http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/08d48209/gallery/template-gallery/index.html
----------------------------------------------------------------------
diff --git a/gallery/template-gallery/index.html 
b/gallery/template-gallery/index.html
index 0960877..bfd69ef 100644
--- a/gallery/template-gallery/index.html
+++ b/gallery/template-gallery/index.html
@@ -1,4 +1,4 @@
-<!DOCTYPE html><html><head><title>Engine Template Gallery</title><meta 
charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="Engine Template Gallery"/><link 
rel="canonical" 
href="https://docs.prediction.io/gallery/template-gallery/"/><link 
href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-a2a2f408.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><script
 src="//cdn.mathjax.org/mathjax/l
 atest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script 
src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.incubator.apache.org/";><img 
alt="PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a></div><div id="menu-wrapper"><div 
id="pill-wrapper"><a class="pill left" 
href="//templates.prediction.io/">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/incubator-predictionio/">OPEN 
SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md 
hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" 
id="search-bar-row"><div class="row"><div class="col-md-9 col-sm-11 
col-xs-11"><div class=
 "hidden-md hidden-lg" id="mobile-page-heading-wrapper"><p>PredictionIO 
Docs</p><h4>Browse</h4></div><h4 class="hidden-sm hidden-xs">PredictionIO 
Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 hidden-md hidden-lg"><img 
id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md 
hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div 
class="row"><div id="left-menu-wrapper" class="col-md-3"><nav i
 d="nav-main"><ul><li class="level-1"><a class="expandible" 
href="/"><span>Apache PredictionIO (incubating) Documentation</span></a><ul><li 
class="level-2"><a class="final" href="/"><span>Welcome to Apache PredictionIO 
(incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Started</span></a><ul><li class="level-2"><a 
class="final" href="/start/"><span>A Quick Intro</span></a></li><li 
class="level-2"><a class="final" href="/install/"><span>Installing Apache 
PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" 
href="/start/download/"><span>Downloading an Engine Template</span></a></li><li 
class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your 
First Engine</span></a></li><li class="level-2"><a class="final" 
href="/start/customize/"><span>Customizing the 
Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Integrating with Your App</span></a><ul><li class="lev
 el-2"><a class="final" href="/appintegration/"><span>App Integration 
Overview</span></a></li><li class="level-2"><a class="expandible" 
href="/sdk/"><span>List of SDKs</span></a><ul><li class="level-3"><a 
class="final" href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
SDK</span></a></li><li class="level-3"><a class="final" 
href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered 
SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
Service</span></a></li><li class="level-2"><a class="final" 
href="/cli/#engine-commands"><span>Engine Command-line 
Interface</span></a></li><li class="level-2"><a class="f
 inal" href="/deploy/monitoring/"><span>Monitoring Engine</span></a></li><li 
class="level-2"><a class="final" href="/deploy/engineparams/"><span>Setting 
Engine Parameters</span></a></li><li class="level-2"><a class="final" 
href="/deploy/enginevariants/"><span>Deploying Multiple Engine 
Variants</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Customizing an Engine</span></a><ul><li class="level-2"><a 
class="final" href="/customize/"><span>Learning DASE</span></a></li><li 
class="level-2"><a class="final" href="/customize/dase/"><span>Implement 
DASE</span></a></li><li class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>Engine Scala 
APIs</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Collecting and Analyzing Data</span></a><ul><li 
class="level-2"><a class="final" href="/datacolle
 ction/"><span>Event Server Overview</span></a></li><li class="level-2"><a 
class="final" href="/cli/#event-server-commands"><span>Event Server 
Command-line Interface</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventapi/"><span>Collecting Data with 
REST/SDKs</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
Webhooks</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/channel/"><span>Channel</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/batchimport/"><span>Importing Data in 
Batch</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/analytics/"><span>Using Analytics 
Tools</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Choosing an Algorithm(s)</span></a><ul><li class="level-2
 "><a class="final" href="/algorithm/"><span>Built-in Algorithm 
Libraries</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/switch/"><span>Switching to Another 
Algorithm</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/multiple/"><span>Combining Multiple 
Algorithms</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/custom/"><span>Adding Your Own 
Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
class="final" href="/evaluation/"><span>Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/evaluationdashboard/"><span>Evaluation 
Dashboard</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricchoose/"><span>Choosing Evaluation 
Metrics</span></a></li><li class="level-2"><a c
 lass="final" href="/evaluation/metricbuild/"><span>Building Evaluation 
Metrics</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>System Architecture</span></a><ul><li class="level-2"><a 
class="final" href="/system/"><span>Architecture Overview</span></a></li><li 
class="level-2"><a class="final" href="/system/anotherdatastore/"><span>Using 
Another Data Store</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li 
class="level-2"><a class="final active" 
href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" 
href="/community/submit-template/"><span>Submit your Engine as a 
Template</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Demo Tutorials</span></a><ul><li class="level-2"><a 
class="final" href="/demo/tapster/"><span>Comics Recommendation 
Demo</span></a></li><li class="level-2"><a class="final" href="/demo/c
 ommunity/"><span>Community Contributed Demo</span></a></li><li 
class="level-2"><a class="final" href="/demo/textclassification/"><span>Text 
Classification Engine Tutorial</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="/community/"><span>Getting Involved</span></a><ul><li 
class="level-2"><a class="final" 
href="/community/contribute-code/"><span>Contribute Code</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-webhook/"><span>Contribute a 
Webhook</span></a></li><li class="level-2"><a class="final" 
href="/community/projects/"><span>Community 
Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Help</span></a><ul><li class="level-2"><a class="final" 
href=
 "/resources/faq/"><span>FAQs</span></a></li><li class="level-2"><a 
class="final" href="/support/"><span>Support</span></a></li></ul></li><li 
class="level-1"><a class="expandible" 
href="#"><span>Resources</span></a><ul><li class="level-2"><a class="final" 
href="/resources/intellij/"><span>Developing Engines with IntelliJ 
IDEA</span></a></li><li class="level-2"><a class="final" 
href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li 
class="level-2"><a class="final" 
href="/resources/glossary/"><span>Glossary</span></a></li></ul></li></ul></nav></div><div
 class="col-md-9 col-sm-12"><div class="content-header hidden-md 
