http://git-wip-us.apache.org/repos/asf/predictionio-site/blob/c17b9607/sitemap.xml
----------------------------------------------------------------------
diff --git a/sitemap.xml b/sitemap.xml
index 1b416b6..c19b7a3 100644
--- a/sitemap.xml
+++ b/sitemap.xml
@@ -2,781 +2,781 @@
 <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9";>
   <url>
     <loc>//predictionio.apache.org/datacollection/plugin/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/datacollection/eventapi/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/datacollection/channel/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/datacollection/webhooks/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/datacollection/analytics-zeppelin/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/datacollection/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/datacollection/analytics-ipynb/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/datacollection/analytics-tableau/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/datacollection/batchimport/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/datacollection/eventmodel/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/datacollection/analytics/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/resources/intellij/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/resources/glossary/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/resources/release/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/resources/faq/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/resources/upgrade/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/404/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/support/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/demo/textclassification/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/demo/community/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/demo/supervisedlearning/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/demo/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/demo/tapster/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/algorithm/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/algorithm/custom/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/algorithm/switch/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/algorithm/multiple/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/install/install-sourcecode/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/install/config-datastore/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/install/sdk/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/install/launch-aws/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/install/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/install/install-linux/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/install/install-vagrant/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/cli/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/gallery/template-gallery/</loc>
-    <lastmod>2018-07-31T21:25:08+00:00</lastmod>
+    <lastmod>2018-08-11T00:20:35+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/tryit/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/machinelearning/dimensionalityreduction/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/machinelearning/modelingworkflow/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/production/deploy-cloudformation/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/customize/dase/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/customize/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/customize/troubleshooting/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/evaluation/paramtuning/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/evaluation/metricbuild/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/evaluation/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/evaluation/evaluationdashboard/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/evaluation/history/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/evaluation/metricchoose/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/start/deploy/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/start/customize/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/start/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/start/download/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/similarproduct/how-to/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/similarproduct/dase/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/similarproduct/rid-user-set-event/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/similarproduct/quickstart/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/similarproduct/multi-events-multi-algos/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/similarproduct/recommended-user/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/similarproduct/return-item-properties/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/similarproduct/train-with-rate-event/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/ecommercerecommendation/how-to/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/ecommercerecommendation/dase/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/ecommercerecommendation/quickstart/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/ecommercerecommendation/adjust-score/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/ecommercerecommendation/train-with-rate-event/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/classification/how-to/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/classification/add-algorithm/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/classification/dase/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/classification/quickstart/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/classification/reading-custom-properties/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/javaecommercerecommendation/dase/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/javaecommercerecommendation/quickstart/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/vanilla/dase/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/vanilla/quickstart/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/productranking/dase/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/productranking/quickstart/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/complementarypurchase/dase/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/complementarypurchase/quickstart/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/recommendation/customize-serving/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/recommendation/how-to/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/recommendation/dase/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/recommendation/customize-data-prep/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/recommendation/quickstart/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/recommendation/evaluation/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/recommendation/training-with-implicit-preference/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/recommendation/blacklist-items/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/recommendation/reading-custom-events/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     
<loc>//predictionio.apache.org/templates/recommendation/batch-evaluator/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/leadscoring/dase/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/templates/leadscoring/quickstart/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/deploy/plugin/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/deploy/enginevariants/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/deploy/monitoring/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/deploy/engineparams/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/deploy/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/search/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/system/anotherdatastore/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/system/deploy-cloudformation/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/system/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/community/contribute-code/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/community/projects/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/community/contribute-webhook/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/community/contribute-sdk/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/community/submit-template/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/community/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/community/contribute-documentation/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/level-3-2/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/level-2-1/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/level-2-2/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/level-1/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/level-4/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/level-4-1/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/level-3/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/level-2/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/level-4-2/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/level-3-1/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/samples/level-4-3/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/sdk/php/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/sdk/ruby/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/sdk/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/sdk/community/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/sdk/python/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/sdk/java/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:44+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/batchpredict/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/appintegration/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>
   <url>
     <loc>//predictionio.apache.org/github/</loc>
-    <lastmod>2018-07-31T21:22:10+00:00</lastmod>
+    <lastmod>2018-08-11T00:17:43+00:00</lastmod>
     <changefreq>monthly</changefreq>
     <priority>0.5</priority>
   </url>

