http://git-wip-us.apache.org/repos/asf/predictionio-site/blob/c2a267d3/gallery/template-gallery/index.html
----------------------------------------------------------------------
diff --git a/gallery/template-gallery/index.html 
b/gallery/template-gallery/index.html
index b44d3bc..8c04ab4 100644
--- a/gallery/template-gallery/index.html
+++ b/gallery/template-gallery/index.html
@@ -1,4 +1,4 @@
-<!DOCTYPE html><html><head><title>Engine Template Gallery</title><meta 
charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="Engine Template Gallery"/><link 
rel="canonical" 
href="https://predictionio.apache.org/gallery/template-gallery/"/><link 
href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-eccfc6cb.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><script
 src="//cdn.mathjax.org/math
 jax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script 
src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.apache.org/";><img alt="Apache 
PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a><span>®</span></div><div 
id="menu-wrapper"><div id="pill-wrapper"><a class="pill left" 
href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/predictionio/">OPEN SOURCE</a></div></div><img 
class="mobile-search-bar-toggler hidden-md hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" 
id="search-bar-row"><div class="row"><div class="col-md-9 col-sm-11 
col-xs-11"><div 
 class="hidden-md hidden-lg" id="mobile-page-heading-wrapper"><p>PredictionIO 
Docs</p><h4>Browse</h4></div><h4 class="hidden-sm hidden-xs">PredictionIO 
Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 hidden-md hidden-lg"><img 
id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md 
hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div 
class="row"><div id="left-menu-wrapper" class="col-md-3">
 <nav id="nav-main"><ul><li class="level-1"><a class="expandible" 
href="/"><span>Apache PredictionIO® Documentation</span></a><ul><li 
class="level-2"><a class="final" href="/"><span>Welcome to Apache 
PredictionIO®</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Getting Started</span></a><ul><li 
class="level-2"><a class="final" href="/start/"><span>A Quick 
Intro</span></a></li><li class="level-2"><a class="final" 
href="/install/"><span>Installing Apache PredictionIO</span></a></li><li 
class="level-2"><a class="final" href="/start/download/"><span>Downloading an 
Engine Template</span></a></li><li class="level-2"><a class="final" 
href="/start/deploy/"><span>Deploying Your First Engine</span></a></li><li 
class="level-2"><a class="final" href="/start/customize/"><span>Customizing the 
Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Integrating with Your App</span></a><ul><li class="level-2"><a 
class="final" href="
 /appintegration/"><span>App Integration Overview</span></a></li><li 
class="level-2"><a class="expandible" href="/sdk/"><span>List of 
SDKs</span></a><ul><li class="level-3"><a class="final" 
href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
SDK</span></a></li><li class="level-3"><a class="final" 
href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered 
SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
Service</span></a></li><li class="level-2"><a class="final" 
href="/batchpredict/"><span>Batch Predictions</span></a></li><li 
class="level-2"><a class="final" href="/deploy/monitoring/"><span>Monitorin
 g Engine</span></a></li><li class="level-2"><a class="final" 
href="/deploy/engineparams/"><span>Setting Engine Parameters</span></a></li><li 
class="level-2"><a class="final" href="/deploy/enginevariants/"><span>Deploying 
Multiple Engine Variants</span></a></li><li class="level-2"><a class="final" 
href="/deploy/plugin/"><span>Engine Server Plugin</span></a></li></ul></li><li 
class="level-1"><a class="expandible" href="#"><span>Customizing an 
Engine</span></a><ul><li class="level-2"><a class="final" 
href="/customize/"><span>Learning DASE</span></a></li><li class="level-2"><a 
class="final" href="/customize/dase/"><span>Implement DASE</span></a></li><li 
class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>Engine Scala 
APIs</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Collecting and Analyzing Data</span></a><ul
 ><li class="level-2"><a class="final" href="/datacollection/"><span>Event 
 >Server Overview</span></a></li><li class="level-2"><a class="final" 
 >href="/datacollection/eventapi/"><span>Collecting Data with 
 >REST/SDKs</span></a></li><li class="level-2"><a class="final" 
 >href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
 >class="level-2"><a class="final" 
 >href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
 >Webhooks</span></a></li><li class="level-2"><a class="final" 
 >href="/datacollection/channel/"><span>Channel</span></a></li><li 
 >class="level-2"><a class="final" 
 >href="/datacollection/batchimport/"><span>Importing Data in 
 >Batch</span></a></li><li class="level-2"><a class="final" 
 >href="/datacollection/analytics/"><span>Using Analytics 
 >Tools</span></a></li><li class="level-2"><a class="final" 
 >href="/datacollection/plugin/"><span>Event Server 
 >Plugin</span></a></li></ul></li><li class="level-1"><a class="expandible" 
 >href="#"><span>Choosing an Algorithm(s
 )</span></a><ul><li class="level-2"><a class="final" 
href="/algorithm/"><span>Built-in Algorithm Libraries</span></a></li><li 
class="level-2"><a class="final" href="/algorithm/switch/"><span>Switching to 
Another Algorithm</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/multiple/"><span>Combining Multiple 
Algorithms</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/custom/"><span>Adding Your Own 
Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
class="final" href="/evaluation/"><span>Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/evaluationdashboard/"><span>Evaluation 
Dashboard</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricchoose/"><span>Choosing Evaluation Metrics</span
 ></a></li><li class="level-2"><a class="final" 
 >href="/evaluation/metricbuild/"><span>Building Evaluation 
 >Metrics</span></a></li></ul></li><li class="level-1"><a class="expandible" 
 >href="#"><span>System Architecture</span></a><ul><li class="level-2"><a 
 >class="final" href="/system/"><span>Architecture Overview</span></a></li><li 
 >class="level-2"><a class="final" href="/system/anotherdatastore/"><span>Using 
 >Another Data Store</span></a></li></ul></li><li class="level-1"><a 
 >class="expandible" href="#"><span>PredictionIO® Official 
 >Templates</span></a><ul><li class="level-2"><a class="final" 
 >href="/templates/"><span>Intro</span></a></li><li class="level-2"><a 
 >class="expandible" href="#"><span>Recommendation</span></a><ul><li 
 >class="level-3"><a class="final" 
 >href="/templates/recommendation/quickstart/"><span>Quick 
 >Start</span></a></li><li class="level-3"><a class="final" 
 >href="/templates/recommendation/dase/"><span>DASE</span></a></li><li 
 >class="level-3"><a class="final" href="/templates/r
 ecommendation/evaluation/"><span>Evaluation Explained</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/recommendation/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/recommendation/reading-custom-events/"><span>Read Custom 
Events</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-data-prep/"><span>Customize Data 
Preparator</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-serving/"><span>Customize 
Serving</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/training-with-implicit-preference/"><span>Train 
with Implicit Preference</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/blacklist-items/"><span>Filter Recommended 
Items by Blacklist in Query</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/batch-evaluator/"><span>Batch Persistable 
 Evaluator</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>E-Commerce Recommendation</span></a><ul><li class="level-3"><a 
