http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/0bdbf8fe/demo/tapster/index.html
----------------------------------------------------------------------
diff --git a/demo/tapster/index.html b/demo/tapster/index.html
new file mode 100644
index 0000000..d9af8e6
--- /dev/null
+++ b/demo/tapster/index.html
@@ -0,0 +1,269 @@
+<!DOCTYPE html><html><head><title>Comics Recommendation Demo</title><meta 
charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="Comics Recommendation Demo"/><link 
rel="canonical" href="https://docs.prediction.io/demo/tapster/"/><link 
href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-a2a2f408.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><script
 src="//cdn.mathjax.org/mathjax/latest/
 MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script 
src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.incubator.apache.org/";><img 
alt="PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a></div><div id="menu-wrapper"><div 
id="pill-wrapper"><a class="pill left" 
href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/incubator-predictionio/">OPEN 
SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md 
hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" 
id="search-bar-row"><div class="row"><div class="col-md-9 col-sm-11 
col-xs-11"><div class="hidden
 -md hidden-lg" id="mobile-page-heading-wrapper"><p>PredictionIO 
Docs</p><h4>Comics Recommendation Demo</h4></div><h4 class="hidden-sm 
hidden-xs">PredictionIO Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 
hidden-md hidden-lg"><img id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md 
hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div 
class="row"><div id="left-menu-wrapper" class="col
 -md-3"><nav id="nav-main"><ul><li class="level-1"><a class="expandible" 
href="/"><span>Apache PredictionIO (incubating) Documentation</span></a><ul><li 
class="level-2"><a class="final" href="/"><span>Welcome to Apache PredictionIO 
(incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Started</span></a><ul><li class="level-2"><a 
class="final" href="/start/"><span>A Quick Intro</span></a></li><li 
class="level-2"><a class="final" href="/install/"><span>Installing Apache 
PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" 
href="/start/download/"><span>Downloading an Engine Template</span></a></li><li 
class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your 
First Engine</span></a></li><li class="level-2"><a class="final" 
href="/start/customize/"><span>Customizing the 
Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Integrating with Your App</span></a><ul><
 li class="level-2"><a class="final" href="/appintegration/"><span>App 
Integration Overview</span></a></li><li class="level-2"><a class="expandible" 
href="/sdk/"><span>List of SDKs</span></a><ul><li class="level-3"><a 
class="final" href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
SDK</span></a></li><li class="level-3"><a class="final" 
href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered 
SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
Service</span></a></li><li class="level-2"><a class="final" 
href="/cli/#engine-commands"><span>Engine Command-line 
Interface</span></a></li><li class="level-2
 "><a class="final" href="/deploy/monitoring/"><span>Monitoring 
Engine</span></a></li><li class="level-2"><a class="final" 
href="/deploy/engineparams/"><span>Setting Engine Parameters</span></a></li><li 
class="level-2"><a class="final" href="/deploy/enginevariants/"><span>Deploying 
Multiple Engine Variants</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Customizing an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/customize/"><span>Learning 
DASE</span></a></li><li class="level-2"><a class="final" 
href="/customize/dase/"><span>Implement DASE</span></a></li><li 
class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>Engine Scala 
APIs</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Collecting and Analyzing Data</span></a><ul><li 
class="level-2"><a class="final" hre
 f="/datacollection/"><span>Event Server Overview</span></a></li><li 
class="level-2"><a class="final" href="/cli/#event-server-commands"><span>Event 
Server Command-line Interface</span></a></li><li class="level-2"><a 
class="final" href="/datacollection/eventapi/"><span>Collecting Data with 
REST/SDKs</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
Webhooks</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/channel/"><span>Channel</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/batchimport/"><span>Importing Data in 
Batch</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/analytics/"><span>Using Analytics 
Tools</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Choosing an Algorithm(s)</span></a><ul><li c
 lass="level-2"><a class="final" href="/algorithm/"><span>Built-in Algorithm 
Libraries</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/switch/"><span>Switching to Another 
Algorithm</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/multiple/"><span>Combining Multiple 
Algorithms</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/custom/"><span>Adding Your Own 
Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
class="final" href="/evaluation/"><span>Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/evaluationdashboard/"><span>Evaluation 
Dashboard</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricchoose/"><span>Choosing Evaluation 
Metrics</span></a></li><li class="
 level-2"><a class="final" href="/evaluation/metricbuild/"><span>Building 
Evaluation Metrics</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>System Architecture</span></a><ul><li 
class="level-2"><a class="final" href="/system/"><span>Architecture 
Overview</span></a></li><li class="level-2"><a class="final" 
href="/system/anotherdatastore/"><span>Using Another Data 
Store</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Engine Template Gallery</span></a><ul><li class="level-2"><a 
class="final" href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" 
href="/community/submit-template/"><span>Submit your Engine as a 
Template</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Demo Tutorials</span></a><ul><li class="level-2"><a class="final 
active" href="/demo/tapster/"><span>Comics Recommendation 
Demo</span></a></li><li class="level-2"><a class="final" 
 href="/demo/community/"><span>Community Contributed Demo</span></a></li><li 
class="level-2"><a class="final" href="/demo/textclassification/"><span>Text 
Classification Engine Tutorial</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="/community/"><span>Getting Involved</span></a><ul><li 
class="level-2"><a class="final" 
href="/community/contribute-code/"><span>Contribute Code</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-webhook/"><span>Contribute a 
Webhook</span></a></li><li class="level-2"><a class="final" 
href="/community/projects/"><span>Community 
Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Help</span></a><ul><li class="level-2"><a class=
 "final" href="/resources/faq/"><span>FAQs</span></a></li><li 
class="level-2"><a class="final" 
href="/support/"><span>Support</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Resources</span></a><ul><li 
class="level-2"><a class="final" href="/resources/intellij/"><span>Developing 
Engines with IntelliJ IDEA</span></a></li><li class="level-2"><a class="final" 
href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li 
class="level-2"><a class="final" 
href="/resources/glossary/"><span>Glossary</span></a></li></ul></li></ul></nav></div><div
 class="col-md-9 col-sm-12"><div class="content-header hidden-md 
hidden-lg"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a 
href="#">Demo Tutorials</a><span class="spacer">&gt;</span></li><li><span 
class="last">Comics Recommendation Demo</span></li></ul></div><div 
id="page-title"><h1>Comics Recommendation Demo</h1></div></div><div 
id="table-of-content-wrapper"><h5>On this page</h5><aside id="ta
 ble-of-contents"><ul> <li> <a href="#introduction">Introduction</a> </li> <li> 
<a href="#tapster-demo-application">Tapster Demo Application</a> </li> <li> <a 
href="#apache-predictionio-incubating-setup">Apache PredictionIO (incubating) 
Setup</a> </li> <li> <a href="#import-data">Import Data</a> </li> <li> <a 
href="#connect-demo-app-with-apache-predictionio-incubating">Connect Demo app 
with Apache PredictionIO (incubating)</a> </li> <li> <a href="#links">Links</a> 
</li> <li> <a href="#conclusion">Conclusion</a> </li> </ul> </aside><hr/><a 
id="edit-page-link" 
href="https://github.com/apache/incubator-predictionio/tree/livedoc/docs/manual/source/demo/tapster.html.md";><img
 src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div 
class="content-header hidden-sm hidden-xs"><div id="breadcrumbs" 
class="hidden-sm hidden xs"><ul><li><a href="#">Demo Tutorials</a><span 
class="spacer">&gt;</span></li><li><span class="last">Comics Recommendation 
Demo</span></li></ul></div><div
  id="page-title"><h1>Comics Recommendation Demo</h1></div></div><div 
class="content"><h2 id='introduction' 
class='header-anchors'>Introduction</h2><p>In this demo, we will show you how 
to build a Tinder-style web application (named &quot;Tapster&quot;) 
recommending comics to users based on their likes/dislikes of episodes 
interactively.</p><p>The demo will use <a 
href="https://docs.prediction.io/templates/similarproduct/quickstart/";>Similar 
Product Template</a>. Similar Product Template is a great choice if you want to 
make recommendations based on immediate user activities or for new users with 
limited history. It uses MLLib Alternating Least Squares (ALS) recommendation 
algorithm, a <a 
href="http://en.wikipedia.org/wiki/Recommender_system#Collaborative_filtering";>Collaborative
 filtering</a> (CF) algorithm commonly used for recommender systems. These 
techniques aim to fill in the missing entries of a user-item association 
matrix. Users and products are described by a small set of l
 atent factors that can be used to predict missing entries. A layman&#39;s 
interpretation of Collaborative Filtering is &quot;People who like this comic, 
also like these comics.&quot;</p><p>All the code and data is on GitHub at: <a 