hidden-lg"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a 
href="#">Engine Template Gallery</a><span 
class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div></div><div id="table-of-content-wrapper"><h5>On this 
page</h5><aside id="table-of-contents"><ul> <li> 
 <a href="#classification">Classification</a> </li> <li> <a 
href="#regression">Regression</a> </li> <li> <a 
href="#unsupervised-learning">Unsupervised Learning</a> </li> <li> <a 
href="#recommender-systems">Recommender Systems</a> </li> <li> <a 
href="#natural-language-processing">Natural Language Processing</a> </li> <li> 
<a href="#other">Other</a> </li> </ul> </aside><hr/><a id="edit-page-link" 
href="https://github.com/apache/incubator-predictionio/tree/livedoc/docs/manual/source/gallery/template-gallery.html.md";><img
 src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div 
class="content-header hidden-sm hidden-xs"><div id="breadcrumbs" 
class="hidden-sm hidden xs"><ul><li><a href="#">Engine Template 
Gallery</a><span class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div></div><div class="content"><h2 id='classification' 
class='header-anchors'>Classification</h2><p><strong><em><a 
 
href="https://github.com/PredictionIO/template-scala-parallel-leadscoring";>Lead 
Scoring</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-scala-parallel-leadscoring&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This engine template predicts the probability of 
an user will convert (conversion event by user) in the current session.</p> 
<table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">0.9.2</td> 
</tr> </tbody></table> <p><br/></p><p><strong>
 <em><a 
href="https://github.com/PredictionIO/template-scala-parallel-classification";>Classification</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-scala-parallel-classification&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>An engine template is an almost-complete 
implementation of an engine. PredictionIO&#39;s Classification Engine Template 
has integrated Apache Spark MLlib&#39;s Naive Bayes algorithm by default.</p> 
<table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">stable</td>
  <td style="text-align: center">0.9.2</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/andrewwuan/PredictionIO-Churn-Prediction-H2O-Sparkling-Water";>Churn
 Prediction - H2O Sparkling Water</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=andrewwuan&repo=PredictionIO-Churn-Prediction-H2O-Sparkling-Water&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This is an engine template with Sparkling Water 
integration. The goal is to use Deep Learning algorithm to predict the churn 
rate for a phone carrier&#39;s customers.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scal
 a</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">0.9.2</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/detrevid/predictionio-template-classification-dl4j";>Classification
 Deeplearning4j</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=detrevid&repo=predictionio-template-classification-dl4j&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>A classification engine template that uses 
Deeplearning4j library.</p> <table><thead> <tr> <th style="text-align: 
center">Type</th> <th style="text-align: center">Language</th> <th 
style="text-align: center">License</th> <th style="text-align: 
center">Status</th> <th style="text-align: center">PIO min version</th> </tr> 
</thead><tbody> <tr> <td style="text-align: center">Parallel</td> <td 
style="text-align: center">Scala</td> <td style="text-ali
 gn: center">Apache Licence 2.0</td> <td style="text-align: center">alpha</td> 
<td style="text-align: center">0.9.2</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs";>Probabilistic
 Classifier (Logistic Regression w/ LBFGS)</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=EmergentOrder&repo=template-scala-probabilistic-classifier-batch-lbfgs&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>A PredictionIO engine template using logistic 
regression (trained with limited-memory BFGS ) with raw (probabilistic) 
outputs.</p> <table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-
 align: center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">MIT License</td> <td style="text-align: 
center">alpha</td> <td style="text-align: center">0.9.2</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/harry5z/template-circuit-classification-sparkling-water";>Circuit
 End Use Classification</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=harry5z&repo=template-circuit-classification-sparkling-water&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>A classification engine template that uses 
machine learning models trained with sample circuit energy consumption data and 
end usage to predict the end use of a circuit by its energy consumption 
history.</p> <table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: 
 center">Status</th> <th style="text-align: center">PIO min version</th> </tr> 
</thead><tbody> <tr> <td style="text-align: center">Parallel</td> <td 
style="text-align: center">Scala</td> <td style="text-align: center">Apache 
Licence 2.0</td> <td style="text-align: center">alpha</td> <td 
style="text-align: center">0.9.1</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/ailurus1991/GBRT_Template_PredictionIO";>GBRT_Classification</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=ailurus1991&repo=GBRT_Template_PredictionIO&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>The Gradient-Boosted Regression Trees(GBRT) for 
classification.</p> <table><thead> <tr> <th style="text-align: 
center">Type</th> <th style="text-align: center">Language</th> <th 
style="text-align: center">License</th> <th style="text-align: 
center">Status</th> <th style="text-align: center">PIO min vers
 ion</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">alpha</td> <td style="text-align: center">0.9.2</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/mohanaprasad1994/PredictionIO-MLlib-Decision-Trees-Template";>MLlib-Decision-Trees-Template</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=mohanaprasad1994&repo=PredictionIO-MLlib-Decision-Trees-Template&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>An engine template is an almost-complete 
implementation of an engine. This is a classification engine template which has 
integrated Apache Spark MLlib&#39;s Decision tree algorithm by default.</p> 
<table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="t
 ext-align: center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">0.9.0</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/jimmyywu/predictionio-template-classification-dl4j-multilayer-network";>Classification
 with MultiLayerNetwork</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=jimmyywu&repo=predictionio-template-classification-dl4j-multilayer-network&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This engine template integrates the 
MultiLayerNetwork implementation from the Deeplearning4j library into 
PredictionIO. In this template, we use PredictionIO to classify
  the widely-known IRIS flower dataset by constructing a deep-belief net.</p> 
<table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">0.9.0</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/singsanj/classifier-kafka-streaming-template";>classifier-kafka-streaming-template</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=singsanj&repo=classifier-kafka-streaming-template&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>The template will provide 
 a simple integration of DASE with kafka using spark streaming capabilites in 
order to play around with real time notification, messages ..</p> 