class="final" href="/templates/ecommercerecommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/how-to/"><span>How-To</span></a></li><li
 class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/train-with-rate-event/"><span>Train 
with Rate Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/adjust-score/"><span>Adjust 
Score</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Similar Product</span></a><ul><li class="level-3"><a 
class="final" href="/templates/similarproduct/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="f
 inal" href="/templates/similarproduct/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/multi-events-multi-algos/"><span>Multiple 
Events and Multiple Algorithms</span></a></li><li class="level-3"><a 
class="final" 
href="/templates/similarproduct/return-item-properties/"><span>Returns Item 
Properties</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/train-with-rate-event/"><span>Train with Rate 
Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/rid-user-set-event/"><span>Get Rid of Events 
for Users</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/recommended-user/"><span>Recommend 
Users</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Classification</span></a><ul><li class="level-3"><a class
 ="final" href="/templates/classification/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/add-algorithm/"><span>Use Alternative 
Algorithm</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/reading-custom-properties/"><span>Read Custom 
Properties</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li 
class="level-2"><a class="final active" 
href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" 
href="/community/submit-template/"><span>Submit your Engine as a 
Template</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Demo Tutorials<
 /span></a><ul><li class="level-2"><a class="final" 
href="/demo/tapster/"><span>Comics Recommendation Demo</span></a></li><li 
class="level-2"><a class="final" href="/demo/community/"><span>Community 
Contributed Demo</span></a></li><li class="level-2"><a class="final" 
href="/demo/textclassification/"><span>Text Classification Engine 
Tutorial</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="/community/"><span>Getting Involved</span></a><ul><li class="level-2"><a 
class="final" href="/community/contribute-code/"><span>Contribute 
Code</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-webhook/"><span>Contribute a 
Webhook</span></a></li><li class="level-2"><a class="final" 
href="/community/projects/"><span
 >Community Projects</span></a></li></ul></li><li class="level-1"><a 
 >class="expandible" href="#"><span>Getting Help</span></a><ul><li 
 >class="level-2"><a class="final" 
 >href="/resources/faq/"><span>FAQs</span></a></li><li class="level-2"><a 
 >class="final" href="/support/"><span>Support</span></a></li></ul></li><li 
 >class="level-1"><a class="expandible" 
 >href="#"><span>Resources</span></a><ul><li class="level-2"><a class="final" 
 >href="/cli/"><span>Command-line Interface</span></a></li><li 
 >class="level-2"><a class="final" href="/resources/release/"><span>Release 
 >Cadence</span></a></li><li class="level-2"><a class="final" 
 >href="/resources/intellij/"><span>Developing Engines with IntelliJ 
 >IDEA</span></a></li><li class="level-2"><a class="final" 
 >href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li 
 >class="level-2"><a class="final" 
 >href="/resources/glossary/"><span>Glossary</span></a></li></ul></li><li 
 >class="level-1"><a class="expandible" href="#"><span>Apache Software Found
 ation</span></a><ul><li class="level-2"><a class="final" 
href="https://www.apache.org/";><span>Apache Homepage</span></a></li><li 
class="level-2"><a class="final" 
href="https://www.apache.org/licenses/";><span>License</span></a></li><li 
class="level-2"><a class="final" 
href="https://www.apache.org/foundation/sponsorship.html";><span>Sponsorship</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/foundation/thanks.html";><span>Thanks</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/security/";><span>Security</span></a></li></ul></li></ul></nav></div><div
 class="col-md-9 col-sm-12"><div class="content-header hidden-md 
hidden-lg"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a 
href="#">Engine Template Gallery</a><span 
class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div></div><div id="table-of-content-wrapper"><a 
id="edit-page-lin
 k" 
href="https://github.com/apache/predictionio/tree/livedoc/docs/manual/source/gallery/template-gallery.html.md";><img
 src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div 
class="content-header hidden-sm hidden-xs"><div id="breadcrumbs" 
class="hidden-sm hidden xs"><ul><li><a href="#">Engine Template 
Gallery</a><span class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div></div><div class="content"><p>Pick a tab for the 
type of template you are looking for. Some still need to be ported (a simple 
process) to Apache PIO and these are marked. Also see each Template description 
for special support instructions.</p><div class="tabs"> <ul class="control"> 
<li data-lang=""><a 
href="#tab-19d614a6-f3c5-4ff5-8eeb-770b793ecf94">Recommenders</a></li> <li 
data-lang=""><a 
href="#tab-a496621e-21c3-46d0-ad90-47446246625f">Classification</a></li> <li 
data-lang=""><a href="#tab-e2a19160-3551-49a
 d-989b-bd5b974c9332">Regression</a></li> <li data-lang=""><a 
href="#tab-22bb32f0-9961-40e0-a141-fd9623ee9764">NLP</a></li> <li 
data-lang=""><a 
href="#tab-4d3db8f3-5e9e-4be4-a3ee-2117318a4d2c">Clustering</a></li> <li 
data-lang=""><a 
href="#tab-4bed26fe-af29-481b-8d99-163c5c80abd0">Similarity</a></li> <li 
data-lang=""><a href="#tab-799b52f6-e46d-4711-8416-78b01540f027">Other</a></li> 
</ul> <div data-tab="Recommenders" 
id="tab-19d614a6-f3c5-4ff5-8eeb-770b793ecf94"> <h3><a 
href="https://github.com/actionml/universal-recommender";>The Universal 
Recommender</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=actionml&amp;repo=universal-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Use for: </p> <ul class="tab-list"> <li 
class="tab-list-element">Personalized recommendations—user-based</li> <li 
class="tab-list-element">Similar items—item-based</li> <li 
class="tab-list-element">Viewed this bought 
 that—item-based cross-action</li> <li class="tab-list-element">Popular Items 
and User-defined ranking</li> <li class="tab-list-element">Item-set 
recommendations for complimentarty purchases or shopping 
carts—item-set-based</li> <li class="tab-list-element">Hybrid collaborative 
filtering and content based recommendations—limited content-based</li> <li 
class-tab-list-element>Business rules</li> </ul> <p>The name "Universal" refers 
to the use of this template in virtually any case that calls for 
recommendations - ecommerce, news, videos, virtually anywhere user behavioral 
data is known. This recommender uses the new <a 
href="http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html";>Cross-Occurrence
 (CCO) algorithm</a> to auto-correlate different user actions (clickstream 
data), profile data, contextual information (location, device), and some 
content types to make better recommendations. It also implements flexible 
filters and boosts for implementing business rules
 .</p> <p>Support: <a 
href="https://groups.google.com/forum/#!forum/actionml-user";>The Universal 
Recommender user group</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.10.0-incubating</td> <td>already compatible</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/apache/predictionio-template-recommender";>Recommendation</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=predictionio-template-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> An engine template is an almost-complete 
implementation of an engine. PredictionIO's Recommendation Engine Template has 
integrated Apache Spark MLlib's Collaborative Filtering algorithm by default. 