href="https://github.com/PredictionIO/Demo-Tapster";>github.com/PredictionIO/Demo-Tapster</a>.</p><h3
 id='data' class='header-anchors'>Data</h3><p>The source of the data is from <a 
href="http://tapastic.com/";>Tapastic</a>. You can find the data files <a 
href="https://github.com/PredictionIO/Demo-Tapster/tree/master/data";>here</a>.</p><p>The
 data structure looks like this:</p><p><a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/data/episode_list.csv";>Episode
 List</a> <code>data/episode_list.csv</code></p><p><strong>Fields:</strong> 
episodeId | episodeTitle | episodeCategories | episodeUrl | 
episodeImageUrls</p><p>1,000 rows. Each row represents one episode.</p><p><a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/data/user_list
 .csv">User Like Event List</a> 
<code>data/user_list.csv</code></p><p><strong>Fields:</strong> userId | 
episodeId | likedTimestamp</p><p>192,587 rows. Each row represents one user 
like for the given episode.</p><p>The tutorial has four major steps:</p> <ul> 
<li>Demo application setup</li> <li>PredictionIO installation and setup</li> 
<li>Import data into database and PredictionIO</li> <li>Integrate demo 
application with PredictionIO</li> </ul> <h2 id='tapster-demo-application' 
class='header-anchors'>Tapster Demo Application</h2><p>The demo application is 
built using Rails.</p><p>You can clone the existing application with:</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span>git clone  
https://github.com/PredictionIO/Demo-Tapster.git
+<span class="gp">$ </span><span class="nb">cd </span>Demo-Tapster
+<span class="gp">$ </span>bundle install
+</pre></td></tr></tbody></table> </div> <p>You will need to edit 
<code>config/database.yml</code> to match your local database settings. We have 
provided some sensible defaults for PostgreSQL, MySQL, and SQLite.</p><p>Setup 
the database with:</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2</pre></td><td class="code"><pre><span class="gp">$ </span>rake db:create
+<span class="gp">$ </span>rake db:migrate
+</pre></td></tr></tbody></table> </div> <p>At this point, you should have the 
demo application ready but with an empty database. Lets import the episodes 
data into our database. We will do this with: <code>$ rake 
import:episodes</code>. An &quot;Episode&quot; is a single <a 
href="http://en.wikipedia.org/wiki/Comic_strip";>comic strip</a>.</p><p><a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/lib/tasks/import/episodes.rake";>View
 on GitHub</a></p><p>This script is pretty simple. It loops through the CSV 
file and creates a new episode for each line in the file in our local 
database.</p><p>You can start the app and point your browser to <a 
href="http://localhost:3000";>http://localhost:3000</a></p><div class="highlight 
shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" 
style="text-align: right"><pre class="lineno">1</pre></td><td 
class="code"><pre><span class="nv">$rails</span> server
+</pre></td></tr></tbody></table> </div> <p><img alt="Rails Server" 
src="/images/demo/tapster/rails-server-997d690e.png"/></p><h2 
id='apache-predictionio-(incubating)-setup' class='header-anchors'>Apache 
PredictionIO (incubating) Setup</h2><h3 
id='install-apache-predictionio-(incubating)' class='header-anchors'>Install 
Apache PredictionIO (incubating)</h3><p>Follow the installation instructions <a 
href="http://predictionio.incubator.apache.org/install/";>here</a> or simply 
run:</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1</pre></td><td class="code"><pre><span class="gp">$ </span>bash 
-c <span class="s2">"</span><span class="k">$(</span>curl -s 
https://raw.githubusercontent.com/apache/incubator-predictionio/master/bin/install.sh<span
 class="k">)</span><span class="s2">"</span>
+</pre></td></tr></tbody></table> </div> <p><img alt="PIO Install" 
src="/images/demo/tapster/pio-install-2d870aed.png"/></p><h3 
id='create-a-new-app' class='header-anchors'>Create a New App</h3><p>You will 
need to create a new app on Apache PredictionIO (incubating) to house the 
Tapster demo. You can do this with:</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1</pre></td><td class="code"><pre><span class="gp">$ 
</span>pio app new tapster
+</pre></td></tr></tbody></table> </div> <p>Take note of the App ID and Access 
Key.</p><p><img alt="PIO App New" 
src="/images/demo/tapster/pio-app-new-5a8ae503.png"/></p><h3 id='setup-engine' 
class='header-anchors'>Setup Engine</h3><p>We are going to copy the Similar 
Product Template into the PIO directory.</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2</pre></td><td class="code"><pre><span class="gp">$ </span><span 
class="nb">cd </span>PredictionIO
+<span class="gp">$ </span>pio template get 
apache/incubator-predictionio-template-similar-product tapster-episode-similar
+</pre></td></tr></tbody></table> </div> <p>Next we are going to update the App 
ID in the ‘engine.json’ file to match the App ID we just created.</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span><span 
class="nb">cd </span>tapster-episode-similar
+<span class="gp">$ </span>nano engine.json
+<span class="gp">$ </span><span class="nb">cd</span> ..