http://git-wip-us.apache.org/repos/asf/predictionio-site/blob/c17b9607/templates/classification/quickstart/index.html
----------------------------------------------------------------------
diff --git a/templates/classification/quickstart/index.html 
b/templates/classification/quickstart/index.html
index 7ffd5cc..02b26cd 100644
--- a/templates/classification/quickstart/index.html
+++ b/templates/classification/quickstart/index.html
@@ -32,7 +32,7 @@ Your system is all ready to go.
 <span class="o">[</span>INFO] <span class="o">[</span>App<span 
class="nv">$]</span>               MyApp1 |    1 | 
3mZWDzci2D5YsqAnqNnXH9SB6Rg3dsTBs8iHkK6X2i54IQsIZI1eEeQQyMfs7b3F | <span 
class="o">(</span>all<span class="o">)</span>
 <span class="o">[</span>INFO] <span class="o">[</span>App<span 
class="nv">$]</span>               MyApp2 |    2 | 
io5lz6Eg4m3Xe4JZTBFE13GMAf1dhFl6ZteuJfrO84XpdOz9wRCrDU44EUaYuXq5 | <span 
class="o">(</span>all<span class="o">)</span>
 <span class="o">[</span>INFO] <span class="o">[</span>App<span 
class="nv">$]</span> Finished listing 2 app<span class="o">(</span>s<span 
class="o">)</span>.
-</pre></td></tr></tbody></table> </div> <p><a href="#"></a></p> <h2 
id='4.-collecting-data' class='header-anchors'>4. Collecting Data</h2><p>Next, 
let&#39;s collect some training data. By default, the Classification Engine 
Template reads 4 properties of a user record: attr0, attr1, attr2 and plan. 
This templates requires &#39;$set&#39; user events.</p><div 
class="alert-message info"><p>This template can easily be customized to use 
different or more number of attributes.</p></div> <p>You can send these events 
to PredictionIO Event Server in real-time easily by making a HTTP request or 
through the provided SDK. Please see <a href="/appintegration/">App Integration 
Overview</a> for more details how to integrate your app with 
SDK.</p><p>Let&#39;s try sending events to EventServer with the following 
<code>curl</code> commands (The corresponding SDK code is showed in other 
tabs).</p><p>Replace <code>&lt;ACCCESS_KEY&gt;</code> by the Access Key 
generated in above steps. Note that <code>loc
 alhost:7070</code> is the default URL of the Event Server.</p><p>For 
convenience, set your access key to the shell variable, run:</p><p><code>$ 
ACCESS_KEY=&lt;ACCESS_KEY&gt;</code></p> <p><a href="#"></a></p> <p>To set 
properties &quot;attr0&quot;, &quot;attr1&quot;, &quot;attr2&quot; and 
&quot;plan&quot; for user &quot;u0&quot; on time 
<code>2014-11-02T09:39:45.618-08:00</code> (current time will be used if 
eventTime is not specified), you can send <code>$set</code> event for the user. 
To send this event, run the following <code>curl</code> command:</p><div 
class="tabs"> <ul class="control"> <li data-lang="json"><a 
href="#tab-fd41fc24-badc-4133-8f93-7f6d77a2d6cc">REST API</a></li> <li 
data-lang="python"><a href="#tab-8afefce9-201f-45b9-a124-590d85e749eb">Python 
SDK</a></li> <li data-lang="php"><a 
href="#tab-859c04dd-1125-44a8-8c01-54870ed94f8d">PHP SDK</a></li> <li 
data-lang="ruby"><a href="#tab-031c5f48-6349-44bb-b3b1-f989fc1778c1">Ruby 
SDK</a></li> <li data-lang="java"><a href="#
 tab-2110713f-3e42-4afb-b3d4-de1afc0cfe3e">Java SDK</a></li> </ul> <div 
data-tab="REST API" data-lang="json" 
id="tab-fd41fc24-badc-4133-8f93-7f6d77a2d6cc"> <div class="highlight shell"> 
<table style="border-spacing: 0"><tbody><tr> <td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
+</pre></td></tr></tbody></table> </div> <p><a href="#"></a></p> <h2 
id='4.-collecting-data' class='header-anchors'>4. Collecting Data</h2><p>Next, 
let&#39;s collect some training data. By default, the Classification Engine 
Template reads 4 properties of a user record: attr0, attr1, attr2 and plan. 
This templates requires &#39;$set&#39; user events.</p><div 
class="alert-message info"><p>This template can easily be customized to use 
different or more number of attributes.</p></div> <p>You can send these events 
to PredictionIO Event Server in real-time easily by making a HTTP request or 
through the provided SDK. Please see <a href="/appintegration/">App Integration 
Overview</a> for more details how to integrate your app with 
SDK.</p><p>Let&#39;s try sending events to EventServer with the following 
<code>curl</code> commands (The corresponding SDK code is showed in other 
tabs).</p><p>Replace <code>&lt;ACCCESS_KEY&gt;</code> by the Access Key 
generated in above steps. Note that <code>loc
 alhost:7070</code> is the default URL of the Event Server.</p><p>For 
convenience, set your access key to the shell variable, run:</p><p><code>$ 
ACCESS_KEY=&lt;ACCESS_KEY&gt;</code></p> <p><a href="#"></a></p> <p>To set 
properties &quot;attr0&quot;, &quot;attr1&quot;, &quot;attr2&quot; and 
&quot;plan&quot; for user &quot;u0&quot; on time 
<code>2014-11-02T09:39:45.618-08:00</code> (current time will be used if 
eventTime is not specified), you can send <code>$set</code> event for the user. 
To send this event, run the following <code>curl</code> command:</p><div 
class="tabs"> <ul class="control"> <li data-lang="json"><a 
href="#tab-85a02916-b1d2-424d-86f8-fbfad8a40e9e">REST API</a></li> <li 
data-lang="python"><a href="#tab-e1b69c67-a722-4821-9f64-def539a73ba7">Python 
SDK</a></li> <li data-lang="php"><a 
href="#tab-18013c0e-9b94-410f-8dfb-ea72ffc73474">PHP SDK</a></li> <li 
data-lang="ruby"><a href="#tab-da0c7441-fc45-4ccc-b684-7ec375ac7ff0">Ruby 
SDK</a></li> <li data-lang="java"><a href="#
 tab-5ccfccb3-992a-44de-9ff1-67b394445237">Java SDK</a></li> </ul> <div 
data-tab="REST API" data-lang="json" 
id="tab-85a02916-b1d2-424d-86f8-fbfad8a40e9e"> <div class="highlight shell"> 
<table style="border-spacing: 0"><tbody><tr> <td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -59,7 +59,7 @@ Your system is all ready to go.
   }
   "eventTime" : "2014-11-02T09:39:45.618-08:00"
 }'</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Python SDK" 
data-lang="python" id="tab-8afefce9-201f-45b9-a124-590d85e749eb"> <div 
class="highlight python"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Python SDK" 
data-lang="python" id="tab-e1b69c67-a722-4821-9f64-def539a73ba7"> <div 
class="highlight python"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -100,7 +100,7 @@ Your system is all ready to go.
       <span class="s">"plan"</span> <span class="p">:</span> <span 
class="nb">int</span><span class="p">(</span><span class="o">&lt;</span><span 
class="n">VALUE</span> <span class="n">OF</span> <span 
class="n">PLAN</span><span class="o">&gt;</span><span class="p">)</span>
     <span class="p">}</span>
 <span class="p">)</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="PHP SDK" 
data-lang="php" id="tab-859c04dd-1125-44a8-8c01-54870ed94f8d"> <div 
class="highlight php"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="PHP SDK" 
data-lang="php" id="tab-18013c0e-9b94-410f-8dfb-ea72ffc73474"> <div 
class="highlight php"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -137,7 +137,7 @@ Your system is all ready to go.
    <span class="p">)</span>
 <span class="p">));</span>
 <span class="cp">?&gt;</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Ruby SDK" 
data-lang="ruby" id="tab-031c5f48-6349-44bb-b3b1-f989fc1778c1"> <div 
class="highlight ruby"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Ruby SDK" 
data-lang="ruby" id="tab-da0c7441-fc45-4ccc-b684-7ec375ac7ff0"> <div 
class="highlight ruby"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -168,7 +168,7 @@ Your system is all ready to go.
     <span class="p">}</span>
   <span class="p">}</span>
 <span class="p">)</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Java SDK" 
data-lang="java" id="tab-2110713f-3e42-4afb-b3d4-de1afc0cfe3e"> <div 
class="highlight java"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Java SDK" 
data-lang="java" id="tab-5ccfccb3-992a-44de-9ff1-67b394445237"> <div 
class="highlight java"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -203,7 +203,7 @@ Your system is all ready to go.
         <span class="s">"plan"</span><span class="o">,</span> <span 
class="o">&lt;</span><span class="n">VALUE</span> <span class="n">OF</span> 
<span class="n">PLAN</span><span class="o">&gt;</span>
     <span class="o">));</span>
 <span class="n">client</span><span class="o">.</span><span 
class="na">createEvent</span><span class="o">(</span><span 
class="n">event</span><span class="o">);</span>
-</pre></td> </tr></tbody></table> </div> </div> </div> <p>Note that you can 
also set the properties for the user with multiple <code>$set</code> events 
(They will be aggregated during engine training).</p><p>To set properties 
&quot;attr0&quot;, &quot;attr1&quot; and &quot;attr2&quot;, and 
&quot;plan&quot; for user &quot;u1&quot; at different time, you can send 
follwing <code>$set</code> events for the user. To send these events, run the 
following <code>curl</code> command:</p><div class="tabs"> <ul class="control"> 
<li data-lang="json"><a href="#tab-916a852a-bdbe-4712-916f-859f7a9328b6">REST 
API</a></li> <li data-lang="python"><a 
href="#tab-ac1784ab-fe9d-4fe5-8f66-ecc08ca85f1a">Python SDK</a></li> <li 
data-lang="php"><a href="#tab-a09d7f03-5f85-4893-9543-a74de040893e">PHP 
SDK</a></li> <li data-lang="ruby"><a 
href="#tab-9dd4c04e-5634-4715-97ad-d260d914f821">Ruby SDK</a></li> <li 
data-lang="java"><a href="#tab-20cc7bfc-d4b9-4bfd-8275-699c48b8a7aa">Java 
SDK</a></li> </ul> <div data-tab
 ="REST API" data-lang="json" id="tab-916a852a-bdbe-4712-916f-859f7a9328b6"> 
<div class="highlight shell"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> </div> <p>Note that you can 
also set the properties for the user with multiple <code>$set</code> events 
(They will be aggregated during engine training).</p><p>To set properties 
&quot;attr0&quot;, &quot;attr1&quot; and &quot;attr2&quot;, and 
&quot;plan&quot; for user &quot;u1&quot; at different time, you can send 
follwing <code>$set</code> events for the user. To send these events, run the 
following <code>curl</code> command:</p><div class="tabs"> <ul class="control"> 
<li data-lang="json"><a href="#tab-e6b078db-e93b-4dc2-ab1c-5daebe59c69a">REST 
API</a></li> <li data-lang="python"><a 
href="#tab-58c1f388-125e-4c50-b679-59fb9f5002d1">Python SDK</a></li> <li 
data-lang="php"><a href="#tab-8e5b56be-60ec-4b2c-a60b-f1c922887925">PHP 
SDK</a></li> <li data-lang="ruby"><a 
href="#tab-d14ceda4-c1bc-4836-a522-36788f2c235f">Ruby SDK</a></li> <li 
data-lang="java"><a href="#tab-3bf79f48-0ed0-4c0f-b4d7-cfcc0037edaa">Java 
SDK</a></li> </ul> <div data-tab
 ="REST API" data-lang="json" id="tab-e6b078db-e93b-4dc2-ab1c-5daebe59c69a"> 
<div class="highlight shell"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -274,7 +274,7 @@ Your system is all ready to go.
   }
   "eventTime" : "2014-11-02T09:39:45.618-08:00"
 }'</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Python SDK" 
data-lang="python" id="tab-ac1784ab-fe9d-4fe5-8f66-ecc08ca85f1a"> <div 
class="highlight python"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Python SDK" 
data-lang="python" id="tab-58c1f388-125e-4c50-b679-59fb9f5002d1"> <div 
class="highlight python"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -327,7 +327,7 @@ Your system is all ready to go.
       <span class="s">"plan"</span> <span class="p">:</span> <span 
class="nb">int</span><span class="p">(</span><span class="o">&lt;</span><span 
class="n">VALUE</span> <span class="n">OF</span> <span 
class="n">PLAN</span><span class="o">&gt;</span><span class="p">)</span>
     <span class="p">}</span>
 <span class="p">)</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="PHP SDK" 
data-lang="php" id="tab-a09d7f03-5f85-4893-9543-a74de040893e"> <div 
class="highlight php"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="PHP SDK" 
data-lang="php" id="tab-8e5b56be-60ec-4b2c-a60b-f1c922887925"> <div 
class="highlight php"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -390,7 +390,7 @@ Your system is all ready to go.
 <span class="p">));</span>
 