You can customize it easily to fit your spec
 ific needs. </p> <p>Support: <a 
href="http://predictionio.apache.org/support/";>Apache PredictionIO mailing 
lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/predictionio-template-ecom-recommender";>E-Commerce
 Recommendation</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=predictionio-template-ecom-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template provides personalized 
recommendation for e-commerce applications with the following features by 
default: </p> <ul class="tab-list"> <li class="tab-list-element">Exclude 
out-of-stock items</li> <li class="ta
 b-list-element">Provide recommendation to new users who sign up after the 
model is trained</li> <li class="tab-list-element">Recommend unseen items only 
(configurable)</li> <li class="tab-list-element">Recommend popular items if no 
information about the user is available (added in template version v0.4.0)</li> 
</ul> <p>Support: <a href="http://predictionio.apache.org/support/";>Apache 
PredictionIO mailing lists</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.10.0-incubating</td> <td>already compatible</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/apache/predictionio-template-similar-product";>Similar 
Product</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=predictionio-template-similar-product&amp;type=star&amp;count=true";
 frameborder="0" align="mid
 dle" scrolling="0" width="170px" height="20px"></iframe> <p> This engine 
template recommends products that are "similar" to the input product(s). 
Similarity is not defined by user or item attributes but by users' previous 
actions. By default, it uses 'view' action such that product A and B are 
considered similar if most users who view A also view B. The template can be 
customized to support other action types such as buy, rate, like..etc </p> 
<p>Support: <a href="http://predictionio.apache.org/support/";>Apache 
PredictionIO mailing lists</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.10.0-incubating</td> <td>already compatible</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/apache/predictionio-template-java-ecom-recommender";>E-Commerce
 Recommendation (Java)</a></h3> <iframe sr
 
c="https://ghbtns.com/github-btn.html?user=apache&amp;repo=predictionio-template-java-ecom-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template provides personalized 
recommendation for e-commerce applications with the following features by 
default: </p> <ul class="tab-list"> <li class="tab-list-element">Exclude 
out-of-stock items</li> <li class="tab-list-element">Provide recommendation to 
new users who sign up after the model is trained</li> <li 
class="tab-list-element">Recommend unseen items only (configurable)</li> <li 
class="tab-list-element">Recommend popular items if no information about the 
user is available</li> </ul> <p>Support: <a 
href="http://predictionio.apache.org/support/";>Apache PredictionIO mailing 
lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>P
 arallel</td> <td>Java</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.3</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-productranking";>Product
 Ranking</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-productranking&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template sorts a list of products for a 
user based on his/her preference. This is ideal for personalizing the display 
order of product page, catalog, or menu items if you have large number of 
options. It creates engagement and early conversion by placing products that a 
user prefers on the top. </p> <p>Support: </p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <
 td>Apache Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires 
conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-complementarypurchase";>Complementary
 Purchase</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-complementarypurchase&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template recommends the complementary 
items which most user frequently buy at the same time with one or more items in 
the query. </p> <p>Support: </p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/vaibhavist/template-scala-parallel-
 recommendation">Music Recommendations</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=vaibhavist&amp;repo=template-scala-parallel-recommendation&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is very similar to music recommendations 
template. It is integrated with all the events a music application can have 
such as song played, liked, downloaded, purchased, etc. </p> <p>Support: <a 
href="https://github.com/vaibhavist/template-scala-parallel-recommendation/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/vngrs/template-scala-parallel-viewedthenbought";>Viewed 
This Bought That</a></h3> <iframe
  
src="https://ghbtns.com/github-btn.html?user=vngrs&amp;repo=template-scala-parallel-viewedthenbought&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This Engine uses co-occurence algorithm to match 
viewed items to bought items. Using this engine you may predict which item the 
user will buy, given the item(s) browsed. </p> <p>Support: <a 
href="https://github.com/vngrs/template-scala-parallel-viewedthenbought/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=
 star&amp;count=true" frameborder="0" align="middle" scrolling="0" 
width="170px" height="20px"></iframe> <p> Template uses FP Growth algorithm 
allowing to mine for frequent patterns. Template returns subsequent items 
together with confidence score. Sometimes used as a shopping cart recommender 
but has other uses. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-fpm/issues";>Github issues</a></p> 
<br> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating";>Similar
 Product with Rating</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=ramaboo&amp;repo=template-scala-parallel-similarproduct-with-rating&amp;type=star&amp;count=true";
 frame
 border="0" align="middle" scrolling="0" width="170px" height="20px"></iframe> 
<p> Similar product template with rating support! Used for the MovieLens Demo. 