+</pre></td></tr></tbody></table> </div> <p><img alt="Engine Setup" 
src="/images/demo/tapster/pio-engine-setup-88e25cc0.png"/></p><h3 
id='modify--engine-template' class='header-anchors'>Modify Engine 
Template</h3><p>By the default, the engine template reads the “view” 
events. We can easily to change it to read “like” events.</p> <p>Modify 
<code>readTraining()</code> in DataSource.scala:</p><div class="highlight 
scala"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36</pre></td><td class="code"><pre>
+  <span class="k">override</span>
+  <span class="k">def</span> <span class="n">readTraining</span><span 
class="o">(</span><span class="n">sc</span><span class="k">:</span> <span 
class="kt">SparkContext</span><span class="o">)</span><span class="k">:</span> 
<span class="kt">TrainingData</span> <span class="o">=</span> <span 
class="o">{</span>
+
+    <span class="o">...</span>
+
+    <span class="k">val</span> <span class="n">viewEventsRDD</span><span 
class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span 
class="kt">ViewEvent</span><span class="o">]</span> <span class="k">=</span> 
<span class="n">eventsDb</span><span class="o">.</span><span 
class="n">find</span><span class="o">(</span>
+      <span class="n">appId</span> <span class="k">=</span> <span 
class="n">dsp</span><span class="o">.</span><span class="n">appId</span><span 
class="o">,</span>
+      <span class="n">entityType</span> <span class="k">=</span> <span 
class="nc">Some</span><span class="o">(</span><span 
class="s">"user"</span><span class="o">),</span>
+      <span class="n">eventNames</span> <span class="k">=</span> <span 
class="nc">Some</span><span class="o">(</span><span class="nc">List</span><span 
class="o">(</span><span class="s">"like"</span><span class="o">)),</span> <span 
class="c1">// MODIFIED
+</span>      <span class="c1">// targetEntityType is optional field of an 
event.
+</span>      <span class="n">targetEntityType</span> <span class="k">=</span> 
<span class="nc">Some</span><span class="o">(</span><span 
class="nc">Some</span><span class="o">(</span><span 
class="s">"item"</span><span class="o">)))(</span><span 
class="n">sc</span><span class="o">)</span>
+      <span class="c1">// eventsDb.find() returns RDD[Event]
+</span>      <span class="o">.</span><span class="n">map</span> <span 
class="o">{</span> <span class="n">event</span> <span class="k">=&gt;</span>
+        <span class="k">val</span> <span class="n">viewEvent</span> <span 
class="k">=</span> <span class="k">try</span> <span class="o">{</span>
+          <span class="n">event</span><span class="o">.</span><span 
class="n">event</span> <span class="k">match</span> <span class="o">{</span>
+            <span class="k">case</span> <span class="s">"like"</span> <span 
class="k">=&gt;</span> <span class="nc">ViewEvent</span><span 
class="o">(</span> <span class="c1">// MODIFIED
+</span>              <span class="n">user</span> <span class="k">=</span> 
<span class="n">event</span><span class="o">.</span><span 
class="n">entityId</span><span class="o">,</span>
+              <span class="n">item</span> <span class="k">=</span> <span 
class="n">event</span><span class="o">.</span><span 
class="n">targetEntityId</span><span class="o">.</span><span 
class="n">get</span><span class="o">,</span>
+              <span class="n">t</span> <span class="k">=</span> <span 
class="n">event</span><span class="o">.</span><span 
class="n">eventTime</span><span class="o">.</span><span 
class="n">getMillis</span><span class="o">)</span>
+            <span class="k">case</span> <span class="k">_</span> <span 
class="k">=&gt;</span> <span class="k">throw</span> <span class="k">new</span> 
<span class="nc">Exception</span><span class="o">(</span><span 
class="n">s</span><span class="s">"Unexpected event ${event} is 
read."</span><span class="o">)</span>
+          <span class="o">}</span>
+        <span class="o">}</span> <span class="k">catch</span> <span 
class="o">{</span>
+          <span class="k">case</span> <span class="n">e</span><span 
class="k">:</span> <span class="kt">Exception</span> <span 