 <span class="cp">?&gt;</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Ruby SDK" 
data-lang="ruby" id="tab-9dd4c04e-5634-4715-97ad-d260d914f821"> <div 
class="highlight ruby"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Ruby SDK" 
data-lang="ruby" id="tab-d14ceda4-c1bc-4836-a522-36788f2c235f"> <div 
class="highlight ruby"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -433,7 +433,7 @@ Your system is all ready to go.
 <span class="p">)</span>
 
 <span class="c1"># Etc...</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Java SDK" 
data-lang="java" id="tab-20cc7bfc-d4b9-4bfd-8275-699c48b8a7aa"> <div 
class="highlight java"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Java SDK" 
data-lang="java" id="tab-3bf79f48-0ed0-4c0f-b4d7-cfcc0037edaa"> <div 
class="highlight java"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -497,17 +497,17 @@ Your system is all ready to go.
 </pre></td></tr></tbody></table> </div> <p>When the engine is deployed 
successfully and running, you should see a console message similar to the 
following:</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
 2</pre></td><td class="code"><pre><span class="o">[</span>INFO] <span 
class="o">[</span>HttpListener] Bound to /0.0.0.0:8000
 <span class="o">[</span>INFO] <span class="o">[</span>MasterActor] Bind 
successful. Ready to serve.
-</pre></td></tr></tbody></table> </div> <p>Do not kill the deployed engine 
process.</p><p>By default, the deployed engine binds to <a 
href="http://localhost:8000";><a 
href="http://localhost:8000";>http://localhost:8000</a></a>. You can visit that 
page in your web browser to check its status.</p><p><img alt="Engine Status" 
src="/images/engine-server-3246414b.png"/></p></p><h2 id='6.-use-the-engine' 
class='header-anchors'>6. Use the Engine</h2><p>Now, You can try to retrieve 
predicted results. For example, to predict the label (i.e. <em>plan</em> in 
this case) of a user with attr0=2, attr1=0 and attr2=0, you send this JSON 
<code>{ &quot;attr0&quot;:2, &quot;attr1&quot;:0, &quot;attr2&quot;:0 }</code> 
to the deployed engine and it will return a JSON of the predicted plan. Simply 
send a query by making a HTTP request or through the <code>EngineClient</code> 
of an SDK.</p><p>With the deployed engine running, open another terminal and 
run the following <code>curl</code> command or use SDK t
 o send the query:</p><div class="tabs"> <ul class="control"> <li 
data-lang="bash"><a href="#tab-ff5a583d-5f52-4939-820b-788c48a83ca0">REST 
API</a></li> <li data-lang="python"><a 
href="#tab-7d6fb6ca-3b8e-4523-a7b7-388f5550f080">Python SDK</a></li> <li 
data-lang="php"><a href="#tab-1dfd85e1-43b9-4cd0-a89b-987d4c49be0d">PHP 
SDK</a></li> <li data-lang="ruby"><a 
href="#tab-ace019fe-6b72-4863-b168-0d75817edd15">Ruby SDK</a></li> <li 
data-lang="java"><a href="#tab-24d898c6-674f-4dbb-b34a-e941e7e7a16c">Java 
SDK</a></li> </ul> <div data-tab="REST API" data-lang="bash" 
id="tab-ff5a583d-5f52-4939-820b-788c48a83ca0"> <div class="highlight shell"> 
<table style="border-spacing: 0"><tbody><tr> <td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
+</pre></td></tr></tbody></table> </div> <p>Do not kill the deployed engine 
process.</p><p>By default, the deployed engine binds to <a 
href="http://localhost:8000";><a 
href="http://localhost:8000";>http://localhost:8000</a></a>. You can visit that 
page in your web browser to check its status.</p><p><img alt="Engine Status" 
src="/images/engine-server-3246414b.png"/></p></p><h2 id='6.-use-the-engine' 
class='header-anchors'>6. Use the Engine</h2><p>Now, You can try to retrieve 
predicted results. For example, to predict the label (i.e. <em>plan</em> in 
this case) of a user with attr0=2, attr1=0 and attr2=0, you send this JSON 
<code>{ &quot;attr0&quot;:2, &quot;attr1&quot;:0, &quot;attr2&quot;:0 }</code> 
to the deployed engine and it will return a JSON of the predicted plan. Simply 
send a query by making a HTTP request or through the <code>EngineClient</code> 
of an SDK.</p><p>With the deployed engine running, open another terminal and 
run the following <code>curl</code> command or use SDK t
 o send the query:</p><div class="tabs"> <ul class="control"> <li 
data-lang="bash"><a href="#tab-15014cc7-016e-4a18-86ae-0855ec182b83">REST 
API</a></li> <li data-lang="python"><a 
href="#tab-641eef27-9813-446c-867d-29cb967c15a6">Python SDK</a></li> <li 
data-lang="php"><a href="#tab-721f686e-ca25-4a9a-8be2-96caef35f063">PHP 
SDK</a></li> <li data-lang="ruby"><a 
href="#tab-f1474ecf-36c1-4273-abee-f86ca558d3d2">Ruby SDK</a></li> <li 
data-lang="java"><a href="#tab-7fb18661-b682-44da-8136-16fd689397d9">Java 
SDK</a></li> </ul> <div data-tab="REST API" data-lang="bash" 
id="tab-15014cc7-016e-4a18-86ae-0855ec182b83"> <div class="highlight shell"> 
<table style="border-spacing: 0"><tbody><tr> <td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
 2
 3</pre></td> <td class="code"><pre><span class="gp">$ </span>curl -H <span 
class="s2">"Content-Type: application/json"</span> <span class="se">\</span>
 -d <span class="s1">'{ "attr0":2, "attr1":0, "attr2":0 }'</span> 
http://localhost:8000/queries.json
 