<table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">-</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-category-identification";>Category
 identification</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-category-identification&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" heig
 ht="20px"></iframe></p><p>Given a product and its description, this template 
identifies the category this item belongs to.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: center">-</td> 
<td style="text-align: center">-</td> <td style="text-align: center">-</td> <td 
style="text-align: center">requested</td> <td style="text-align: center">-</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-fake-account-detection";>Fake 
Account Detection</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-fake-account-detection&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This template det
 ects accounts created with abnormal pattern.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: center">-</td> 
<td style="text-align: center">-</td> <td style="text-align: center">-</td> <td 
style="text-align: center">requested</td> <td style="text-align: center">-</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-product-trend";>Product 
Trend</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-product-trend&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This template analyze the user behavior on site 
to predict the best selling products and trends.</p> <table><thead> <tr> <
 th style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: center">-</td> 
<td style="text-align: center">-</td> <td style="text-align: center">-</td> <td 
style="text-align: center">requested</td> <td style="text-align: center">-</td> 
</tr> </tbody></table> <p><br/></p><p><br/></p><h2 id='regression' 
class='header-anchors'>Regression</h2><p><strong><em><a 
href="https://github.com/goliasz/pio-template-sr";>Survival 
Regression</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&repo=pio-template-sr&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Survival regression template is based on brand 
new Spark 1.6 AFT (accelerated failure time) survival analysis algorithm. There 
are interesti
 ng applications of survival analysis like:</p> <ul> <li>Business Planning : 
Profiling customers who has a higher survival rate and make strategy 
accordingly.</li> <li>Lifetime Value Prediction : Engage with customers 
according to their lifetime value</li> <li>Active customers : Predict when the 
customer will be active for the next time and take interventions accordingly. * 
Campaign evaluation : Monitor effect of campaign on the survival rate of 
customers.</li> </ul> <p>Source: <a 
href="http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/";>http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/</a></p>
 <table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: center">Sca
 la</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">beta</td> <td style="text-align: center">0.9.5</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/BensonQiu/predictionio-template-recommendation-sparklingwater";>Sparkling
 Water-Deep Learning Energy Forecasting</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=BensonQiu&repo=predictionio-template-recommendation-sparklingwater&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This Engine Template demonstrates an energy 
forecasting engine. It integrates Deep Learning from the Sparkling Water 
library to perform energy analysis. We can query the circuit and time, and 
return predicted energy usage.</p> <table><thead> <tr> <th style="text-align: 
center">Type</th> <th style="text-align: center">Language</th> <th 
style="text-align: center">License</th> <th style="text-align: center">
 Status</th> <th style="text-align: center">PIO min version</th> </tr> 
</thead><tbody> <tr> <td style="text-align: center">Parallel</td> <td 
style="text-align: center">Scala</td> <td style="text-align: center">Apache 
Licence 2.0</td> <td style="text-align: center">alpha</td> <td 
style="text-align: center">0.9.2</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/detrevid/predictionio-load-forecasting";>Electric Load 
Forecasting</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=detrevid&repo=predictionio-load-forecasting&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This is a PredictionIO engine for electric load 
forecasting. The engine is using linear regression with stochastic gradient 
descent from Spark MLlib.</p> <table><thead> <tr> <th style="text-align: 
center">Type</th> <th style="text-align: center">Language</th> <th 
style="text-align: center">License</th> <t
 h style="text-align: center">Status</th> <th style="text-align: center">PIO 
min version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">stable</td> <td style="text-align: center">0.9.2</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/RAditi/PredictionIO-MLLib-LinReg-Template";>MLLib-LinearRegression</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=RAditi&repo=PredictionIO-MLLib-LinReg-Template&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This template uses the linear regression with 
stochastic gradient descent algorithm from MLLib to make predictions on 
real-valued data based on features (explanatory variables)</p> <table><thead> 
<tr> <th style="text-align: center">Type</th> <th style="text-align: center">
 Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">alpha</td> <td style="text-align: center">0.9.1</td> </tr> 
</tbody></table> <p><br/></p><p><br/></p><h2 id='unsupervised-learning' 
class='header-anchors'>Unsupervised Learning</h2><p><strong><em><a 
href="https://github.com/PredictionIO/template-scala-parallel-productranking";>Product
 Ranking</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-scala-parallel-productranking&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This engine template sorts a list of products for 
a user based on his/her preference. This is ideal for perso
 nalizing the display order of product page, catalog, or menu items if you have 
large number of options. It creates engagement and early conversion by placing 
products that a user prefers on the top.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">stable</td> <td style="text-align: center">0.9.2</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-scala-parallel-complementarypurchase";>Complementary
 Purchase</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-scala-parallel-complementarypurc
 hase&type=star&count=true" frameborder="0" align="middle" scrolling="0" 
width="170px" height="20px"></iframe></p><p>This engine template recommends the 
complementary items which most user frequently buy at the same time with one or 
more items in the query.</p> <table><thead> <tr> <th style="text-align: 
center">Type</th> <th style="text-align: center">Language</th> <th 
style="text-align: center">License</th> <th style="text-align: 
center">Status</th> <th style="text-align: center">PIO min version</th> </tr> 
</thead><tbody> <tr> <td style="text-align: center">Parallel</td> <td 
style="text-align: center">Scala</td> <td style="text-align: center">Apache 
Licence 2.0</td> <td style="text-align: center">alpha</td> <td 
style="text-align: center">0.9.2</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-scala-parallel-recommendation";>Recommendation</a></em></strong><br>
 <iframe src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo
 =template-scala-parallel-recommendation&type=star&count=true" frameborder="0" 
align="middle" scrolling="0" width="170px" height="20px"></iframe></p><p>An 
engine template is an almost-complete implementation of an engine. 