class="o">=&gt;</span> <span class="o">{</span>
+            <span class="n">logger</span><span class="o">.</span><span 
class="n">error</span><span class="o">(</span><span class="n">s</span><span 
class="s">"Cannot convert ${event} to ViewEvent."</span> <span 
class="o">+</span>
+              <span class="n">s</span><span class="s">" Exception: 
${e}."</span><span class="o">)</span>
+            <span class="k">throw</span> <span class="n">e</span>
+          <span class="o">}</span>
+        <span class="o">}</span>
+        <span class="n">viewEvent</span>
+      <span class="o">}</span>
+
+    <span class="o">...</span>
+  <span class="o">}</span>
+<span class="o">}</span>
+
+</pre></td></tr></tbody></table> </div> <p>Finally to build the engine we will 
run:</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span><span 
class="nb">cd </span>tapster-episode-similar
+<span class="gp">$ </span>pio build
+<span class="gp">$ </span><span class="nb">cd</span> ..
+</pre></td></tr></tbody></table> </div> <p><img alt="PIO Build" 
src="/images/demo/tapster/pio-build-e6eb1d7c.png"/></p><h2 id='import-data' 
class='header-anchors'>Import Data</h2><p>Once everything is installed, start 
the event server by running: <code>$ pio eventserver</code></p><p><img 
alt="Event Server" 
src="/images/demo/tapster/pio-eventserver-88889ec0.png"/></p><div 
class="alert-message info"><p>You can check the status of Apache PredictionIO 
(incubating) at any time by running: <code>$ pio 
status</code></p></div><p>ALERT: If your laptop goes to sleep you might 
manually need to restart HBase with:</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span><span 
class="nb">cd </span>PredictionIO/venders/hbase-0.98.6/bin
+<span class="gp">$ </span>./stop-hbase.sh
+<span class="gp">$ </span>./start-hbase.sh
+</pre></td></tr></tbody></table> </div> <p>The key event we are importing into 
Apache PredictionIO (incubating) event server is the &quot;Like&quot; event 
(for example, user X likes episode Y).</p><p>We will send this data to Apache 
PredictionIO (incubating) by executing <code>$ rake import:predictionio</code> 
command.</p><p><a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/lib/tasks/import/predictionio.rake";>View
 on GitHub</a></p><p>This script is a little more complex. First we need to 
connect to the Event Server.</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1</pre></td><td class="code"><pre>client <span 
class="o">=</span> PredictionIO::EventClient.new<span 
class="o">(</span>ENV[<span class="s1">'PIO_ACCESS_KEY'</span><span 
class="o">]</span>, ENV[<span class="s1">'PIO_EVENT_SERVER_URL'</span><span 
class="o">]</span>, THREADS<span class="o">)</span>
+</pre></td></tr></tbody></table> </div> <p>You will need to create the 
environmental variables <code>PIO_ACCESS_KEY</code> and 
<code>PIO_EVENT_SERVER_URL</code>. The default Event Server URL is: <a 
href="http://localhost:7070";>http://localhost:7070</a>.</p><div 
class="alert-message info"><p>If you forget your <strong>Access Key</strong> 
you can always run: <code>$ pio app list</code></p></div><p>You can set these 
values in the <code>.env</code> file located in the application root directory 
and it will be automatically loaded into your environment each time Rails is 
run.</p><p>The next part of the script loops through each line of the 
<code>data/user_list.csv</code> file and returns an array of unique user and 
episode IDs. Once we have those we can send the data to Apache PredictionIO 
(incubating) like this.</p><p>First the users:</p><div class="highlight 
shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5</pre></td><td class="code"><pre>user_ids.each_with_index <span 
class="k">do</span> |id, i|
+  <span class="c"># Send unique user IDs to PredictionIO.</span>
+  client.aset_user<span class="o">(</span>id<span class="o">)</span>
+  puts <span class="s2">"Sent user ID #{id} to PredictionIO. Action #{i + 1} 
of #{user_count}"</span>
+end
+</pre></td></tr></tbody></table> </div> <p>And now the episodes:</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17</pre></td><td class="code"><pre>episode_ids.each_with_index <span 
