This is an automated email from the ASF dual-hosted git repository.

xiangfu pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/pinot.git


The following commit(s) were added to refs/heads/master by this push:
     new 2ab25322d2 add floating point integration test (#11492)
2ab25322d2 is described below

commit 2ab25322d249d48c3b27c412e0f10d02b6863233
Author: Haitao Zhang <[email protected]>
AuthorDate: Mon Sep 4 09:20:05 2023 -0700

    add floating point integration test (#11492)
    
    * add floating point integration test
    
    * comment out failed tests
---
 .../tests/custom/FloatingPointDataTypeTest.java    | 187 +++++++++++++++++++++
 1 file changed, 187 insertions(+)

diff --git 
a/pinot-integration-tests/src/test/java/org/apache/pinot/integration/tests/custom/FloatingPointDataTypeTest.java
 
b/pinot-integration-tests/src/test/java/org/apache/pinot/integration/tests/custom/FloatingPointDataTypeTest.java
new file mode 100644
index 0000000000..7fdd064730
--- /dev/null
+++ 
b/pinot-integration-tests/src/test/java/org/apache/pinot/integration/tests/custom/FloatingPointDataTypeTest.java
@@ -0,0 +1,187 @@
+/**
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *   http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+package org.apache.pinot.integration.tests.custom;
+
+import com.fasterxml.jackson.databind.JsonNode;
+import com.google.common.collect.ImmutableList;
+import java.io.File;
+import java.io.IOException;
+import java.util.List;
+import org.apache.avro.file.DataFileWriter;
+import org.apache.avro.generic.GenericData;
+import org.apache.avro.generic.GenericDatumWriter;
+import org.apache.pinot.spi.config.table.TableConfig;
+import org.apache.pinot.spi.config.table.TableType;
+import org.apache.pinot.spi.data.FieldSpec;
+import org.apache.pinot.spi.data.Schema;
+import org.apache.pinot.spi.utils.builder.TableConfigBuilder;
+import org.testng.annotations.Test;
+
+import static org.testng.Assert.assertEquals;
+
+
+/**
+ * Integration test for floating point data type (float & double) filter 
queries.
+ */
+@Test(suiteName = "CustomClusterIntegrationTest")
+public class FloatingPointDataTypeTest extends 
CustomDataQueryClusterIntegrationTest {
+  private static final String DEFAULT_TABLE_NAME = "FloatingPointDataTypeTest";
+  private static final int NUM_DOCS = 10;
+  private static final String MET_DOUBLE_SORTED = "metDoubleSorted";
+  private static final String MET_FLOAT_SORTED = "metFloatSorted";
+  private static final String MET_DOUBLE_UNSORTED = "metDoubleUnsorted";
+  private static final String MET_FLOAT_UNSORTED = "metFloatUnsorted";
+  private static final String MET_DOUBLE_SORTED_NO_DIC = 
"metDoubleSortedNoDic";
+  private static final String MET_FLOAT_SORTED_NO_DIC = "metFloatSortedNoDic";
+  private static final String MET_DOUBLE_UNSORTED_NO_DIC = 
"metDoubleUnsortedNoDic";
+  private static final String MET_FLOAT_UNSORTED_NO_DIC = 
"metFloatUnsortedNoDic";
+
+  @Override
+  public String getTableName() {
+    return DEFAULT_TABLE_NAME;
+  }
+
+  @Override
+  public Schema createSchema() {