PredictionIO&#39;s Recommendation Engine Template has integrated Apache Spark 
MLlib&#39;s Collaborative Filtering algorithm by default. You can customize it 
easily to fit your specific needs.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">stable</td> <td style="text-align: center">0.9.2</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a href="https://github.com/ale
 xice/template-scala-parallel-svd-item-similarity">Content Based SVD Item 
Similarity Engine</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=alexice&repo=template-scala-parallel-svd-item-similarity&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Template to calculate similarity between items 
based on their attributes. Attributes can be either numeric or categorical in 
the last case it will be encoded using one-hot encoder. Algorithm uses SVD in 
order to reduce data dimensionality. Cosine similarity is now implemented but 
can be easily extended to other similarity measures.</p> <table><thead> <tr> 
<th style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td styl
 e="text-align: center">Scala</td> <td style="text-align: center">Apache 
Licence 2.0</td> <td style="text-align: center">alpha</td> <td 
style="text-align: center">0.9.2</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/vngrs/template-scala-parallel-viewedthenbought";>Viewed 
This Bought That</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=vngrs&repo=template-scala-parallel-viewedthenbought&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This Engine uses co-occurence algorithm to match 
viewed items to bought items. Using this engine you may predict which item the 
user will buy, given the item(s) browsed.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tb
 ody> <tr> <td style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">stable</td> <td style="text-align: 
center">0.9.2</td> </tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/vaibhavist/template-scala-parallel-recommendation";>Music
 Recommendations</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=vaibhavist&repo=template-scala-parallel-recommendation&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This is very similar to music recommendations 
template. It is integrated with all the events a music application can have 
such as song played, liked, downloaded, purchased, etc.</p> <table><thead> <tr> 
<th style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Statu
 s</th> <th style="text-align: center">PIO min version</th> </tr> 
</thead><tbody> <tr> <td style="text-align: center">Parallel</td> <td 
style="text-align: center">Scala</td> <td style="text-align: center">Apache 
Licence 2.0</td> <td style="text-align: center">alpha</td> <td 
style="text-align: center">0.9.2</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/anthill/template-decision-tree-feature-importance";>template-decision-tree-feature-importance</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=anthill&repo=template-decision-tree-feature-importance&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This template shows how to use spark&#39; 
decision tree. It enables : - both categorical and continuous features - 
feature importance calculation - tree output in json - reading training data 
from a csv file</p> <table><thead> <tr> <th style="text-align: 
center">Type</th> 
 <th style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">stable</td> <td style="text-align: 
center">0.9.0</td> </tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/sahiliitm/predictionio-MLlibKMeansClusteringTemplate";>MLlibKMeansClustering</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=sahiliitm&repo=predictionio-MLlibKMeansClusteringTemplate&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This is a template which demonstrates the use of 
K-Means clustering algorithm which can be deployed on a spark-cluster using 
prediction.io.</p> <table><thead> <t
 r> <th style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">alpha</td> <td style="text-align: center">-</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/singsanj/KMeans-parallel-template";>KMeans-Clustering-Template</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=singsanj&repo=KMeans-parallel-template&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>forked from 
PredictionIO/template-scala-parallel-vanilla. It implements the KMeans 
Algorithm. Can be extended to mainstream implementation with minor chang
 es.</p> <table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">0.9.2</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&repo=pio-template-fpm&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Template uses FP Growth algorithm allowing to 
mine for frequent patterns. Template returns subsequent items together with 
confidence score.</p> <ta
 ble><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">0.9.5</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating";>Similar
 Product with Rating</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=ramaboo&repo=template-scala-parallel-similarproduct-with-rating&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Similar product template with rating support! 
Used for the MovieLens Demo.</p> <table>
 <thead> <tr> <th style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">beta</td> <td style="text-align: center">0.9.0</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-search-results-ranking";>Search 
Results Ranking</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-search-results-ranking&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This template rank the search results with a 
given user’s behavioral history so the top results are most relevant.</p> <ta
 ble><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">-</td> <td style="text-align: center">-</td> <td 
style="text-align: center">-</td> <td style="text-align: center">requested</td> 
<td style="text-align: center">-</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-smart-categories";>Smart 
Categories</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-smart-categories&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This template ranks the categories for a 
user.</p> <table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th styl
 e="text-align: center">License</th> <th style="text-align: center">Status</th> 
<th style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> 
<td style="text-align: center">-</td> <td style="text-align: center">-</td> <td 
style="text-align: center">-</td> <td style="text-align: center">requested</td> 
<td style="text-align: center">-</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-user-similarity";>User 
Similarity</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-user-similarity&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This template make recommendation on similar 
users based on attributes and behavior.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</t
 h> <th style="text-align: center">PIO min version</th> </tr> </thead><tbody> 
<tr> <td style="text-align: center">-</td> <td style="text-align: 
center">-</td> <td style="text-align: center">-</td> <td style="text-align: 
center">requested</td> <td style="text-align: center">-</td> </tr> 
</tbody></table> <p><br/></p><p><br/></p><h2 id='recommender-systems' 
class='header-anchors'>Recommender Systems</h2><p><strong><em><a 
href="https://github.com/PredictionIO/template-scala-parallel-universal-recommendation";>Universal
 Recommender</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-scala-parallel-universal-recommendation&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Use for:</p> <ul> <li>Personalized 
recommendations</li> <li>Similar items</li> <li>Popular Items</li> <li>Shopping 
cart recommendation</li> <li>Hybrid collaborative filtering and content based 
recommendations.</li
 > </ul> <p>The name refers to the use of this template in virtually any case 
 > that calls for recommendations - ecom, news, videos, virtually anywhere 
 > usage data is known. This recommender can auto-correlate different user 
 > actions, profile data, contextual information, and some content types to 
 > make better recommendations.</p> <table><thead> <tr> <th style="text-align: 
 > center">Type</th> <th style="text-align: center">Language</th> <th 
 > style="text-align: center">License</th> <th style="text-align: 
 > center">Status</th> <th style="text-align: center">PIO min version</th> 
 > </tr> </thead><tbody> <tr> <td style="text-align: center">Parallel</td> <td 
 > style="text-align: center">Scala</td> <td style="text-align: center">Apache 
 > Licence 2.0</td> <td style="text-align: center">alpha</td> <td 