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Python SDK" 
data-lang="python" id="tab-7d6fb6ca-3b8e-4523-a7b7-388f5550f080"> <div 
class="highlight python"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Python SDK" 
data-lang="python" id="tab-641eef27-9813-446c-867d-29cb967c15a6"> <div 
class="highlight python"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3</pre></td> <td class="code"><pre><span class="kn">import</span> <span 
class="nn">predictionio</span>
 <span class="n">engine_client</span> <span class="o">=</span> <span 
class="n">predictionio</span><span class="o">.</span><span 
class="n">EngineClient</span><span class="p">(</span><span 
class="n">url</span><span class="o">=</span><span 
class="s">"http://localhost:8000";</span><span class="p">)</span>
 <span class="k">print</span> <span class="n">engine_client</span><span 
class="o">.</span><span class="n">send_query</span><span 
class="p">({</span><span class="s">"attr0"</span><span class="p">:</span><span 
class="mi">2</span><span class="p">,</span> <span class="s">"attr1"</span><span 
class="p">:</span><span class="mi">0</span><span class="p">,</span> <span 
class="s">"attr2"</span><span class="p">:</span><span class="mi">0</span><span 
class="p">})</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="PHP SDK" 
data-lang="php" id="tab-1dfd85e1-43b9-4cd0-a89b-987d4c49be0d"> <div 
class="highlight php"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="PHP SDK" 
data-lang="php" id="tab-721f686e-ca25-4a9a-8be2-96caef35f063"> <div 
class="highlight php"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -526,7 +526,7 @@ Your system is all ready to go.
 <span class="nb">print_r</span><span class="p">(</span><span 
class="nv">$response</span><span class="p">);</span>
 
 <span class="cp">?&gt;</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Ruby SDK" 
data-lang="ruby" id="tab-ace019fe-6b72-4863-b168-0d75817edd15"> <div 
class="highlight ruby"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Ruby SDK" 
data-lang="ruby" id="tab-f1474ecf-36c1-4273-abee-f86ca558d3d2"> <div 
class="highlight ruby"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -539,7 +539,7 @@ Your system is all ready to go.
 <span class="n">response</span> <span class="o">=</span> <span 
class="n">client</span><span class="p">.</span><span 
class="nf">send_query</span><span class="p">(</span><span 
class="s1">'attr0'</span> <span class="o">=&gt;</span> <span 
class="mi">2</span><span class="p">,</span> <span class="s1">'attr1'</span> 
<span class="o">=&gt;</span> <span class="mi">0</span><span class="p">,</span> 
<span class="s1">'attr2'</span> <span class="o">=&gt;</span> <span 
class="mi">0</span><span class="p">)</span>
 
 <span class="nb">puts</span> <span class="n">response</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Java SDK" 
data-lang="java" id="tab-24d898c6-674f-4dbb-b34a-e941e7e7a16c"> <div 
class="highlight java"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Java SDK" 
data-lang="java" id="tab-7fb18661-b682-44da-8136-16fd689397d9"> <div 
class="highlight java"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4

http://git-wip-us.apache.org/repos/asf/predictionio-site/blob/c17b9607/templates/complementarypurchase/dase/index.html
----------------------------------------------------------------------
diff --git a/templates/complementarypurchase/dase/index.html 
b/templates/complementarypurchase/dase/index.html
index 175ef6f..cf8bce0 100644
--- a/templates/complementarypurchase/dase/index.html
+++ b/templates/complementarypurchase/dase/index.html
@@ -212,7 +212,7 @@
   <span class="n">maxNumRulesPerCond</span><span class="k">:</span> <span 
class="kt">Int</span> <span class="c1">// max number of rules per condition
 </span>  <span class="o">)</span> <span class="k">extends</span> <span 
class="nc">Params</span>
 