</p> <p>Support: <a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Template uses FP Growth algorithm allowing to mine 
for frequent patterns. Template returns subsequent items togeth
 er with confidence score. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-fpm/issues";>Github issues</a></p> 
<br> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> </tr> </table> <br> 
</div> <div data-tab="Classification" 
id="tab-a496621e-21c3-46d0-ad90-47446246625f"> <h3><a 
href="https://github.com/apache/predictionio-template-attribute-based-classifier";>Classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=predictionio-template-attribute-based-classifier&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> An engine template is an almost-complete 
implementation of an engine. PredictionIO's Classification Engine Template has 
integrated Apache Sp
 ark MLlib's Naive Bayes algorithm by default. </p> <p>Support: <a 
href="http://predictionio.apache.org/support/";>Apache PredictionIO mailing 
lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>already compatible</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/haricharan123/PredictionIo-lingpipe-MultiLabelClassification";>Classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=haricharan123&amp;repo=PredictionIo-lingpipe-MultiLabelClassification&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template is an almost-complete 
implementation of an engine meant to used with PredictionIO. This Multi-label 
Classification Engine Template has integrated LingPipe (http://al
 ias-i.com/lingpipe/) algorithm by default. </p> <p>Support: </p> <br> <table> 
<tr> <th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> <th>PIO 
min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Java</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.9.5</td> <td>already compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-leadscoring";>Lead 
Scoring</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-leadscoring&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template predicts the probability of an 
user will convert (conversion event by user) in the current session. </p> 
<p>Support: </p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <t
 d>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/predictionio-template-text-classifier";>Text 
Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=predictionio-template-text-classifier&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Use this engine for general text classification 
purposes. Uses OpenNLP library for text vectorization, includes 
t.f.-i.d.f.-based feature transformation and reduction, and uses Spark MLLib's 
Multinomial Naive Bayes implementation for classification. </p> <p>Support: <a 
href="https://github.com/apache/predictionio-template-text-classifier/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> 
 <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/andrewwuan/PredictionIO-Churn-Prediction-H2O-Sparkling-Water";>Churn
 Prediction - H2O Sparkling Water</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=andrewwuan&amp;repo=PredictionIO-Churn-Prediction-H2O-Sparkling-Water&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is an engine template with Sparkling Water 
integration. The goal is to use Deep Learning algorithm to predict the churn 
rate for a phone carrier's customers. </p> <p>Support: <a 
href="https://github.com/andrewwuan/PredictionIO-Churn-Prediction-H2O-Sparkling-Water/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> 
 <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/detrevid/predictionio-template-classification-dl4j";>Classification
 Deeplearning4j</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=detrevid&amp;repo=predictionio-template-classification-dl4j&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A classification engine template that uses 
Deeplearning4j library. </p> <p>Support: <a 
href="https://github.com/detrevid/predictionio-template-classification-dl4j/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a href="https://github.com
 
/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs">Probabilistic
 Classifier (Logistic Regression w/ LBFGS)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=EmergentOrder&amp;repo=template-scala-probabilistic-classifier-batch-lbfgs&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A PredictionIO engine template using logistic 
regression (trained with limited-memory BFGS ) with raw (probabilistic) 
outputs. </p> <p>Support: <a 
href="https://github.com/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>MIT 
License</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a href="https://github.com/chrischris292/template-class
 ification-opennlp">Document Classification with OpenNLP</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=chrischris292&amp;repo=template-classification-opennlp&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Document Classification template with OpenNLP 
GISModel. </p> <p>Support: <a 
href="https://github.com/chrischris292/template-classification-opennlp/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/harry5z/template-circuit-classification-sparkling-water";>Circuit
 End Use Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=harry5z&amp;repo=template-circuit-classification-s
 parkling-water&amp;type=star&amp;count=true" frameborder="0" align="middle" 
scrolling="0" width="170px" height="20px"></iframe> <p> A classification engine 
template that uses machine learning models trained with sample circuit energy 
consumption data and end usage to predict the end use of a circuit by its 
energy consumption history. </p> <p>Support: <a 
href="https://github.com/harry5z/template-circuit-classification-sparkling-water/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.1</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/ailurus1991/GBRT_Template_PredictionIO";>GBRT_Classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=ailurus1991&amp;repo=GBRT_Template_PredictionIO&amp;type=star&amp;count=true";
 
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> The Gradient-Boosted Regression Trees(GBRT) for 
classification. </p> <p>Support: <a 
href="https://github.com/ailurus1991/GBRT_Template_PredictionIO/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/mohanaprasad1994/PredictionIO-MLlib-Decision-Trees-Template";>MLlib-Decision-Trees-Template</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=mohanaprasad1994&amp;repo=PredictionIO-MLlib-Decision-Trees-Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> An engine template is an almost-complete 
implementation of an e
 ngine. This is a classification engine template which has integrated Apache 
Spark MLlib's Decision tree algorithm by default. </p> <p>Support: <a 
href="https://github.com/mohanaprasad1994/PredictionIO-MLlib-Decision-Trees-Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/jimmyywu/predictionio-template-classification-dl4j-multilayer-network";>Classification
 with MultiLayerNetwork</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=jimmyywu&amp;repo=predictionio-template-classification-dl4j-multilayer-network&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template integrates the Mul
 tiLayerNetwork implementation from the Deeplearning4j library into 
PredictionIO. In this template, we use PredictionIO to classify the 
widely-known IRIS flower dataset by constructing a deep-belief net. </p> 
<p>Support: <a 
href="https://github.com/jimmyywu/predictionio-template-classification-dl4j-multilayer-network/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/thomasste/template-scala-parallel-dl4j-rntn";>Deeplearning4j
 RNTN</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=template-scala-parallel-dl4j-rntn&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Recursive Neural Tenso
 r Network algorithm is supervised learning algorithm used to predict sentiment 
of sentences. This template is based on deeplearning4j RNTN example: 
https://github.com/SkymindIO/deeplearning4j-nlp-examples/tree/master/src/main/java/org/deeplearning4j/rottentomatoes/rntn.
 It's goal is to show how to integrate deeplearning4j library with 
PredictionIO. </p> <p>Support: <a 
href="https://github.com/thomasste/template-scala-parallel-dl4j-rntn/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/singsanj/classifier-kafka-streaming-template";>classifier-kafka-streaming-template</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=singsanj&amp;repo=classifier-kafka-streaming-template
 &amp;type=star&amp;count=true" frameborder="0" align="middle" scrolling="0" 
width="170px" height="20px"></iframe> <p> The template will provide a simple 
integration of DASE with kafka using spark streaming capabilites in order to 
play around with real time notification, messages .. </p> <p>Support: <a 
href="https://github.com/singsanj/classifier-kafka-streaming-template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template";>Sentiment
 Analysis - Bag of Words Model</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=BagOfWords_SentimentAnalysis_Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle"
  scrolling="0" width="170px" height="20px"></iframe> <p> This sentiment 
analysis template uses a bag of words model. Given text, the engine will return 
sentiment as 1.0 (positive) or 0.0 (negative) along with scores indicating how 
+ve or -ve it is. </p> <p>Support: <a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/jpioug/predictionio-template-iris";>Classification 
template for Iris</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=jpioug&amp;repo=predictionio-template-iris&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></ifram
 e> <p> This is Python(PySpark) based classification example for Iris dataset. 