 > style="text-align: center">0.9.5</td> </tr> </tbody></table> 
 > <p><br/></p><p><strong><em><a 
 > href="https://github.com/PredictionIO/template-scala-parallel-ecommercerecommendation";>E-Commerce
 >  Recommendation</a></e
 m></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-scala-parallel-ecommercerecommendation&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This engine template provides personalized 
recommendation for e-commerce applications with the following features by 
default:</p> <ul> <li>Exclude out-of-stock items</li> <li>Provide 
recommendation to new users who sign up after the model is trained</li> 
<li>Recommend unseen items only (configurable)</li> <li>Recommend popular items 
if no information about the user is available (added in template version 
v0.4.0)</li> </ul> <table><thead> <tr> <th style="text-align: center">Type</th> 
<th style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td sty
 le="text-align: center">Scala</td> <td style="text-align: center">Apache 
Licence 2.0</td> <td style="text-align: center">alpha</td> <td 
style="text-align: center">0.9.2</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-java-parallel-ecommercerecommendation";>E-Commerce
 Recommendation (Java)</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-java-parallel-ecommercerecommendation&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This engine template provides personalized 
recommendation for e-commerce applications with the following features by 
default:</p> <ul> <li>Exclude out-of-stock items</li> <li>Provide 
recommendation to new users who sign up after the model is trained</li> 
<li>Recommend unseen items only (configurable)</li> <li>Recommend popular items 
if no information about the user is available</li> </ul> <table><
 thead> <tr> <th style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Java</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">alpha</td> <td style="text-align: center">0.9.3</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-scala-parallel-similarproduct";>Similar
 Product</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-scala-parallel-similarproduct&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This engine template recommends products that are 
&quot;similar&quot; to the input product(s). Similarity is not defin
 ed by user or item attributes but by users&#39; previous actions. By default, 
it uses &#39;view&#39; action such that product A and B are considered similar 
if most users who view A also view B. The template can be customized to support 
other action types such as buy, rate, like..etc</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">stable</td> <td style="text-align: center">0.9.2</td> </tr> 
</tbody></table> <p><br/></p><p><br/></p><h2 id='natural-language-processing' 
class='header-anchors'>Natural Language Processing</h2><p><strong><em><a 
href="https://github.com/vshwnth2/OpenNLP-SentimentA
 nalysis-Template">OpenNLP Sentiment Analysis Template</a></em></strong><br> 
<iframe 
src="https://ghbtns.com/github-btn.html?user=vshwnth2&repo=OpenNLP-SentimentAnalysis-Template&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Given a sentence, this engine will return a score 
between 0 and 4. This is the sentiment of the sentence. The lower the number 
the more negative the sentence is. It uses the OpenNLP library.</p> 
<table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">-</td> 
</tr> </tbody></tab
 le> <p><br/></p><p><strong><em><a 
href="https://github.com/chrischris292/template-classification-opennlp";>Document
 Classification with OpenNLP</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=chrischris292&repo=template-classification-opennlp&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Document Classification template with OpenNLP 
GISModel.</p> <table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">0.9.0</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a href="
 https://github.com/pawel-n/template-scala-cml-sentiment";>Sentiment 
analysis</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=pawel-n&repo=template-scala-cml-sentiment&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This template implements various algorithms for 
sentiment analysis, most based on recursive neural networks (RNN) and recursive 
neural tensor networks (RNTN)[1]. It uses an experimental library called 
Composable Machine Learning (CML) and the Stanford Parser. The example data set 
is the Stanford Sentiment Treebank.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td style="te
 xt-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">alpha</td> <td style="text-align: center">0.9.2</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/pawel-n/template-scala-parallel-word2vec";>Word2Vec</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=pawel-n&repo=template-scala-parallel-word2vec&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This template integrates the Word2Vec 
implementation from deeplearning4j with PredictionIO. The Word2Vec algorithm 
takes a corpus of text and computes a vector representation for each word. 
These representations can be subsequently used in many natural language 
processing applications.</p> <table><thead> <tr> <th style="text-align: 
center">Type</th> <th style="text-align: center">Language</th> <th 
style="text-align: center">License</th> <th style="text-align: 
center">Status</th> <th style="text-align: cen
 ter">PIO min version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">alpha</td> <td style="text-align: center">0.9.0</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/ts335793/template-scala-spark-dl4j-word2vec";>Spark 
Deeplearning4j Word2Vec</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=ts335793&repo=template-scala-spark-dl4j-word2vec&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This template shows how to integrate 
Deeplearnign4j spark api with PredictionIO on example of app which uses 
Word2Vec algorithm to predict nearest words.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align:
  center">Status</th> <th style="text-align: center">PIO min version</th> </tr> 
</thead><tbody> <tr> <td style="text-align: center">Parallel</td> <td 
style="text-align: center">Scala</td> <td style="text-align: center">Apache 
Licence 2.0</td> <td style="text-align: center">stable</td> <td 
style="text-align: center">0.9.2</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/whhone/template-sentiment-analysis";>Sentiment Analysis 
Template</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=whhone&repo=template-sentiment-analysis&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Given a sentence, return a score between 0 and 4, 
indicating the sentence&#39;s sentiment. 0 being very negative, 4 being very 
positive, 2 being neutral. The engine uses the stanford CoreNLP library and the 
Scala binding <code>gangeli/CoreNLP-Scala</code> for parsing.</p> 
<table><thead> <tr> <th style
 ="text-align: center">Type</th> <th style="text-align: center">Language</th> 
<th style="text-align: center">License</th> <th style="text-align: 
center">Status</th> <th style="text-align: center">PIO min version</th> </tr> 
</thead><tbody> <tr> <td style="text-align: center">Parallel</td> <td 
style="text-align: center">Scala</td> <td style="text-align: center">None</td> 
<td style="text-align: center">stable</td> <td style="text-align: 
center">0.9.0</td> </tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-scala-parallel-textclassification";>Text
 Classification</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-scala-parallel-textclassification&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Use this engine for general text classification 
purposes. Uses OpenNLP library for text vectorization, includes 
t.f.-i.d.f.-based feature t
 ransformation and reduction, and uses Spark MLLib&#39;s Multinomial Naive 
Bayes implementation for classification.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">alpha</td> <td style="text-align: center">0.9.2</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/ts335793/template-scala-parallel-dl4j-rntn";>Deeplearning4j
 RNTN</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=ts335793&repo=template-scala-parallel-dl4j-rntn&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Recu
 rsive Neural Tensor Network algorithm is supervised learning algorithm used to 
predict sentiment of sentences. This template is based on deeplearning4j RNTN 
example: <a 
href="https://github.com/SkymindIO/deeplearning4j-nlp-examples/tree/master/src/main/java/org/deeplearning4j/rottentomatoes/rntn";>https://github.com/SkymindIO/deeplearning4j-nlp-examples/tree/master/src/main/java/org/deeplearning4j/rottentomatoes/rntn</a>.