-</pre></td></tr></tbody></table> </div> <p>Parameter description:</p> <ul> 
<li><strong>basketWindow</strong>: The buy event is considered as the same 
basket as previous one if the time difference is within this window (in unit of 
seconds). For example, if it&#39;s set to 120, it means that if the user buys 
item B within 2 minutes of previous purchase (item A), then the item set [A, B] 
is considered as the same basket. The purchase of this <em>basket</em> is 
referred as one <em>transaction</em>.</li> <li><strong>maxRuleLength</strong>: 
The maximum length of the association rule length. Must be at least 2. For 
example, rule of &quot;A implies B&quot; has length of 2 while rule &quot;A, B 
implies C&quot; has a length of 3. Increasing this number will incrase the 
training time significantly because more combinations are considered.</li> 
<li><strong>minSupport</strong>: The minimum required <em>support</em> for the 
item set to be considered as rule (valid range is 0 to 1). It&#39;s the p
 ercentage of the item set appearing among all transcations. This is used to 
filter out infrequent item set. For example, setting to 0.1 means that the item 
set must appear in 10 % of all transactions.</li> 
<li><strong>minConfidence</strong>: The minimum <em>confidence</em> required 
for the rules (valid range is 0 to 1). The confidence indicates the probability 
of the condition and conseuquence appear in the same transaction. For example, 
if A appears in 30 transactions and the item set [A, B] appears in 20 
transactions, then the rule &quot;A implies B&quot; has confidence of 
0.66.</li> <li><strong>minLift</strong>: The minimum <em>lift</em> required for 
the rule. It should be set to 1 to find high quality rule. It&#39;s the 
confidence of the rule divided by the support of the consequence. It is used to 
filter out rules that the consequence is very frequent anyway regardless of the 
condition.</li> <li><strong>minBasketSize</strong>: The minimum number of items 
in basket to be conside
 red by algorithm. This value must be at least 2.</li> 
<li><strong>maxNumRulesPerCond</strong>: Maximum number of rules generated per 
condition and stored in the model. By default, the top rules are sorted by 
<em>lift</em> score.</li> </ul> <div class="alert-message info"><p>If you 
import your own data and the engine doesn&#39;t return any results, it could be 
caused by the following reasons: (1) the algorithm parameter constraint is too 
high and the algo couldn&#39;t find rules that satisfy the condition. you could 
try setting the following param to 0: <strong>minSupport</strong>, 
<strong>minConfidence</strong>, <strong>minLift</strong> and then see if 
anything returned (regardless of recommendation quality), and then adjust the 
parameter accordingly. (2) the complementary purchase engine requires buy event 
with correct eventTime. If you import data without specifying eventTime, the 
SDK will use current time because it assumes the event happens in real time 
(which is not the case if
  you import as batch offline), resulting in that all buy events are treated as 
one big transcation while they should be treated as multiple 
transcations.</p></div><p>The values of these parameters can be specified in 
<em>algorithms</em> of 
MyComplementaryPurchase/<strong><em>engine.json</em></strong>:</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td></tr></tbody></table> </div> <p>Parameter description:</p> <ul> 
<li><strong>basketWindow</strong>: The buy event is considered as the same 
basket as previous one if the time difference is within this window (in unit of 
seconds). For example, if it&#39;s set to 120, it means that if the user buys 
item B within 2 minutes of previous purchase (item A), then the item set [A, B] 
is considered as the same basket. The purchase of this <em>basket</em> is 
referred as one <em>transaction</em>.</li> <li><strong>maxRuleLength</strong>: 
The maximum length of the association rule length. Must be at least 2. For 
example, rule of &quot;A implies B&quot; has length of 2 while rule &quot;A, B 
implies C&quot; has a length of 3. Increasing this number will incrase the 
training time significantly because more combinations are considered.</li> 
<li><strong>minSupport</strong>: The minimum required <em>support</em> for the 
item set to be considered as rule (valid range is 0 to 1). It&#39;s the p
 ercentage of the item set appearing among all transactions. This is used to 
filter out infrequent item set. For example, setting to 0.1 means that the item 
set must appear in 10 % of all transactions.</li> 
<li><strong>minConfidence</strong>: The minimum <em>confidence</em> required 
for the rules (valid range is 0 to 1). The confidence indicates the probability 
of the condition and conseuquence appear in the same transaction. For example, 
if A appears in 30 transactions and the item set [A, B] appears in 20 
transactions, then the rule &quot;A implies B&quot; has confidence of 
0.66.</li> <li><strong>minLift</strong>: The minimum <em>lift</em> required for 
the rule. It should be set to 1 to find high quality rule. It&#39;s the 
confidence of the rule divided by the support of the consequence. It is used to 
filter out rules that the consequence is very frequent anyway regardless of the 
condition.</li> <li><strong>minBasketSize</strong>: The minimum number of items 
in basket to be conside
 red by algorithm. This value must be at least 2.</li> 
<li><strong>maxNumRulesPerCond</strong>: Maximum number of rules generated per 
condition and stored in the model. By default, the top rules are sorted by 
<em>lift</em> score.</li> </ul> <div class="alert-message info"><p>If you 
import your own data and the engine doesn&#39;t return any results, it could be 
caused by the following reasons: (1) the algorithm parameter constraint is too 
high and the algo couldn&#39;t find rules that satisfy the condition. you could 
try setting the following param to 0: <strong>minSupport</strong>, 
<strong>minConfidence</strong>, <strong>minLift</strong> and then see if 
anything returned (regardless of recommendation quality), and then adjust the 
parameter accordingly. (2) the complementary purchase engine requires buy event 
with correct eventTime. If you import data without specifying eventTime, the 
SDK will use current time because it assumes the event happens in real time 
(which is not the case if
  you import as batch offline), resulting in that all buy events are treated as 
one big transaction while they should be treated as multiple 
transactions.</p></div><p>The values of these parameters can be specified in 
<em>algorithms</em> of 
MyComplementaryPurchase/<strong><em>engine.json</em></strong>:</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -254,7 +254,7 @@
   <span class="k">extends</span> <span class="n">P2LAlgorithm</span><span 
class="o">[</span><span class="kt">PreparedData</span>, <span 
class="kt">Model</span>, <span class="kt">Query</span>, <span 
class="kt">PredictedResult</span><span class="o">]</span> <span 
class="o">{</span>
     <span class="o">...</span>
 <span class="o">}</span>
-</pre></td></tr></tbody></table> </div> <h3 id='train(...)' 
class='header-anchors'>train(...)</h3><p><code>train</code> is called when you 
run <strong>pio train</strong> to train a predictive model. The algorithm first 
find all basket transcations, generates and filters the association rules based 
on the algorithm parameters:</p><div class="highlight scala"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+</pre></td></tr></tbody></table> </div> <h3 id='train(...)' 
class='header-anchors'>train(...)</h3><p><code>train</code> is called when you 
run <strong>pio train</strong> to train a predictive model. The algorithm first 
find all basket transactions, generates and filters the association rules based 
on the algorithm parameters:</p><div class="highlight scala"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
 2
 3
 4