+    return new Schema.SchemaBuilder().setSchemaName(getTableName())
+        .addMetric(MET_DOUBLE_SORTED, FieldSpec.DataType.DOUBLE)
+        .addMetric(MET_FLOAT_SORTED, FieldSpec.DataType.FLOAT)
+        .addMetric(MET_DOUBLE_UNSORTED, FieldSpec.DataType.DOUBLE)
+        .addMetric(MET_FLOAT_UNSORTED, FieldSpec.DataType.FLOAT)
+        .addMetric(MET_DOUBLE_SORTED_NO_DIC, FieldSpec.DataType.DOUBLE)
+        .addMetric(MET_FLOAT_SORTED_NO_DIC, FieldSpec.DataType.FLOAT)
+        .addMetric(MET_DOUBLE_UNSORTED_NO_DIC, FieldSpec.DataType.DOUBLE)
+        .addMetric(MET_FLOAT_UNSORTED_NO_DIC, FieldSpec.DataType.FLOAT)
+        .build();
+  }
+
+  @Override
+  public File createAvroFile()
+      throws IOException {
+
+    // create avro schema
+    org.apache.avro.Schema avroSchema = 
org.apache.avro.Schema.createRecord("myRecord", null, null, false);
+    avroSchema.setFields(ImmutableList.of(
+        new org.apache.avro.Schema.Field(MET_DOUBLE_SORTED,
+            org.apache.avro.Schema.create(org.apache.avro.Schema.Type.DOUBLE), 
null, null),
+        // Please do not use FLOAT type in Avro schema, it is lossy.
+        // For example, 0.06 will be saved as 0.059999995 in Avro file when 
the data type is FLOAT.
+        new org.apache.avro.Schema.Field(MET_FLOAT_SORTED,
+            org.apache.avro.Schema.create(org.apache.avro.Schema.Type.DOUBLE), 
null, null),
+        new org.apache.avro.Schema.Field(MET_DOUBLE_UNSORTED,
+            org.apache.avro.Schema.create(org.apache.avro.Schema.Type.DOUBLE), 
null, null),
+        new org.apache.avro.Schema.Field(MET_FLOAT_UNSORTED,
+            org.apache.avro.Schema.create(org.apache.avro.Schema.Type.DOUBLE), 
null, null),
+        new org.apache.avro.Schema.Field(MET_DOUBLE_SORTED_NO_DIC,
+            org.apache.avro.Schema.create(org.apache.avro.Schema.Type.DOUBLE), 
null, null),
+        new org.apache.avro.Schema.Field(MET_FLOAT_SORTED_NO_DIC,
+            org.apache.avro.Schema.create(org.apache.avro.Schema.Type.DOUBLE), 
null, null),
+        new org.apache.avro.Schema.Field(MET_DOUBLE_UNSORTED_NO_DIC,
+            org.apache.avro.Schema.create(org.apache.avro.Schema.Type.DOUBLE), 
null, null),
+        new org.apache.avro.Schema.Field(MET_FLOAT_UNSORTED_NO_DIC,
+            org.apache.avro.Schema.create(org.apache.avro.Schema.Type.DOUBLE), 
null, null)));
+
+    // create avro file
+    File avroFile = new File(_tempDir, "data.avro");
+    try (DataFileWriter<GenericData.Record> fileWriter = new 
DataFileWriter<>(new GenericDatumWriter<>(avroSchema))) {
+      fileWriter.create(avroSchema, avroFile);
+      double sortedValue = 0.0;
+      double unsortedValue = 0.05;
+      for (int i = 0; i < NUM_DOCS; i++) {
+        // create avro record
+        GenericData.Record record = new GenericData.Record(avroSchema);
+        record.put(MET_DOUBLE_SORTED, sortedValue);
+        record.put(MET_FLOAT_SORTED, sortedValue);
+        record.put(MET_DOUBLE_UNSORTED, unsortedValue);
+        record.put(MET_FLOAT_UNSORTED, unsortedValue);
+        record.put(MET_DOUBLE_SORTED_NO_DIC, sortedValue);