 It&#39;s goal is to show how to integrate deeplearning4j library with 
PredictionIO.</p> <table><thead> <tr> <th style="text-align: center">Type</th> 
<th style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: cente
 r">0.9.2</td> </tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/ts335793/template-scala-rnn";>Recursive Neural Networks 
(Sentiment Analysis)</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=ts335793&repo=template-scala-rnn&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Predicting sentiment of phrases with use of 
Recursive Neural Network algorithm and OpenNLP parser.</p> <table><thead> <tr> 
<th style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">stable</td> <td style="text-align: center">0.9.2</td> </tr> </
 tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/Ling-Ling/CoreNLP-Text-Classification";>CoreNLP Text 
Classification</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=Ling-Ling&repo=CoreNLP-Text-Classification&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This engine uses CoreNLP to do text analysis in 
order to classify the category a strings of text falls under.</p> 
<table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">-</td> 
</tr> </tbody></table> 
 <p><br/></p><p><strong><em><a 
href="https://github.com/EmergentOrder/template-scala-topic-model-LDA";>Topc 
Model (LDA)</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=EmergentOrder&repo=template-scala-topic-model-LDA&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>A PredictionIO engine template using Latent 
Dirichlet Allocation to learn a topic model from raw text</p> <table><thead> 
<tr> <th style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">alpha</td> <td style="text-align: center">0.9.4</td> </tr> 
</tbody></table> <p><br/></p><p><
 strong><em><a 
href="https://github.com/goliasz/pio-template-text-similarity";>Cstablo-template-text-similarityelassification</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&repo=pio-template-text-similarity&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Text similarity engine based on Word2Vec 
algorithm. Builds vectors of full documents in training phase. Finds similar 
documents in query phase.</p> <table><thead> <tr> <th style="text-align: 
center">Type</th> <th style="text-align: center">Language</th> <th 
style="text-align: center">License</th> <th style="text-align: 
center">Status</th> <th style="text-align: center">PIO min version</th> </tr> 
</thead><tbody> <tr> <td style="text-align: center">Parallel</td> <td 
style="text-align: center">Scala</td> <td style="text-align: center">Apache 
Licence 2.0</td> <td style="text-align: center">alpha</td> <td 
style="text-align: center">0.9.5</td>
  </tr> </tbody></table> <p><br/></p><h2 id='other' 
class='header-anchors'>Other</h2><p><strong><em><a 
href="https://github.com/PredictionIO/template-scala-parallel-vanilla";>Vanilla</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-scala-parallel-vanilla&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>Vanilla template is for developing new engine 
when you find other engine templates do not fit your needs. This template 
provides a skeleton to kick start new engine development.</p> <table><thead> 
<tr> <th style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache L
 icence 2.0</td> <td style="text-align: center">stable</td> <td 
style="text-align: center">0.9.2</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-best-time-push-notification";>Best
 Time: Push Notification</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-best-time-push-notification&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This template predicts the best time to send push 
notification to a user to optimize conversion.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: center">-</td> 
<td style="text-align: center">-</td> <td style="text-align: center">-</td> <td 
style=
 "text-align: center">requested</td> <td style="text-align: center">-</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/PredictionIO/template-best-time-email";>Best Time: 
E-mail</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-best-time-email&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>An engine template is an almost-complete 
implementation of an engine. PredictionIO&#39;s Classification Engine Template 
has integrated Apache Spark MLlib&#39;s Naive Bayes algorithm by default.</p> 
<table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">-</td> <td style="text-align: center">-</td> <td 
style="te
 xt-align: center">-</td> <td style="text-align: center">requested</td> <td 
style="text-align: center">-</td> </tr> </tbody></table> 
<p><br/></p></div></div></div></div><footer><div class="container"><div 
class="seperator"></div><div class="row"><div class="col-md-6 col-xs-6 
footer-link-column"><div 
class="footer-link-column-row"><h4>Community</h4><ul><li><a 
href="//docs.prediction.io/install/" target="blank">Download</a></li><li><a 
href="//docs.prediction.io/" target="blank">Docs</a></li><li><a 
href="//github.com/apache/incubator-predictionio" 
target="blank">GitHub</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to User Mailing List</a></li><li><a 
href="//stackoverflow.com/questions/tagged/predictionio" 
target="blank">Stackoverflow</a></li></ul></div></div><div class="col-md-6 
col-xs-6 footer-link-column"><div 
class="footer-link-column-row"><h4>Contribute</h4><ul><li><a 
href="//predictionio.incubator.apache.org/community/contrib
 ute-code/" target="blank">Contribute</a></li><li><a 
href="//github.com/apache/incubator-predictionio" target="blank">Source 
Code</a></li><li><a href="//issues.apache.org/jira/browse/PIO" 
target="blank">Bug Tracker</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to Development Mailing 
List</a></li></ul></div></div></div></div><div id="footer-bottom"><div 
class="container"><div class="row"><div class="col-md-12"><div 
id="footer-logo-wrapper"><img alt="PredictionIO" 
src="/images/logos/logo-white-d1e9c6e6.png"/></div><div 
id="social-icons-wrapper"><a class="github-button" 
href="https://github.com/apache/incubator-predictionio"; data-style="mega" 
data-count-href="/apache/incubator-predictionio/stargazers" 
data-count-api="/repos/apache/incubator-predictionio#stargazers_count" 
data-count-aria-label="# stargazers on GitHub" aria-label="Star 
apache/incubator-predictionio on GitHub">Star</a> <a class="github-button" 
href="https://github.com
 /apache/incubator-predictionio/fork" data-icon="octicon-git-branch" 
data-style="mega" data-count-href="/apache/incubator-predictionio/network" 
data-count-api="/repos/apache/incubator-predictionio#forks_count" 
data-count-aria-label="# forks on GitHub" aria-label="Fork 
apache/incubator-predictionio on GitHub">Fork</a> <script id="github-bjs" 
async="" defer="" src="https://buttons.github.io/buttons.js";></script><a 
href="//www.facebook.com/predictionio" target="blank"><img alt="PredictionIO on 
Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a 
href="//twitter.com/predictionio" target="blank"><img alt="PredictionIO on 
Facebook" src="/images/icons/facebook-5c57939c.png"/></a> 
</div></div></div></div></div></footer></div><script>(function(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+<!DOCTYPE html><html><head><title>Engine Template Gallery</title><meta 
charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="Engine Template Gallery"/><link 
