Loot at <a href="short-term-memory.html">Conversation</a> 
chapter to get more details.
-                    Second variant of given method with another parameters is 
here - {% scaladoc NCModelClient#clearStm-1d8 clearStm() %}.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModelClient#clearDialog-571 clearDialog() 
%}</td>
-                <td>
-                    Clears dialog state. Dialog is cleared wholly or with some 
predicate.
-                    Loot at <a href="short-term-memory.html">Conversation</a> 
chapter to get more details.
-                    Second variant of given method with another parameters is 
here - {% scaladoc NCModelClient#clearDialog-1d8 clearDialog() %}.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModelClient#close-94c close() %}</td>
-                <td>
-                    Closes client. You can't call another client's methods 
after this method was closed.
-                </td>
-            </tr>
-            </tbody>
-        </table>
     </section>
 </div>
 <div class="col-md-2 third-column">
     <ul class="side-nav">
         <li class="side-nav-title">On This Page</li>
         <li><a href="#overview">Key Concepts</a></li>
-        <li><a href="#terminology">Terminology</a></li>
-<!--         <li><a href="#model-configuration">Model Configuration</a></li> 
-->
-<!--         <li><a href="#model-pipeline">Model Pipeline</a></li> -->
-<!--         <li><a href="#model-behavior">Model Behavior Overriding</a></li> 
-->
-<!--         <li><a href="#client">Client Responsibility</a></li> -->
+        <li><a href="#terminology">Main Types</a></li>
         {% include quick-links.html %}
     </ul>
 </div>

Reply via email to