class="k">do</span> |id, i|
+  <span class="c"># Load episode from database - we will need this to include 
the categories!</span>
+  episode <span class="o">=</span> Episode.where<span 
class="o">(</span>episode_id: id<span class="o">)</span>.take
+
+  <span class="k">if </span>episode
+    <span class="c"># Send unique episode IDs to PredictionIO.</span>
+    client.acreate_event<span class="o">(</span>
+      <span class="s1">'$set'</span>,
+      <span class="s1">'item'</span>,
+      id,
+      properties: <span class="o">{</span> categories: episode.categories 
<span class="o">}</span>
+    <span class="o">)</span>
+    puts <span class="s2">"Sent episode ID #{id} to PredictionIO. Action #{i + 
1} of #{episode_count}"</span>
+  <span class="k">else
+    </span>puts <span class="s2">"Episode ID #{id} not found in database! 
Skipping!"</span>.color<span class="o">(</span>:red<span class="o">)</span>
+  end
+end
+</pre></td></tr></tbody></table> </div> <p>Finally we loop through the 
<code>data/user_list.csv</code> file a final time to send the like 
events:</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14</pre></td><td class="code"><pre>CSV.foreach<span 
class="o">(</span>USER_LIST, headers: <span class="nb">true</span><span 
class="o">)</span> <span class="k">do</span> |row|
+  user_id <span class="o">=</span> row[0] <span class="c"># userId</span>
+  episode_id <span class="o">=</span> row[1] <span class="c"># episodeId</span>
+
+  <span class="c"># Send like to PredictionIO.</span>
+  client.acreate_event<span class="o">(</span>
+    <span class="s1">'like'</span>,
+    <span class="s1">'user'</span>,
+    user_id,
+    <span class="o">{</span> <span class="s1">'targetEntityType'</span> <span 
class="o">=</span>&gt; <span class="s1">'item'</span>, <span 
class="s1">'targetEntityId'</span> <span class="o">=</span>&gt; episode_id 
<span class="o">}</span>
+  <span class="o">)</span>
+
+  puts <span class="s2">"Sent user ID #{user_id} liked episode ID 
#{episode_id} to PredictionIO. Action #{</span><span 
class="nv">$INPUT_LINE_NUMBER</span><span class="s2">} of #{line_count}."</span>
+end
+</pre></td></tr></tbody></table> </div> <p>In total the script takes about 4 
minutes to run on a basic laptop. At this point all the data is now imported to 
Apache PredictionIO (incubating).</p><p><img alt="Import" 
src="/images/demo/tapster/pio-import-predictionio-1ecd11fd.png"/></p><h3 
id='engine-training' class='header-anchors'>Engine Training</h3><p>We train the 
engine with the following command:</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2</pre></td><td class="code"><pre><span class="gp">$ </span><span 
class="nb">cd </span>tapster-episode-similar
+<span class="gp">$ </span>pio train -- --driver-memory 4g
+</pre></td></tr></tbody></table> </div> <p><img alt="PIO Train" 
src="/images/demo/tapster/pio-train-7edffad4.png"/></p><p>Using the 
--driver-memory option to limit the memory used by Apache PredictionIO 
(incubating). Without this Apache PredictionIO (incubating) can consume too 
much memory leading to a crash. You can adjust the 4g up or down depending on 
your system specs.</p><p>You can set up a job to periodically retrain the 
engine so the model is updated with the latest dataset.</p><h3 
id='deploy-model' class='header-anchors'>Deploy Model</h3><p>You can deploy the 
model with: <code>$ pio deploy</code> from the 
<code>tapster-episode-similar</code> directory.</p><p>At this point, you have 
an demo app with data and a Apache PredictionIO (incubating) server with a 
trained model all setup. Next, we will connect the two so you can log the live 
interaction (likes) events into Apache PredictionIO (incubating) event server 
and query the engine server for recommendation.</p><h2 id='connect
 -demo-app-with-apache-predictionio-(incubating)' 
class='header-anchors'>Connect Demo app with Apache PredictionIO 
(incubating)</h2><h3 id='overview' class='header-anchors'>Overview</h3><p>On a 
high level the application keeps a record of each like and dislike. It uses 
jQuery to send an array of both likes and dislikes to the server on each click. 