rel="canonical" 
href="https://docs.prediction.io/gallery/template-gallery/"/><link 
href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-a2a2f408.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><script
 src="//cdn.mathjax.org/mathjax/l
 atest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script 
src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.incubator.apache.org/";><img 
alt="PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a></div><div id="menu-wrapper"><div 
id="pill-wrapper"><a class="pill left" 
href="//templates.prediction.io/">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/incubator-predictionio/">OPEN 
SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md 
hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" 
id="search-bar-row"><div class="row"><div class="col-md-9 col-sm-11 
col-xs-11"><div class=
 "hidden-md hidden-lg" id="mobile-page-heading-wrapper"><p>PredictionIO 
Docs</p><h4>Browse</h4></div><h4 class="hidden-sm hidden-xs">PredictionIO 
Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 hidden-md hidden-lg"><img 
id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md 
hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div 
class="row"><div id="left-menu-wrapper" class="col-md-3"><nav i
 d="nav-main"><ul><li class="level-1"><a class="expandible" 
href="/"><span>Apache PredictionIO (incubating) Documentation</span></a><ul><li 
class="level-2"><a class="final" href="/"><span>Welcome to Apache PredictionIO 
(incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Started</span></a><ul><li class="level-2"><a 
class="final" href="/start/"><span>A Quick Intro</span></a></li><li 
class="level-2"><a class="final" href="/install/"><span>Installing Apache 
PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" 
href="/start/download/"><span>Downloading an Engine Template</span></a></li><li 
class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your 
First Engine</span></a></li><li class="level-2"><a class="final" 
href="/start/customize/"><span>Customizing the 
Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Integrating with Your App</span></a><ul><li class="lev
 el-2"><a class="final" href="/appintegration/"><span>App Integration 
Overview</span></a></li><li class="level-2"><a class="expandible" 
href="/sdk/"><span>List of SDKs</span></a><ul><li class="level-3"><a 
class="final" href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
SDK</span></a></li><li class="level-3"><a class="final" 
href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered 
SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
Service</span></a></li><li class="level-2"><a class="final" 
href="/cli/#engine-commands"><span>Engine Command-line 
Interface</span></a></li><li class="level-2"><a class="f
 inal" href="/deploy/monitoring/"><span>Monitoring Engine</span></a></li><li 
class="level-2"><a class="final" href="/deploy/engineparams/"><span>Setting 
Engine Parameters</span></a></li><li class="level-2"><a class="final" 
href="/deploy/enginevariants/"><span>Deploying Multiple Engine 
Variants</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Customizing an Engine</span></a><ul><li class="level-2"><a 
class="final" href="/customize/"><span>Learning DASE</span></a></li><li 
class="level-2"><a class="final" href="/customize/dase/"><span>Implement 
DASE</span></a></li><li class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>Engine Scala 
APIs</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Collecting and Analyzing Data</span></a><ul><li 
class="level-2"><a class="final" href="/datacolle
 ction/"><span>Event Server Overview</span></a></li><li class="level-2"><a 
class="final" href="/cli/#event-server-commands"><span>Event Server 
Command-line Interface</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventapi/"><span>Collecting Data with 
REST/SDKs</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
Webhooks</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/channel/"><span>Channel</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/batchimport/"><span>Importing Data in 
Batch</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/analytics/"><span>Using Analytics 
Tools</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Choosing an Algorithm(s)</span></a><ul><li class="level-2
 "><a class="final" href="/algorithm/"><span>Built-in Algorithm 
Libraries</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/switch/"><span>Switching to Another 
Algorithm</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/multiple/"><span>Combining Multiple 
Algorithms</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/custom/"><span>Adding Your Own 
Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
class="final" href="/evaluation/"><span>Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/evaluationdashboard/"><span>Evaluation 
Dashboard</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricchoose/"><span>Choosing Evaluation 
Metrics</span></a></li><li class="level-2"><a c
 lass="final" href="/evaluation/metricbuild/"><span>Building Evaluation 
Metrics</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>System Architecture</span></a><ul><li class="level-2"><a 
class="final" href="/system/"><span>Architecture Overview</span></a></li><li 
class="level-2"><a class="final" href="/system/anotherdatastore/"><span>Using 
Another Data Store</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li 
class="level-2"><a class="final active" 
href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" 
href="/community/submit-template/"><span>Submit your Engine as a 
Template</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Demo Tutorials</span></a><ul><li class="level-2"><a 
class="final" href="/demo/tapster/"><span>Comics Recommendation 
Demo</span></a></li><li class="level-2"><a class="final" href="/demo/c
 ommunity/"><span>Community Contributed Demo</span></a></li><li 
class="level-2"><a class="final" href="/demo/textclassification/"><span>Text 
Classification Engine Tutorial</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="/community/"><span>Getting Involved</span></a><ul><li 
class="level-2"><a class="final" 
href="/community/contribute-code/"><span>Contribute Code</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-webhook/"><span>Contribute a 
Webhook</span></a></li><li class="level-2"><a class="final" 
href="/community/projects/"><span>Community 
Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Help</span></a><ul><li class="level-2"><a class="final" 
href=
 "/resources/faq/"><span>FAQs</span></a></li><li class="level-2"><a 
class="final" href="/support/"><span>Support</span></a></li></ul></li><li 
class="level-1"><a class="expandible" 
href="#"><span>Resources</span></a><ul><li class="level-2"><a class="final" 
href="/resources/intellij/"><span>Developing Engines with IntelliJ 
IDEA</span></a></li><li class="level-2"><a class="final" 
href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li 
class="level-2"><a class="final" 
href="/resources/glossary/"><span>Glossary</span></a></li></ul></li></ul></nav></div><div
 class="col-md-9 col-sm-12"><div class="content-header hidden-md 
hidden-lg"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a 
href="#">Engine Template Gallery</a><span 
class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div></div><div id="table-of-content-wrapper"><h5>On this 