</p> <p>Support: </p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Python</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.12.0-incubating</td> <td></td> </tr> 
</table> <br> </div> <div data-tab="Regression" 
id="tab-e2a19160-3551-49ad-989b-bd5b974c9332"> <h3><a 
href="https://github.com/goliasz/pio-template-sr";>Survival Regression</a></h3> 
<iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-sr&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Survival regression template is based on brand new 
Spark 1.6 AFT (accelerated failure time) survival analysis algorithm. There are 
interesting applications of survival analysis like: </p> <ul class="tab-list"> 
<li class="tab-list-elem
 ent">Business Planning : Profiling customers who has a higher survival rate 
and make strategy accordingly.</li> <li class="tab-list-element">Lifetime Value 
Prediction : Engage with customers according to their lifetime value</li> <li 
class="tab-list-element">Active customers : Predict when the customer will be 
active for the next time and take interventions accordingly. * Campaign 
evaluation : Monitor effect of campaign on the survival rate of customers.</li> 
</ul> Source: 
http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/ 
<p>Support: <a 
href="http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/";>Blog
 post</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.9.5</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a href="https://github.com/Bens
 onQiu/predictionio-template-recommendation-sparklingwater">Sparkling 
Water-Deep Learning Energy Forecasting</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=BensonQiu&amp;repo=predictionio-template-recommendation-sparklingwater&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This Engine Template demonstrates an energy 
forecasting engine. It integrates Deep Learning from the Sparkling Water 
library to perform energy analysis. We can query the circuit and time, and 
return predicted energy usage. </p> <p>Support: <a 
href="https://github.com/BensonQiu/predictionio-template-recommendation-sparklingwater/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> <
 /tr> </table> <br> <h3><a 
href="https://github.com/detrevid/predictionio-load-forecasting";>Electric Load 
Forecasting</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=detrevid&amp;repo=predictionio-load-forecasting&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is a PredictionIO engine for electric load 
forecasting. The engine is using linear regression with stochastic gradient 
descent from Spark MLlib. </p> <p>Support: <a 
href="https://github.com/detrevid/predictionio-load-forecasting/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/RAditi/PredictionIO-MLLib-LinReg-Template";>MLLib-LinearReg
 ression</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=RAditi&amp;repo=PredictionIO-MLLib-LinReg-Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template uses the linear regression with 
stochastic gradient descent algorithm from MLLib to make predictions on 
real-valued data based on features (explanatory variables) </p> <p>Support: <a 
href="https://github.com/RAditi/PredictionIO-MLLib-LinReg-Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.1</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/mgcdanny/pio-linear-regression-bfgs";>Linear Regression 
BFGS</a></h3> <iframe src="https://ghbtns.com/github-btn.html?user=mgcdanny&amp;
 repo=pio-linear-regression-bfgs&amp;type=star&amp;count=true" frameborder="0" 
align="middle" scrolling="0" width="170px" height="20px"></iframe> <p> Modeling 
the relationship between a dependent variable, y, and one or more explanatory 
variables, denoted X. </p> <p>Support: </p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>beta</td> <td>0.10.0</td> 
<td></td> </tr> </table> <br> <h3><a 
href="https://github.com/jpioug/predictionio-template-boston-house-prices";>Regression
 template for Boston House Prices</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=jpioug&amp;repo=predictionio-template-boston-house-prices&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is Python(PySpark) based regression example 
for Boston House Prices da
 taset. </p> <p>Support: </p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Python</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.12.0-incubating</td> <td></td> </tr> 
</table> <br> </div> <div data-tab="NLP" 
id="tab-22bb32f0-9961-40e0-a141-fd9623ee9764"> <h3><a 
href="https://github.com/goliasz/pio-template-text-similarity";>Cstablo-template-text-similarity-classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-text-similarity&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Text similarity engine based on Word2Vec algorithm. 
Builds vectors of full documents in training phase. Finds similar documents in 
query phase. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-text-similarity/issues";>Github 
issues</a></p> <b
 r> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia";>Topic
 Labelling with Wikipedia</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=template-Labelling-Topics-with-wikipedia&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template will label topics (e.g. topic 
generated through LDA topic modeling) with relevant category by referring to 
Wikipedia as a knowledge base. </p> <p>Support: <a 
href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <t
 h>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>stable</td> <td>0.10.0-incubating</td> <td>already compatible</td> </tr> 
</table> <br> <h3><a 
href="https://github.com/apache/predictionio-template-text-classifier";>Text 
Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=predictionio-template-text-classifier&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Use this engine for general text classification 
purposes. Uses OpenNLP library for text vectorization, includes 
t.f.-i.d.f.-based feature transformation and reduction, and uses Spark MLLib's 
Multinomial Naive Bayes implementation for classification. </p> <p>Support: <a 
href="https://github.com/apache/predictionio-template-text-classifier/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> <th>L
 icense</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion 
Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 
2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a 
href="https://github.com/thomasste/template-scala-parallel-dl4j-rntn";>Deeplearning4j
 RNTN</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=template-scala-parallel-dl4j-rntn&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Recursive Neural Tensor Network algorithm is 
supervised learning algorithm used to predict sentiment of sentences. This 
template is based on deeplearning4j RNTN example: 
https://github.com/SkymindIO/deeplearning4j-nlp-examples/tree/master/src/main/java/org/deeplearning4j/rottentomatoes/rntn.
 It's goal is to show how to integrate deeplearning4j library with 
PredictionIO. </p> <p>Support: <a href="https://github.com/thomass
 te/template-scala-parallel-dl4j-rntn/issues">Github issues</a></p> <br> 
<table> <tr> <th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> 
<th>PIO min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template";>Sentiment
 Analysis - Bag of Words Model</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=BagOfWords_SentimentAnalysis_Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This sentiment analysis template uses a bag of 
words model. Given text, the engine will return sentiment as 1.0 (positive) or 
0.0 (negative) along with scores indicating how +ve or -ve it is. </p> 
<p>Support: <a href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis
 _Template/issues">Github issues</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.10.0-incubating</td> <td>already compatible</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/infoquestsolutions/OpenNLP-SentimentAnalysis-Template";>OpenNLP
 Sentiment Analysis Template</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=infoquestsolutions&amp;repo=OpenNLP-SentimentAnalysis-Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Given a sentence, this engine will return a score 
between 0 and 4. This is the sentiment of the sentence. The lower the number 
the more negative the sentence is. It uses the OpenNLP library. </p> 
<p>Support: <a 
href="https://github.com/infoquestsolutions/OpenNLP-SentimentAnalysis-T
 emplate/issues">Github issues</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>beta</td> 
<td>0.10.0-incubating</td> <td>already compatible</td> </tr> </table> <br> 
<h3><a href="https://github.com/pawel-n/template-scala-cml-sentiment";>Sentiment 
analysis</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=pawel-n&amp;repo=template-scala-cml-sentiment&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template implements various algorithms for 
sentiment analysis, most based on recursive neural networks (RNN) and recursive 
neural tensor networks (RNTN)[1]. It uses an experimental library called 
Composable Machine Learning (CML) and the Stanford Parser. The example data set 
is the Stanford Sentiment Treebank. </p> <p>Support: <a 
 href="https://github.com/pawel-n/template-scala-cml-sentiment/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/pawel-n/template-scala-parallel-word2vec";>Word2Vec</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=pawel-n&amp;repo=template-scala-parallel-word2vec&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template integrates the Word2Vec 
implementation from deeplearning4j with PredictionIO. The Word2Vec algorithm 
takes a corpus of text and computes a vector representation for each word. 