The server then queries Apache PredictionIO (incubating) for a similar episode 
which is relayed to jQuery and displayed to the user.</p><p>Data flow:</p> <ul> 
<li>The user likes an episode.</li> <li>Tapster sends the &quot;Like&quot; 
event to Apache PredictionIO (incubating) event server.</li> <li>Tapster 
queries Apache PredictionIO (incubating) engine with all the episodes the user 
has rated (likes and dislikes) in this session.</li> <li>Apache PredictionIO 
(incubating) returns 1 recommended episode.</li> </ul> <h3 id='javascript' 
class='header-anchors'>JavaScript</h3><p>All the important code lives in 
<code>app/assets/javascripts/applicat
 ion.js</code> <a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/app/assets/javascripts/application.js";>View
 on GitHub</a></p><p>Most of this file is just handlers for click things, 
displaying the loading dialog and other such things.</p><p>The most important 
function is to query the Rails server for results from Apache PredictionIO 
(incubating).</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14</pre></td><td class="code"><pre>// Query the server <span class="k">for 
</span>a comic based on previous likes. See episodes#query.
+queryPIO: <span class="k">function</span><span class="o">()</span> <span 
class="o">{</span>
+  var _this <span class="o">=</span> this; // For closure.
+  <span class="nv">$.</span>ajax<span class="o">({</span>
+    url: <span class="s1">'/episodes/query'</span>,
+    <span class="nb">type</span>: <span class="s1">'POST'</span>,
+    data: <span class="o">{</span>
+      likes: JSON.stringify<span class="o">(</span>_this.likes<span 
class="o">)</span>,
+      dislikes: JSON.stringify<span class="o">(</span>_this.dislikes<span 
class="o">)</span>,
+    <span class="o">}</span>
+  <span class="o">})</span>.done<span class="o">(</span><span 
class="k">function</span><span class="o">(</span>data<span class="o">)</span> 
<span class="o">{</span>
+    _this.setComic<span class="o">(</span>data<span class="o">)</span>;
+  <span class="o">})</span>;
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <h3 id='rails' 
class='header-anchors'>Rails</h3><p>On the Rails side all the fun things happen 
in the episodes controller locates at: 
<code>app/controllers/episodes_controller</code> <a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/app/controllers/episodes_controller.rb";>View
 on GitHub</a>.</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32</pre></td><td class="code"><pre>def query
+  <span class="c"># Create PredictionIO client.</span>
+  client <span class="o">=</span> PredictionIO::EngineClient.new<span 
class="o">(</span>ENV[<span class="s1">'PIO_ENGINE_URL'</span><span 
class="o">])</span>
+
+  <span class="c"># Get posted likes and dislikes.</span>
+  likes <span class="o">=</span> ActiveSupport::JSON.decode<span 
class="o">(</span>params[:likes]<span class="o">)</span>
+  dislikes <span class="o">=</span> ActiveSupport::JSON.decode<span 
class="o">(</span>params[:dislikes]<span class="o">)</span>
+
+  <span class="k">if </span>likes.empty?
