http://git-wip-us.apache.org/repos/asf/predictionio-site/blob/8ce20376/evaluation/paramtuning/index.html
----------------------------------------------------------------------
diff --git a/evaluation/paramtuning/index.html 
b/evaluation/paramtuning/index.html
index acc21b1..229b890 100644
--- a/evaluation/paramtuning/index.html
+++ b/evaluation/paramtuning/index.html
@@ -11,11 +11,9 @@
 <span class="o">}</span>
 </pre></td></tr></tbody></table> </div> <h3 id='build-and-run-the-evaluation' 
class='header-anchors'>Build and run the evaluation</h3><p>To run an 
evaluation, the command <code>pio eval</code> is used. It takes two mandatory 
parameter, 1. the <code>Evaluation</code> object, which tells PredictionIO the 
engine and metric we use for the evaluation; and 2. the 
<code>EngineParamsGenerator</code>, which contains a list of engine params to 
test against. The following command kickstarts the evaluation workflow for the 
classification template.</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
 2
-3
-4</pre></td><td class="code"><pre><span class="gp">$ </span>pio build
+3</pre></td><td class="code"><pre><span class="gp">$ </span>pio build
 ...
-<span class="gp">$ </span>pio <span class="nb">eval 
</span>org.template.classification.AccuracyEvaluation <span class="se">\</span>
-    org.template.classification.EngineParamsList
+<span class="gp">$ </span>pio <span class="nb">eval 
</span>org.example.classification.AccuracyEvaluation 
org.example.classification.EngineParamsList
 </pre></td></tr></tbody></table> </div> <p>You will see the following 
output:</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
 2
 3
@@ -102,7 +100,7 @@ Optimal Engine Params:
   <span class="o">}</span>
 <span class="o">}</span>
 Metrics:
-  org.template.classification.Accuracy: 0.9281045751633987
+  org.example.classification.Accuracy: 0.9281045751633987
 The best variant params can be found <span class="k">in </span>best.json
 <span class="o">[</span>INFO] <span class="o">[</span>CoreWorkflow<span 
class="nv">$]</span> runEvaluation completed
 </pre></td></tr></tbody></table> </div> <p>The console prints out the 
evaluation metric score of each engine params, and finally pretty print the 
optimal engine params. Amongst the 3 engine params we evaluate, <em>lambda = 
10.0</em> yields the highest accuracy score of ~0.9281.</p><h3 
id='deploy-the-best-engine-parameter' class='header-anchors'>Deploy the best 
engine parameter</h3><p>The evaluation module also writes out the best engine 
parameter to disk at <code>best.json</code>. We can train and deploy this 
specify engine variant using the extra parameter <code>-v</code>. For 
example:</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
@@ -291,11 +289,9 @@ The best variant params can be found <span class="k">in 
</span>best.json
 <span class="o">}</span>
 </pre></td></tr></tbody></table> </div> <p>A good practise is to first define 
a base engine params, it contains the common parameters used in all evaluations 
(lines 7 to 8). With the base params, we construct the list of engine params we 
want to evaluation by adding or replacing the controller parameter. Lines 13 to 
16 generate 3 engine parameters, each has a different smoothing 
parameters.</p><h2 id='running-the-evaluation' class='header-anchors'>Running 
the Evaluation</h2><p>It remains to run the evaluation. Let&#39;s recap the 
quick start section above. The <code>pio eval</code> command kick starts the 
evaluation, and the result can be seen from the console.</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
-3
-4</pre></td><td class="code"><pre><span class="gp">$ </span>pio build
+3</pre></td><td class="code"><pre><span class="gp">$ </span>pio build
 ...
-<span class="gp">$ </span>pio <span class="nb">eval 
</span>org.template.classification.AccuracyEvaluation <span class="se">\</span>
-    org.template.classification.EngineParamsList
+<span class="gp">$ </span>pio <span class="nb">eval 
</span>org.example.classification.AccuracyEvaluation 
org.example.classification.EngineParamsList
 </pre></td></tr></tbody></table> </div> <p>You will see the following 
output:</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
 2
 3
@@ -390,4 +386,4 @@ The best variant params can be found <span class="k">in 
</span>best.json
 
e=d.getElementsByTagName(t)[0];s.async=1;s.src=u;e.parentNode.insertBefore(s,e);
 })(window,document,'script','//s.swiftypecdn.com/install/v1/st.js','_st');
 
-_st('install','HaUfpXXV87xoB_zzCQ45');</script><script 
src="/javascripts/application-1a70e440.js"></script></body></html>
\ No newline at end of file
+_st('install','HaUfpXXV87xoB_zzCQ45');</script><script 
src="/javascripts/application-6d62b164.js"></script></body></html>
\ No newline at end of file

Reply via email to