These representations can be subsequently used in many natural language 
processing applications. </p> <p>
 Support: <a 
href="https://github.com/pawel-n/template-scala-parallel-word2vec/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/thomasste/template-scala-spark-dl4j-word2vec";>Spark 
Deeplearning4j Word2Vec</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=template-scala-spark-dl4j-word2vec&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template shows how to integrate Deeplearnign4j 
spark api with PredictionIO on example of app which uses Word2Vec algorithm to 
predict nearest words. </p> <p>Support: <a 
href="https://github.com/thomasste/template-scala-spark-dl4j-word2vec/issues
 ">Github issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/whhone/template-sentiment-analysis";>Sentiment Analysis 
Template</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=whhone&amp;repo=template-sentiment-analysis&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Given a sentence, return a score between 0 and 4, 
indicating the sentence's sentiment. 0 being very negative, 4 being very 
positive, 2 being neutral. The engine uses the stanford CoreNLP library and the 
Scala binding `gangeli/CoreNLP-Scala` for parsing. </p> <p>Support: <a 
href="https://github.com/whhone/template-sentiment-analysis/issues";>Github 
issues
 </a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>None</td> <td>stable</td> 
<td>0.9.0</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/thomasste/template-scala-rnn";>Recursive Neural 
Networks (Sentiment Analysis)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=template-scala-rnn&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Predicting sentiment of phrases with use of 
Recursive Neural Network algorithm and OpenNLP parser. </p> <p>Support: <a 
href="https://github.com/thomasste/template-scala-rnn/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td
 > <td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> <td>0.9.2</td> 
 > <td>requires conversion</td> </tr> </table> <br> <h3><a 
 > href="https://github.com/Ling-Ling/CoreNLP-Text-Classification";>CoreNLP Text 
 > Classification</a></h3> <iframe 
 > src="https://ghbtns.com/github-btn.html?user=Ling-Ling&amp;repo=CoreNLP-Text-Classification&amp;type=star&amp;count=true";
 >  frameborder="0" align="middle" scrolling="0" width="170px" 
 > height="20px"></iframe> <p> This engine uses CoreNLP to do text analysis in 
 > order to classify the category a strings of text falls under. </p> 
 > <p>Support: <a 
 > href="https://github.com/Ling-Ling/CoreNLP-Text-Classification/issues";>Github
 >  issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 > <th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
 > Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> 
 > <td>Apache Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires 
 > conversion</td> </tr> </table> <br> </div> <div data-tab="Clusteri
 ng" id="tab-4d3db8f3-5e9e-4be4-a3ee-2117318a4d2c"> <h3><a 
href="https://github.com/sahiliitm/predictionio-MLlibKMeansClusteringTemplate";>MLlibKMeansClustering</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=sahiliitm&amp;repo=predictionio-MLlibKMeansClusteringTemplate&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is a template which demonstrates the use of 
K-Means clustering algorithm which can be deployed on a spark-cluster using 
prediction.io. </p> <p>Support: <a 
href="https://github.com/sahiliitm/predictionio-MLlibKMeansClusteringTemplate/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a href="https://github.com/Eme
 rgentOrder/template-scala-topic-model-LDA">Topc Model (LDA)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=EmergentOrder&amp;repo=template-scala-topic-model-LDA&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A PredictionIO engine template using Latent 
Dirichlet Allocation to learn a topic model from raw text </p> <p>Support: <a 
href="https://github.com/EmergentOrder/template-scala-topic-model-LDA/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.4</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/singsanj/KMeans-parallel-template";>KMeans-Clustering-Template</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=singsanj&amp;repo=KMeans-par
 allel-template&amp;type=star&amp;count=true" frameborder="0" align="middle" 
scrolling="0" width="170px" height="20px"></iframe> <p> forked from 
PredictionIO/template-scala-parallel-vanilla. It implements the KMeans 
Algorithm. Can be extended to mainstream implementation with minor changes. 
</p> <p>Support: <a 
href="https://github.com/singsanj/KMeans-parallel-template/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia";>Topic
 Labelling with Wikipedia</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=template-Labelling-Topics-with-wikipedia&amp;type=star&amp;count=true";
 frameborder="0" align="middle" s
 crolling="0" width="170px" height="20px"></iframe> <p> This template will 
label topics (e.g. topic generated through LDA topic modeling) with relevant 
category by referring to Wikipedia as a knowledge base. </p> <p>Support: <a 
href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> </div> <div data-tab="Similarity" 
id="tab-4bed26fe-af29-481b-8d99-163c5c80abd0"> <h3><a 
href="https://github.com/alexice/template-scala-parallel-svd-item-similarity";>Content
 Based SVD Item Similarity Engine</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=alexice&amp;repo=template-scala-parallel-svd-item-similarity&amp;type=star&amp;count=
 true" frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Template to calculate similarity between items 
based on their attributes—sometimes called content-based similarity. 
Attributes can be either numeric or categorical in the last case it will be 
encoded using one-hot encoder. Algorithm uses SVD in order to reduce data 
dimensionality. Cosine similarity is now implemented but can be easily extended 
to other similarity measures. </p> <p>Support: <a 
href="https://groups.google.com/forum/#!forum/actionml-user";>The Universal 
Recommender user group</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/goliasz/pio-template-text-similarity";>Cstablo-template-text-similarity
 -classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-text-similarity&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Text similarity engine based on Word2Vec algorithm. 