http://git-wip-us.apache.org/repos/asf/predictionio-site/blob/c17b9607/templates/complementarypurchase/quickstart/index.html
----------------------------------------------------------------------
diff --git a/templates/complementarypurchase/quickstart/index.html 
b/templates/complementarypurchase/quickstart/index.html
index b967e07..4896bd2 100644
--- a/templates/complementarypurchase/quickstart/index.html
+++ b/templates/complementarypurchase/quickstart/index.html
@@ -32,7 +32,7 @@ Your system is all ready to go.
 <span class="o">[</span>INFO] <span class="o">[</span>App<span 
class="nv">$]</span>               MyApp1 |    1 | 
3mZWDzci2D5YsqAnqNnXH9SB6Rg3dsTBs8iHkK6X2i54IQsIZI1eEeQQyMfs7b3F | <span 
class="o">(</span>all<span class="o">)</span>
 <span class="o">[</span>INFO] <span class="o">[</span>App<span 
class="nv">$]</span>               MyApp2 |    2 | 
io5lz6Eg4m3Xe4JZTBFE13GMAf1dhFl6ZteuJfrO84XpdOz9wRCrDU44EUaYuXq5 | <span 
class="o">(</span>all<span class="o">)</span>
 <span class="o">[</span>INFO] <span class="o">[</span>App<span 
class="nv">$]</span> Finished listing 2 app<span class="o">(</span>s<span 
class="o">)</span>.
-</pre></td></tr></tbody></table> </div> <p><a href="#"></a></p> <h2 
id='4.-collecting-data' class='header-anchors'>4. Collecting Data</h2><p>Next, 
let&#39;s collect training data for this Engine. By default, Complementary 
Purchase Engine Template supports the following entities: 
<strong>user</strong>, <strong>item</strong>. A user buys an item. This 
template requires user-buy-item events.</p><p>Note that the engine requires 
correct buy event time being used in order to determine if the items being 
bought are in the same &#39;basket&#39;, which is configured by the 
&#39;basketWindow&#39; parameter. Using an unreal event time for the buy events 
will cause an incorrect model. If you use SDK, the current time is used as 
event time by default.</p><div class="alert-message warning"><p>In particular, 
make sure correct event time is specified if you import data in batch (i.e. not 
in real time). If the event time is omitted, the SDK will use <strong>current 
time</strong> as event time which 
 is not the actual time of the buy event in this case!</p></div> <p>You can 
send these events to PredictionIO Event Server in real-time easily by making a 
HTTP request or through the provided SDK. Please see <a 
href="/appintegration/">App Integration Overview</a> for more details how to 
integrate your app with SDK.</p><p>Let&#39;s try sending events to EventServer 
with the following <code>curl</code> commands (The corresponding SDK code is 
showed in other tabs).</p><p>Replace <code>&lt;ACCCESS_KEY&gt;</code> by the 
Access Key generated in above steps. Note that <code>localhost:7070</code> is 
the default URL of the Event Server.</p><p>For convenience, set your access key 
to the shell variable, run:</p><p><code>$ 
ACCESS_KEY=&lt;ACCESS_KEY&gt;</code></p> <p><a href="#"></a></p> <p>When an 
user u0 buys item i0 on time <code>2014-11-02T09:39:45.618-08:00</code> 
(current time will be used if eventTime is not specified), you can send a buy 
event. Run the following <code>curl</code> command:
 </p><div class="tabs"> <ul class="control"> <li data-lang="json"><a 
href="#tab-1ddd62c1-70c3-402c-bd0c-8de709f36da4">REST API</a></li> <li 
data-lang="python"><a href="#tab-4677c753-0aa9-4ffd-a94f-8a49c1d48df8">Python 
SDK</a></li> <li data-lang="php"><a 
href="#tab-9e9f0f51-54c4-4bfe-87c1-ac67afe144bf">PHP SDK</a></li> <li 
data-lang="ruby"><a href="#tab-531f4729-3ddc-464d-891c-87309671ffb6">Ruby 
SDK</a></li> <li data-lang="java"><a 
href="#tab-22bcb5d4-1c87-4501-9aef-f3b5cc1d32b6">Java SDK</a></li> </ul> <div 
data-tab="REST API" data-lang="json" 
id="tab-1ddd62c1-70c3-402c-bd0c-8de709f36da4"> <div class="highlight shell"> 
<table style="border-spacing: 0"><tbody><tr> <td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
+</pre></td></tr></tbody></table> </div> <p><a href="#"></a></p> <h2 
id='4.-collecting-data' class='header-anchors'>4. Collecting Data</h2><p>Next, 
let&#39;s collect training data for this Engine. By default, Complementary 
Purchase Engine Template supports the following entities: 
<strong>user</strong>, <strong>item</strong>. A user buys an item. This 
template requires user-buy-item events.</p><p>Note that the engine requires 
correct buy event time being used in order to determine if the items being 
bought are in the same &#39;basket&#39;, which is configured by the 
&#39;basketWindow&#39; parameter. Using an unreal event time for the buy events 
will cause an incorrect model. If you use SDK, the current time is used as 
event time by default.</p><div class="alert-message warning"><p>In particular, 
make sure correct event time is specified if you import data in batch (i.e. not 
in real time). If the event time is omitted, the SDK will use <strong>current 
time</strong> as event time which 
 is not the actual time of the buy event in this case!</p></div> <p>You can 
send these events to PredictionIO Event Server in real-time easily by making a 
HTTP request or through the provided SDK. Please see <a 
href="/appintegration/">App Integration Overview</a> for more details how to 
integrate your app with SDK.</p><p>Let&#39;s try sending events to EventServer 
with the following <code>curl</code> commands (The corresponding SDK code is 
showed in other tabs).</p><p>Replace <code>&lt;ACCCESS_KEY&gt;</code> by the 
Access Key generated in above steps. Note that <code>localhost:7070</code> is 
the default URL of the Event Server.</p><p>For convenience, set your access key 
to the shell variable, run:</p><p><code>$ 
ACCESS_KEY=&lt;ACCESS_KEY&gt;</code></p> <p><a href="#"></a></p> <p>When an 
user u0 buys item i0 on time <code>2014-11-02T09:39:45.618-08:00</code> 
(current time will be used if eventTime is not specified), you can send a buy 
event. Run the following <code>curl</code> command:
 </p><div class="tabs"> <ul class="control"> <li data-lang="json"><a 
href="#tab-1cd406c2-3d16-4a20-92b5-994c3e2f06f9">REST API</a></li> <li 
data-lang="python"><a href="#tab-51598266-3d11-4c07-b267-ff74d1155e2a">Python 
SDK</a></li> <li data-lang="php"><a 
href="#tab-d3120489-ac8a-4c94-a862-169717028ff4">PHP SDK</a></li> <li 
data-lang="ruby"><a href="#tab-3a3b6e8f-f4be-4617-91c7-c1b8e6623c43">Ruby 
SDK</a></li> <li data-lang="java"><a 
href="#tab-36697a24-75b8-4b7d-8bf5-88782f7b48fe">Java SDK</a></li> </ul> <div 
data-tab="REST API" data-lang="json" 
id="tab-1cd406c2-3d16-4a20-92b5-994c3e2f06f9"> <div class="highlight shell"> 
<table style="border-spacing: 0"><tbody><tr> <td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -51,7 +51,7 @@ Your system is all ready to go.
   "targetEntityId" : "i0",
   "eventTime" : "2014-11-02T09:39:45.618-08:00"
 }'</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Python SDK" 
data-lang="python" id="tab-4677c753-0aa9-4ffd-a94f-8a49c1d48df8"> <div 
class="highlight python"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Python SDK" 
data-lang="python" id="tab-51598266-3d11-4c07-b267-ff74d1155e2a"> <div 
class="highlight python"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -104,7 +104,7 @@ Your system is all ready to go.
   <span class="n">target_entity_id</span><span class="o">=&lt;</span><span 
class="n">ITEM</span> <span class="n">ID</span><span class="o">&gt;</span><span 
class="p">,</span>
   <span class="n">event_time</span><span class="o">=&lt;</span><span 
class="n">EVENT_TIME</span><span class="o">&gt;</span>
 <span class="p">)</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="PHP SDK" 
data-lang="php" id="tab-9e9f0f51-54c4-4bfe-87c1-ac67afe144bf"> <div 
class="highlight php"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="PHP SDK" 
data-lang="php" id="tab-d3120489-ac8a-4c94-a862-169717028ff4"> <div 
class="highlight php"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -155,7 +155,7 @@ Your system is all ready to go.
 <span class="p">));</span>
 
