JsonSyntaxException: Expected a string but was BEGIN_ARRAY

closes apache/incubator-predictionio#445


Project: http://git-wip-us.apache.org/repos/asf/predictionio/repo
Commit: http://git-wip-us.apache.org/repos/asf/predictionio/commit/865d24cb
Tree: http://git-wip-us.apache.org/repos/asf/predictionio/tree/865d24cb
Diff: http://git-wip-us.apache.org/repos/asf/predictionio/diff/865d24cb

Branch: refs/heads/master
Commit: 865d24cb4838dc30d0fa746e8e17823adf1c2de4
Parents: e1b211e
Author: Jeffrey Cafferata <[email protected]>
Authored: Mon Nov 20 16:30:39 2017 +0900
Committer: Takahiro Hagino <[email protected]>
Committed: Mon Nov 20 16:30:39 2017 +0900

----------------------------------------------------------------------
 .../templates/ecommercerecommendation/quickstart.html.md.erb       | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/predictionio/blob/865d24cb/docs/manual/source/templates/ecommercerecommendation/quickstart.html.md.erb
----------------------------------------------------------------------
diff --git 
a/docs/manual/source/templates/ecommercerecommendation/quickstart.html.md.erb 
b/docs/manual/source/templates/ecommercerecommendation/quickstart.html.md.erb
index 5907a2d..91e79c0 100644
--- 
a/docs/manual/source/templates/ecommercerecommendation/quickstart.html.md.erb
+++ 
b/docs/manual/source/templates/ecommercerecommendation/quickstart.html.md.erb
@@ -459,7 +459,7 @@ NOTE: You may see `appId` in engine.json instead, which 
means you are using old
 
 ## 6. Use the Engine
 
-Now, You can retrieve predicted results. To recommend 4 items to user ID "u1". 
You send this JSON `{ "user": ["u1"], "num": 4 }` to the deployed engine and it 
will return a JSON of the recommended items. Simply send a query by making a 
HTTP request or through the `EngineClient` of an SDK.
+Now, You can retrieve predicted results. To recommend 4 items to user ID "u1". 
You send this JSON `{ "user": "u1", "num": 4 }` to the deployed engine and it 
will return a JSON of the recommended items. Simply send a query by making a 
HTTP request or through the `EngineClient` of an SDK.
 
 With the deployed engine running, open another terminal and run the following 
`curl` command or use SDK to send the query:
 

Reply via email to