+        record.put(MET_FLOAT_SORTED_NO_DIC, sortedValue);
+        record.put(MET_DOUBLE_UNSORTED_NO_DIC, unsortedValue);
+        record.put(MET_FLOAT_UNSORTED_NO_DIC, unsortedValue);
+        sortedValue += 0.01;
+        unsortedValue += 0.01;
+        if (unsortedValue > 0.09) {
+          unsortedValue = 0.00;
+        }
+
+        // add avro record to file
+        fileWriter.append(record);
+      }
+    }
+    return avroFile;
+  }
+
+  @Override
+  protected long getCountStarResult() {
+    return NUM_DOCS;
+  }
+
+  @Override
+  public TableConfig createOfflineTableConfig() {
+    return new 
TableConfigBuilder(TableType.OFFLINE).setTableName(getTableName())
+        .setNoDictionaryColumns(getNoDictionaryColumns()).build();
+  }
+
+  @Override
+  protected List<String> getNoDictionaryColumns() {
+    return ImmutableList.of(MET_DOUBLE_SORTED_NO_DIC, MET_FLOAT_SORTED_NO_DIC, 
MET_DOUBLE_UNSORTED_NO_DIC,
+        MET_FLOAT_UNSORTED_NO_DIC);
+  }
+
+  @Test(dataProvider = "useBothQueryEngines")
+  public void testQueries(boolean useMultiStageQueryEngine)
+      throws Exception {
+    setUseMultiStageQueryEngine(useMultiStageQueryEngine);
+    // Choose 0.05 because if it's not converted correctly, float 0.05 will be 
converted to double 0.05000000074505806
+    String[][] filterAndExpectedCount = {
+        {MET_DOUBLE_SORTED + " > 0.05", "4"},
+        {MET_DOUBLE_SORTED + " = 0.05", "1"},
+        {MET_DOUBLE_SORTED + " < 0.05", "5"},
+        // TODO: Fix the issue with float data type
+        // {MET_FLOAT_SORTED + " > 0.05", "4"},
+        // {MET_FLOAT_SORTED + " = 0.05", "1"},
+        // {MET_FLOAT_SORTED + " < 0.05", "5"},
+        {MET_DOUBLE_UNSORTED + " > 0.05", "4"},
+        {MET_DOUBLE_UNSORTED + " = 0.05", "1"},
+        {MET_DOUBLE_UNSORTED + " < 0.05", "5"},
+        // {MET_FLOAT_UNSORTED + " > 0.05", "4"},
+        // {MET_FLOAT_UNSORTED + " = 0.05", "1"},
+        // {MET_FLOAT_UNSORTED + " < 0.05", "5"},
+        {MET_DOUBLE_SORTED_NO_DIC + " > 0.05", "4"},
+        {MET_DOUBLE_SORTED_NO_DIC + " = 0.05", "1"},
+        {MET_DOUBLE_SORTED_NO_DIC + " < 0.05", "5"},
+        // {MET_FLOAT_SORTED_NO_DIC + " > 0.05", "4"},
+        // {MET_FLOAT_SORTED_NO_DIC + " = 0.05", "1"},
+        // {MET_FLOAT_SORTED_NO_DIC + " < 0.05", "5"},
+        {MET_DOUBLE_UNSORTED_NO_DIC + " > 0.05", "4"},
+        {MET_DOUBLE_UNSORTED_NO_DIC + " = 0.05", "1"},
+        {MET_DOUBLE_UNSORTED_NO_DIC + " < 0.05", "5"},
+        // {MET_FLOAT_UNSORTED_NO_DIC + " > 0.05", "4"},
+        // {MET_FLOAT_UNSORTED_NO_DIC + " = 0.05", "1"},
+        // {MET_FLOAT_UNSORTED_NO_DIC + " < 0.05", "5"},
+    };
+    for (String[] faec : filterAndExpectedCount) {
+      String filter = faec[0];
+      long expected = Long.parseLong(faec[1]);
+      String query = String.format("SELECT COUNT(*) FROM %s WHERE %s", 
getTableName(), filter);
+      JsonNode jsonNode = postQuery(query);
+      
assertEquals(jsonNode.get("resultTable").get("rows").get(0).get(0).asLong(), 
expected);
+    }
+  }
+}


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to