Builds vectors of full documents in training phase. Finds similar documents in 
query phase. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-text-similarity/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating";>Similar
 Product with Rating</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=ramaboo&amp;repo=tem
 plate-scala-parallel-similarproduct-with-rating&amp;type=star&amp;count=true" 
frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Similar product template with rating support! Used 
for the MovieLens Demo. </p> <p>Support: <a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> </div> <div data-tab="Other" 
id="tab-799b52f6-e46d-4711-8416-78b01540f027"> <h3><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="
 0" width="170px" height="20px"></iframe> <p> Template uses FP Growth algorithm 
allowing to mine for frequent patterns. Template returns subsequent items 
together with confidence score. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-fpm/issues";>Github issues</a></p> 
<br> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/anthill/template-decision-tree-feature-importance";>template-decision-tree-feature-importance</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=anthill&amp;repo=template-decision-tree-feature-importance&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template shows how to use spark' decision tree
 . It enables : - both categorical and continuous features - feature importance 
calculation - tree output in json - reading training data from a csv file </p> 
<p>Support: <a 
href="https://github.com/anthill/template-decision-tree-feature-importance/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/apache/predictionio-template-skeleton";>Skeleton</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=predictionio-template-skeleton&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Skeleton template is for developing new engine when 
you find other engine templates do not fit your needs. This te
 mplate provides a skeleton to kick start new engine development. </p> 
<p>Support: <a href="http://predictionio.apache.org/support/";>Apache 
PredictionIO mailing lists</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> <td>0.9.2</td> 
<td>already compatible</td> </tr> </table> <br> </div> </div> 
</div></div></div></div><footer><div class="container"><div 
class="seperator"></div><div class="row"><div class="col-md-6 
footer-link-column"><div 
class="footer-link-column-row"><h4>Community</h4><ul><li><a 
href="//predictionio.apache.org/install/" 
target="blank">Download</a></li><li><a href="//predictionio.apache.org/" 
target="blank">Docs</a></li><li><a href="//github.com/apache/predictionio" 
target="blank">GitHub</a></li><li><a 
href="mailto:[email protected]"; target="blank">Subscribe
  to User Mailing List</a></li><li><a 
href="//stackoverflow.com/questions/tagged/predictionio" 
target="blank">Stackoverflow</a></li></ul></div></div><div class="col-md-6 
footer-link-column"><div 
class="footer-link-column-row"><h4>Contribute</h4><ul><li><a 
href="//predictionio.apache.org/community/contribute-code/" 
target="blank">Contribute</a></li><li><a 
href="//github.com/apache/predictionio" target="blank">Source 
Code</a></li><li><a href="//issues.apache.org/jira/browse/PIO" 
target="blank">Bug Tracker</a></li><li><a 
href="mailto:[email protected]"; target="blank">Subscribe to 
Development Mailing List</a></li></ul></div></div></div><div class="row"><div 
class="col-md-12 footer-link-column"><p>Apache PredictionIO, PredictionIO, 
Apache, the Apache feather logo, and the Apache PredictionIO project logo are 
either registered trademarks or trademarks of The Apache Software Foundation in 
the United States and other countries.</p><p>All other marks mentioned may be 
trade
 marks or registered trademarks of their respective 
owners.</p></div></div></div><div id="footer-bottom"><div 
class="container"><div class="row"><div class="col-md-12"><div 
id="footer-logo-wrapper"><img alt="PredictionIO" 
src="/images/logos/logo-white-d1e9c6e6.png"/><span>®</span></div><div 
id="social-icons-wrapper"><a class="github-button" 
href="https://github.com/apache/predictionio"; data-style="mega" 
data-count-href="/apache/predictionio/stargazers" 
data-count-api="/repos/apache/predictionio#stargazers_count" 
data-count-aria-label="# stargazers on GitHub" aria-label="Star 
apache/predictionio on GitHub">Star</a> <a class="github-button" 
href="https://github.com/apache/predictionio/fork"; 
data-icon="octicon-git-branch" data-style="mega" 
data-count-href="/apache/predictionio/network" 
data-count-api="/repos/apache/predictionio#forks_count" 
data-count-aria-label="# forks on GitHub" aria-label="Fork apache/predictionio 
on GitHub">Fork</a> <script id="github-bjs" async="" defer="" src="h
 ttps://buttons.github.io/buttons.js"></script><a 
href="https://twitter.com/predictionio"; target="blank"><img alt="PredictionIO 
on Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a 
href="https://www.facebook.com/predictionio"; target="blank"><img 
alt="PredictionIO on Facebook" src="/images/icons/facebook-5c57939c.png"/></a> 
</div></div></div></div></div></footer></div><script>(function(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+<!DOCTYPE html><html><head><title>Engine Template Gallery</title><meta 
charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="Engine Template Gallery"/><link 
rel="canonical" 
href="https://predictionio.apache.org/gallery/template-gallery/"/><link 
href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-eccfc6cb.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><script
 src="//cdn.mathjax.org/math
 jax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script 
src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.apache.org/";><img alt="Apache 
PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a><span>®</span></div><div 
id="menu-wrapper"><div id="pill-wrapper"><a class="pill left" 
href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/predictionio/">OPEN SOURCE</a></div></div><img 
class="mobile-search-bar-toggler hidden-md hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" 
id="search-bar-row"><div class="row"><div class="col-md-9 col-sm-11 
col-xs-11"><div 
 class="hidden-md hidden-lg" id="mobile-page-heading-wrapper"><p>PredictionIO 
Docs</p><h4>Browse</h4></div><h4 class="hidden-sm hidden-xs">PredictionIO 
Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 hidden-md hidden-lg"><img 
id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md 
hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div 
class="row"><div id="left-menu-wrapper" class="col-md-3">
 <nav id="nav-main"><ul><li class="level-1"><a class="expandible" 
href="/"><span>Apache PredictionIO® Documentation</span></a><ul><li 
class="level-2"><a class="final" href="/"><span>Welcome to Apache 
PredictionIO®</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Getting Started</span></a><ul><li 
class="level-2"><a class="final" href="/start/"><span>A Quick 
Intro</span></a></li><li class="level-2"><a class="final" 
href="/install/"><span>Installing Apache PredictionIO</span></a></li><li 
class="level-2"><a class="final" href="/start/download/"><span>Downloading an 
Engine Template</span></a></li><li class="level-2"><a class="final" 
href="/start/deploy/"><span>Deploying Your First Engine</span></a></li><li 
class="level-2"><a class="final" href="/start/customize/"><span>Customizing the 
Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Integrating with Your App</span></a><ul><li class="level-2"><a 
class="final" href="