 <span class="cp">?&gt;</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Ruby SDK" 
data-lang="ruby" id="tab-531f4729-3ddc-464d-891c-87309671ffb6"> <div 
class="highlight ruby"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Ruby SDK" 
data-lang="ruby" id="tab-3a3b6e8f-f4be-4617-91c7-c1b8e6623c43"> <div 
class="highlight ruby"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -200,7 +200,7 @@ Your system is all ready to go.
     <span class="s1">'eventTime'</span> <span class="o">=&gt;</span> <span 
class="o">&lt;</span><span class="no">EVENT_TIME</span><span 
class="o">&gt;</span>
   <span class="p">}</span>
 <span class="p">)</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Java SDK" 
data-lang="java" id="tab-22bcb5d4-1c87-4501-9aef-f3b5cc1d32b6"> <div 
class="highlight java"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Java SDK" 
data-lang="java" id="tab-36697a24-75b8-4b7d-8bf5-88782f7b48fe"> <div 
class="highlight java"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -290,7 +290,7 @@ User u10 buys item s2i1 at 2014-10-19 15:43:15.618000-07:53
 </pre></td></tr></tbody></table> </div> <p>When the engine is deployed 
successfully and running, you should see a console message similar to the 
following:</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
 2</pre></td><td class="code"><pre><span class="o">[</span>INFO] <span 
class="o">[</span>HttpListener] Bound to /0.0.0.0:8000
 <span class="o">[</span>INFO] <span class="o">[</span>MasterActor] Bind 
successful. Ready to serve.
-</pre></td></tr></tbody></table> </div> <p>Do not kill the deployed engine 
process.</p><p>By default, the deployed engine binds to <a 
href="http://localhost:8000";><a 
href="http://localhost:8000";>http://localhost:8000</a></a>. You can visit that 
page in your web browser to check its status.</p><p><img alt="Engine Status" 
src="/images/engine-server-3246414b.png"/></p></p><h2 id='6.-use-the-engine' 
class='header-anchors'>6. Use the Engine</h2><p>Now, You can query the engine. 
For example, return top 3 items which are frequently bought with item 
&quot;s2i1&quot;. You can sending this JSON &#39;{ &quot;items&quot; : 
[&quot;s2i1&quot;], &quot;num&quot; : 3 }&#39; to the deployed engine. The 
engine will return a JSON with the recommeded items.</p><p>If you include one 
or more items in the query, the engine will use each combination of the query 
items as condition, and return recommended items if there is any for this 
condition. For example, if you query items are [&quot;A&quot;, &quot;B&qu
 ot;], then the engine will use [&quot;A&quot;], [&quot;B&quot;], and 
[&quot;A&quot;, &quot;B&quot;] as condition and try to find top n recommended 
items for each combination.</p><p>You can simply send a query by making a HTTP 
request or through the <code>EngineClient</code> of an SDK.</p><p>With the 
deployed engine running, open another terminal and run the following 
<code>curl</code> command or use SDK to send the query:</p><div class="tabs"> 
<ul class="control"> <li data-lang="json"><a 
href="#tab-8363ff8b-1bae-404a-b990-ba72d129eda5">REST API</a></li> <li 
data-lang="python"><a href="#tab-b18dc13b-fc11-4163-8ce3-919f99dc9c39">Python 
SDK</a></li> <li data-lang="php"><a 
href="#tab-a999d660-c7a0-4eef-afa5-c0c548f9d073">PHP SDK</a></li> <li 
data-lang="ruby"><a href="#tab-4c314941-e697-417e-9ef2-8ab45df12f59">Ruby 
SDK</a></li> <li data-lang="java"><a 
href="#tab-0acc4930-9a61-43b1-89ce-3248f6efaca9">Java SDK</a></li> </ul> <div 
data-tab="REST API" data-lang="json" id="tab-8363ff8b-1bae-4
 04a-b990-ba72d129eda5"> <div class="highlight shell"> <table 
style="border-spacing: 0"><tbody><tr> <td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+</pre></td></tr></tbody></table> </div> <p>Do not kill the deployed engine 
process.</p><p>By default, the deployed engine binds to <a 
href="http://localhost:8000";><a 
href="http://localhost:8000";>http://localhost:8000</a></a>. You can visit that 
page in your web browser to check its status.</p><p><img alt="Engine Status" 
src="/images/engine-server-3246414b.png"/></p></p><h2 id='6.-use-the-engine' 
class='header-anchors'>6. Use the Engine</h2><p>Now, You can query the engine. 
For example, return top 3 items which are frequently bought with item 
&quot;s2i1&quot;. You can sending this JSON &#39;{ &quot;items&quot; : 
[&quot;s2i1&quot;], &quot;num&quot; : 3 }&#39; to the deployed engine. The 
engine will return a JSON with the recommended items.</p><p>If you include one 
or more items in the query, the engine will use each combination of the query 
items as condition, and return recommended items if there is any for this 
condition. For example, if you query items are [&quot;A&quot;, &quot;B&q
 uot;], then the engine will use [&quot;A&quot;], [&quot;B&quot;], and 
[&quot;A&quot;, &quot;B&quot;] as condition and try to find top n recommended 
items for each combination.</p><p>You can simply send a query by making a HTTP 
request or through the <code>EngineClient</code> of an SDK.</p><p>With the 
deployed engine running, open another terminal and run the following 
<code>curl</code> command or use SDK to send the query:</p><div class="tabs"> 
<ul class="control"> <li data-lang="json"><a 
href="#tab-a97c0a9f-957b-41ac-8fa9-b000a033998d">REST API</a></li> <li 
data-lang="python"><a href="#tab-f2100c58-a059-4365-9dee-071a3425302f">Python 
SDK</a></li> <li data-lang="php"><a 
href="#tab-bf12d27a-b88d-4662-9768-f330ba10d55c">PHP SDK</a></li> <li 
data-lang="ruby"><a href="#tab-609535cf-8f86-40df-a3be-a7b299eda5d3">Ruby 
SDK</a></li> <li data-lang="java"><a 
href="#tab-9df879b9-d04e-4fbf-b14e-5cbacdab91f1">Java SDK</a></li> </ul> <div 
data-tab="REST API" data-lang="json" id="tab-a97c0a9f-957b-
 41ac-8fa9-b000a033998d"> <div class="highlight shell"> <table 
style="border-spacing: 0"><tbody><tr> <td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
 2
 3
 4
@@ -303,7 +303,7 @@ User u10 buys item s2i1 at 2014-10-19 15:43:15.618000-07:53
 }'</span> <span class="se">\</span>
 http://localhost:8000/queries.json
 