page</h5><aside id="table-of-contents"><ul> <li> 
 <a href="#classification">Classification</a> </li> <li> <a 
href="#regression">Regression</a> </li> <li> <a 
href="#unsupervised-learning">Unsupervised Learning</a> </li> <li> <a 
href="#recommender-systems">Recommender Systems</a> </li> <li> <a 
href="#natural-language-processing">Natural Language Processing</a> </li> <li> 
<a href="#other">Other</a> </li> </ul> </aside><hr/><a id="edit-page-link" 
href="https://github.com/apache/incubator-predictionio/tree/livedoc/docs/manual/source/gallery/template-gallery.html.md";><img
 src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div 
class="content-header hidden-sm hidden-xs"><div id="breadcrumbs" 
class="hidden-sm hidden xs"><ul><li><a href="#">Engine Template 
Gallery</a><span class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div></div><div class="content"><h2 id='classification' 
class='header-anchors'>Classification</h2><p><strong><em><a 
 
href="https://github.com/PredictionIO/template-scala-parallel-leadscoring";>Lead 
Scoring</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-scala-parallel-leadscoring&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This engine template predicts the probability of 
an user will convert (conversion event by user) in the current session.</p> 
<table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">0.9.2</td> 
</tr> </tbody></table> <p><br/></p><p><strong>
 <em><a 
href="https://github.com/PredictionIO/template-scala-parallel-classification";>Classification</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&repo=template-scala-parallel-classification&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>An engine template is an almost-complete 
implementation of an engine. PredictionIO&#39;s Classification Engine Template 
has integrated Apache Spark MLlib&#39;s Naive Bayes algorithm by default.</p> 
<table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-align: center">Parallel</td> <td style="text-align: 
center">Scala</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">stable</td>
  <td style="text-align: center">0.9.2</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/andrewwuan/PredictionIO-Churn-Prediction-H2O-Sparkling-Water";>Churn
 Prediction - H2O Sparkling Water</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=andrewwuan&repo=PredictionIO-Churn-Prediction-H2O-Sparkling-Water&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>This is an engine template with Sparkling Water 
integration. The goal is to use Deep Learning algorithm to predict the churn 
rate for a phone carrier&#39;s customers.</p> <table><thead> <tr> <th 
style="text-align: center">Type</th> <th style="text-align: 
center">Language</th> <th style="text-align: center">License</th> <th 
style="text-align: center">Status</th> <th style="text-align: center">PIO min 
version</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scal
 a</td> <td style="text-align: center">Apache Licence 2.0</td> <td 
style="text-align: center">alpha</td> <td style="text-align: center">0.9.2</td> 
</tr> </tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/detrevid/predictionio-template-classification-dl4j";>Classification
 Deeplearning4j</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=detrevid&repo=predictionio-template-classification-dl4j&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>A classification engine template that uses 
Deeplearning4j library.</p> <table><thead> <tr> <th style="text-align: 
center">Type</th> <th style="text-align: center">Language</th> <th 
style="text-align: center">License</th> <th style="text-align: 
center">Status</th> <th style="text-align: center">PIO min version</th> </tr> 
</thead><tbody> <tr> <td style="text-align: center">Parallel</td> <td 
style="text-align: center">Scala</td> <td style="text-ali
 gn: center">Apache Licence 2.0</td> <td style="text-align: center">alpha</td> 
<td style="text-align: center">0.9.2</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs";>Probabilistic
 Classifier (Logistic Regression w/ LBFGS)</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=EmergentOrder&repo=template-scala-probabilistic-classifier-batch-lbfgs&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>A PredictionIO engine template using logistic 
regression (trained with limited-memory BFGS ) with raw (probabilistic) 
outputs.</p> <table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: center">Status</th> <th 
style="text-align: center">PIO min version</th> </tr> </thead><tbody> <tr> <td 
style="text-
 align: center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">MIT License</td> <td style="text-align: 
center">alpha</td> <td style="text-align: center">0.9.2</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/harry5z/template-circuit-classification-sparkling-water";>Circuit
 End Use Classification</a></em></strong><br> <iframe 
src="https://ghbtns.com/github-btn.html?user=harry5z&repo=template-circuit-classification-sparkling-water&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>A classification engine template that uses 
machine learning models trained with sample circuit energy consumption data and 
end usage to predict the end use of a circuit by its energy consumption 
history.</p> <table><thead> <tr> <th style="text-align: center">Type</th> <th 
style="text-align: center">Language</th> <th style="text-align: 
center">License</th> <th style="text-align: 
 center">Status</th> <th style="text-align: center">PIO min version</th> </tr> 
</thead><tbody> <tr> <td style="text-align: center">Parallel</td> <td 
style="text-align: center">Scala</td> <td style="text-align: center">Apache 
Licence 2.0</td> <td style="text-align: center">alpha</td> <td 
style="text-align: center">0.9.1</td> </tr> </tbody></table> 
<p><br/></p><p><strong><em><a 
href="https://github.com/ailurus1991/GBRT_Template_PredictionIO";>GBRT_Classification</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=ailurus1991&repo=GBRT_Template_PredictionIO&type=star&count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe></p><p>The Gradient-Boosted Regression Trees(GBRT) for 
classification.</p> <table><thead> <tr> <th style="text-align: 
center">Type</th> <th style="text-align: center">Language</th> <th 
style="text-align: center">License</th> <th style="text-align: 
center">Status</th> <th style="text-align: center">PIO min vers
 ion</th> </tr> </thead><tbody> <tr> <td style="text-align: 
center">Parallel</td> <td style="text-align: center">Scala</td> <td 
style="text-align: center">Apache Licence 2.0</td> <td style="text-align: 
center">alpha</td> <td style="text-align: center">0.9.2</td> </tr> 
</tbody></table> <p><br/></p><p><strong><em><a 
href="https://github.com/mohanaprasad1994/PredictionIO-MLlib-Decision-Trees-Template";>MLlib-Decision-Trees-Template</a></em></strong><br>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=mohanaprasad1994&repo=Predictio

<TRUNCATED>
http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/08d48209/gallery/template-gallery/index.html.gz
----------------------------------------------------------------------
diff --git a/gallery/template-gallery/index.html.gz 
b/gallery/template-gallery/index.html.gz
index aa3be0b..b94681f 100644
Binary files a/gallery/template-gallery/index.html.gz and 
b/gallery/template-gallery/index.html.gz differ


Reply via email to