 /appintegration/"><span>App Integration Overview</span></a></li><li 
class="level-2"><a class="expandible" href="/sdk/"><span>List of 
SDKs</span></a><ul><li class="level-3"><a class="final" 
href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
SDK</span></a></li><li class="level-3"><a class="final" 
href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered 
SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
Service</span></a></li><li class="level-2"><a class="final" 
href="/batchpredict/"><span>Batch Predictions</span></a></li><li 
class="level-2"><a class="final" href="/deploy/monitoring/"><span>Monitorin
 g Engine</span></a></li><li class="level-2"><a class="final" 
href="/deploy/engineparams/"><span>Setting Engine Parameters</span></a></li><li 
class="level-2"><a class="final" href="/deploy/enginevariants/"><span>Deploying 
Multiple Engine Variants</span></a></li><li class="level-2"><a class="final" 
href="/deploy/plugin/"><span>Engine Server Plugin</span></a></li></ul></li><li 
class="level-1"><a class="expandible" href="#"><span>Customizing an 
Engine</span></a><ul><li class="level-2"><a class="final" 
href="/customize/"><span>Learning DASE</span></a></li><li class="level-2"><a 
class="final" href="/customize/dase/"><span>Implement DASE</span></a></li><li 
class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>Engine Scala 
APIs</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Collecting and Analyzing Data</span></a><ul
 ><li class="level-2"><a class="final" href="/datacollection/"><span>Event 
 >Server Overview</span></a></li><li class="level-2"><a class="final" 
 >href="/datacollection/eventapi/"><span>Collecting Data with 
 >REST/SDKs</span></a></li><li class="level-2"><a class="final" 
 >href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
 >class="level-2"><a class="final" 
 >href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
 >Webhooks</span></a></li><li class="level-2"><a class="final" 
 >href="/datacollection/channel/"><span>Channel</span></a></li><li 
 >class="level-2"><a class="final" 
 >href="/datacollection/batchimport/"><span>Importing Data in 
 >Batch</span></a></li><li class="level-2"><a class="final" 
 >href="/datacollection/analytics/"><span>Using Analytics 
 >Tools</span></a></li><li class="level-2"><a class="final" 
 >href="/datacollection/plugin/"><span>Event Server 
 >Plugin</span></a></li></ul></li><li class="level-1"><a class="expandible" 
 >href="#"><span>Choosing an Algorithm(s
 )</span></a><ul><li class="level-2"><a class="final" 
href="/algorithm/"><span>Built-in Algorithm Libraries</span></a></li><li 
class="level-2"><a class="final" href="/algorithm/switch/"><span>Switching to 
Another Algorithm</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/multiple/"><span>Combining Multiple 
Algorithms</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/custom/"><span>Adding Your Own 
Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
class="final" href="/evaluation/"><span>Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/evaluationdashboard/"><span>Evaluation 
Dashboard</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricchoose/"><span>Choosing Evaluation Metrics</span
 ></a></li><li class="level-2"><a class="final" 
 >href="/evaluation/metricbuild/"><span>Building Evaluation 
 >Metrics</span></a></li></ul></li><li class="level-1"><a class="expandible" 
 >href="#"><span>System Architecture</span></a><ul><li class="level-2"><a 
 >class="final" href="/system/"><span>Architecture Overview</span></a></li><li 
 >class="level-2"><a class="final" href="/system/anotherdatastore/"><span>Using 
 >Another Data Store</span></a></li></ul></li><li class="level-1"><a 
 >class="expandible" href="#"><span>PredictionIO® Official 
 >Templates</span></a><ul><li class="level-2"><a class="final" 
 >href="/templates/"><span>Intro</span></a></li><li class="level-2"><a 
 >class="expandible" href="#"><span>Recommendation</span></a><ul><li 
 >class="level-3"><a class="final" 
 >href="/templates/recommendation/quickstart/"><span>Quick 
 >Start</span></a></li><li class="level-3"><a class="final" 
 >href="/templates/recommendation/dase/"><span>DASE</span></a></li><li 
 >class="level-3"><a class="final" href="/templates/r
 ecommendation/evaluation/"><span>Evaluation Explained</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/recommendation/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/recommendation/reading-custom-events/"><span>Read Custom 
Events</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-data-prep/"><span>Customize Data 
Preparator</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-serving/"><span>Customize 
Serving</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/training-with-implicit-preference/"><span>Train 
with Implicit Preference</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/blacklist-items/"><span>Filter Recommended 
Items by Blacklist in Query</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/batch-evaluator/"><span>Batch Persistable 
 Evaluator</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>E-Commerce Recommendation</span></a><ul><li class="level-3"><a 
class="final" href="/templates/ecommercerecommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/how-to/"><span>How-To</span></a></li><li
 class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/train-with-rate-event/"><span>Train 
with Rate Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/adjust-score/"><span>Adjust 
Score</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Similar Product</span></a><ul><li class="level-3"><a 
class="final" href="/templates/similarproduct/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="f
 inal" href="/templates/similarproduct/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/multi-events-multi-algos/"><span>Multiple 
Events and Multiple Algorithms</span></a></li><li class="level-3"><a 
class="final" 
href="/templates/similarproduct/return-item-properties/"><span>Returns Item 
Properties</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/train-with-rate-event/"><span>Train with Rate 
Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/rid-user-set-event/"><span>Get Rid of Events 
for Users</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/recommended-user/"><span>Recommend 
Users</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Classification</span></a><ul><li class="level-3"><a class
 ="final" href="/templates/classification/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/add-algorithm/"><span>Use Alternative 
Algorithm</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/reading-custom-properties/"><span>Read Custom 
Properties</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li 
class="level-2"><a class="final active" 
href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" 
href="/community/submit-template/"><span>Submit your Engine as a 
Template</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Demo Tutorials<
 /span></a><ul><li class="level-2"><a class="final" 
href="/demo/tapster/"><span>Comics Recommendation Demo</span></a></li><li 
class="level-2"><a class="final" href="/demo/community/"><span>Community 
Contributed Demo</span></a></li><li class="level-2"><a class="final" 
href="/demo/textclassification/"><span>Text Classification Engine 
Tutorial</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="/community/"><span>Getting Involved</span></a><ul><li class="level-2"><a 
class="final" href="/community/contribute-code/"><span>Contribute 
Code</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-webhook/"><span>Contribute a Webhook</span></

<TRUNCATED>

Reply via email to