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Python SDK" 
data-lang="python" id="tab-b18dc13b-fc11-4163-8ce3-919f99dc9c39"> <div 
class="highlight python"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Python SDK" 
data-lang="python" id="tab-f2100c58-a059-4365-9dee-071a3425302f"> <div 
class="highlight python"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -314,7 +314,7 @@ http://localhost:8000/queries.json
   <span class="s">"items"</span> <span class="p">:</span> <span 
class="p">[</span><span class="s">"s2i1"</span><span class="p">],</span>
   <span class="s">"num"</span> <span class="p">:</span> <span 
class="mi">3</span>
 <span class="p">})</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="PHP SDK" 
data-lang="php" id="tab-a999d660-c7a0-4eef-afa5-c0c548f9d073"> <div 
class="highlight php"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="PHP SDK" 
data-lang="php" id="tab-bf12d27a-b88d-4662-9768-f330ba10d55c"> <div 
class="highlight php"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -341,7 +341,7 @@ http://localhost:8000/queries.json
 <span class="nb">print_r</span><span class="p">(</span><span 
class="nv">$response</span><span class="p">);</span>
 
 <span class="cp">?&gt;</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Ruby SDK" 
data-lang="ruby" id="tab-4c314941-e697-417e-9ef2-8ab45df12f59"> <div 
class="highlight ruby"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Ruby SDK" 
data-lang="ruby" id="tab-609535cf-8f86-40df-a3be-a7b299eda5d3"> <div 
class="highlight ruby"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4
@@ -360,7 +360,7 @@ http://localhost:8000/queries.json
 <span class="p">)</span>
 
 <span class="nb">puts</span> <span class="n">response</span>
-</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Java SDK" 
data-lang="java" id="tab-0acc4930-9a61-43b1-89ce-3248f6efaca9"> <div 
class="highlight java"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+</pre></td> </tr></tbody></table> </div> </div> <div data-tab="Java SDK" 
data-lang="java" id="tab-9df879b9-d04e-4fbf-b14e-5cbacdab91f1"> <div 
class="highlight java"> <table style="border-spacing: 0"><tbody><tr> <td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
 2
 3
 4

http://git-wip-us.apache.org/repos/asf/predictionio-site/blob/c17b9607/templates/ecommercerecommendation/dase/index.html
----------------------------------------------------------------------
diff --git a/templates/ecommercerecommendation/dase/index.html 
b/templates/ecommercerecommendation/dase/index.html
index ddac180..681b9bf 100644
--- a/templates/ecommercerecommendation/dase/index.html
+++ b/templates/ecommercerecommendation/dase/index.html
@@ -361,7 +361,7 @@
   <span class="n">lambda</span><span class="k">:</span> <span 
class="kt">Double</span><span class="o">,</span>
   <span class="n">seed</span><span class="k">:</span> <span 
class="kt">Option</span><span class="o">[</span><span 
class="kt">Long</span><span class="o">]</span>
 <span class="o">)</span> <span class="k">extends</span> <span 
class="nc">Params</span>
-</pre></td></tr></tbody></table> </div> <p>Parameter description:</p> <ul> 
<li><strong>appName</strong>: Your App name. Events defined by 
&quot;seenEvents&quot; and &quot;similarEvents&quot; will be read from this app 
during <code>predict</code>.</li> <li><strong>unseenOnly</strong>: true or 
false. Set to true if you want to recommmend unseen items only. Seen items are 
defined by <em>seenEvents</em> which mean if the user has these events on the 
items, then it&#39;s treated as <em>seen</em>.</li> 
<li><strong>seenEvents</strong>: A list of user-to-item events which will be 
treated as <em>seen</em> events. Used when <em>unseenOnly</em> is set to 
true.</li> <li><strong>similarEvents</strong>: A list of user-item-item events 
which will be used to find similar items to the items which the user has 
performend these events on.</li> <li><strong>rank</strong>: Parameter of the 
MLlib ALS algorithm. Number of latent features.</li> 
<li><strong>numIterations</strong>: Parameter of the MLlib ALS 
 algorithm. Number of iterations.</li> <li><strong>lambda</strong>: 
Regularization parameter of the MLlib ALS algorithm.</li> 
<li><strong>seed</strong>: Optional. A random seed of the MLlib ALS algorithm. 
Specify a fixed value if want to have deterministic result.</li> </ul> <h3 
id='train(...)' class='header-anchors'>train(...)</h3><p><code>train</code> is 
called when you run <strong>pio train</strong>. This is where MLlib ALS 
algorithm, i.e. <code>ALS.trainImplicit()</code>, is used to train a predictive 
model. In addition, we also count the number of items being bought for each 
item as default model which will be used when there is no ALS model avaiable or 
other useful information about the user is avaiable during 
<code>predict</code>.</p><div class="highlight scala"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+</pre></td></tr></tbody></table> </div> <p>Parameter description:</p> <ul> 
<li><strong>appName</strong>: Your App name. Events defined by 
&quot;seenEvents&quot; and &quot;similarEvents&quot; will be read from this app 
during <code>predict</code>.</li> <li><strong>unseenOnly</strong>: true or 
false. Set to true if you want to recommmend unseen items only. Seen items are 
defined by <em>seenEvents</em> which mean if the user has these events on the 
items, then it&#39;s treated as <em>seen</em>.</li> 
<li><strong>seenEvents</strong>: A list of user-to-item events which will be 
treated as <em>seen</em> events. Used when <em>unseenOnly</em> is set to 
true.</li> <li><strong>similarEvents</strong>: A list of user-item-item events 
which will be used to find similar items to the items which the user has 
performend these events on.</li> <li><strong>rank</strong>: Parameter of the 
MLlib ALS algorithm. Number of latent features.</li> 
<li><strong>numIterations</strong>: Parameter of the MLlib ALS 
 algorithm. Number of iterations.</li> <li><strong>lambda</strong>: 
Regularization parameter of the MLlib ALS algorithm.</li> 
<li><strong>seed</strong>: Optional. A random seed of the MLlib ALS algorithm. 
Specify a fixed value if want to have deterministic result.</li> </ul> <h3 
id='train(...)' class='header-anchors'>train(...)</h3><p><code>train</code> is 
called when you run <strong>pio train</strong>. This is where MLlib ALS 
algorithm, i.e. <code>ALS.trainImplicit()</code>, is used to train a predictive 
model. In addition, we also count the number of items being bought for each 
item as default model which will be used when there is no ALS model available 
or other useful information about the user is available during 
<code>predict</code>.</p><div class="highlight scala"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
 2
 3
 4

Reply via email to