+    <span class="c"># We can't query PredictionIO with no likes so</span>
+    <span class="c"># we will return a random comic instead.</span>
+    @episode <span class="o">=</span> random_episode
+
+    render json: @episode
+    <span class="k">return
+  </span>end
+
+  <span class="c"># Query PredictionIO.</span>
+  <span class="c"># Here we black list the disliked items so they are not 
shown again!</span>
+  response <span class="o">=</span> client.send_query<span 
class="o">(</span>items: likes, blackList: dislikes,  num: 1<span 
class="o">)</span>
+
+  <span class="c"># With a real application you would want to do some</span>
+  <span class="c"># better sanity checking of the response here!</span>
+
+  <span class="c"># Get ID of response.</span>
+  id <span class="o">=</span> response[<span 
class="s1">'itemScores'</span><span class="o">][</span>0][<span 
class="s1">'item'</span><span class="o">]</span>
+
+  <span class="c"># Find episode in database.</span>
+  @episode <span class="o">=</span> Episode.where<span 
class="o">(</span>episode_id: id<span class="o">)</span>.take
+
+  render json: @episode
+end
+</pre></td></tr></tbody></table> </div> <p>On the first line we make a 
connection to Apache PredictionIO (incubating). You will need to set the 
<code>PIO_ENGINE_URL</code>. This can be done in the <code>.env</code> file. 
The default URL is: <a 
href="http://localhost:8000";>http://localhost:8000</a>.</p><p>Next we decode 
the JSON sent from the browser.</p><p>After that we check to see if the user 
has liked anything yet. If not we just return a random episode.</p><p>If the 
user has likes then we can send that data to Apache PredictionIO (incubating) 
event server.</p><p>We also blacklist the dislikes so that they are not 
returned.</p><p>With our response from Apache PredictionIO (incubating) it’s 
just a matter of looking it up in the database and rendering that object as 
JSON.</p><p>Once the response is sent to the browser JavaScript is used to 
replace the existing comic and hide the loading message.</p><p>Thats it. 
You’re done! If Ruby is not your language of choice check out our o
 ther <a href="http://docs.prediction.io/sdk/";>SDKs</a> and remember you can 
always interact with the Event Server though it’s native JSON API.</p><h2 
id='links' class='header-anchors'>Links</h2><p>Source code is on GitHub at: <a 
href="https://github.com/PredictionIO/Demo-Tapster";>github.com/PredictionIO/Demo-Tapster</a></p><h2
 id='conclusion' class='header-anchors'>Conclusion</h2><p>Love this tutorial 
and Apache PredictionIO (incubating)? Both are open source (Apache 2 License). 
<a href="https://github.com/PredictionIO/Demo-Tapster";>Fork</a> this demo and 
build upon it. If you produce something cool shoot us an email and we will link 
to it from here.</p><p>Found a typo? Think something should be explained 
better? This tutorial (and all our other documenation) live in the main repo <a 
href="https://github.com/apache/incubator-predictionio/blob/livedoc/docs/manual/source/demo/tapster.html.md";>here</a>.
 Our documentation is in the <code>livedoc</code> branch. Find out how to 
contribu
 te documentation at <a 
href="http://predictionio.incubator.apache.org/community/contribute-documentation/";>http://predictionio.incubator.apache.org/community/contribute-documentation/</a>].</p><p>We
 &hearts; pull requests!</p></div></div></div></div><footer><div 
class="container"><div class="seperator"></div><div class="row"><div 
class="col-md-6 col-xs-6 footer-link-column"><div 
class="footer-link-column-row"><h4>Community</h4><ul><li><a 
href="//docs.prediction.io/install/" target="blank">Download</a></li><li><a 
href="//docs.prediction.io/" target="blank">Docs</a></li><li><a 
href="//github.com/apache/incubator-predictionio" 
target="blank">GitHub</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to User Mailing List</a></li><li><a 
href="//stackoverflow.com/questions/tagged/predictionio" 
target="blank">Stackoverflow</a></li></ul></div></div><div class="col-md-6 
col-xs-6 footer-link-column"><div class="footer-link-column-row"><h4>Con
 tribute</h4><ul><li><a 
href="//predictionio.incubator.apache.org/community/contribute-code/" 
target="blank">Contribute</a></li><li><a 
href="//github.com/apache/incubator-predictionio" target="blank">Source 
Code</a></li><li><a href="//issues.apache.org/jira/browse/PIO" 
target="blank">Bug Tracker</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to Development Mailing 
List</a></li></ul></div></div></div></div><div id="footer-bottom"><div 
class="container"><div class="row"><div class="col-md-12"><div 
id="footer-logo-wrapper"><img alt="PredictionIO" 
src="/images/logos/logo-white-d1e9c6e6.png"/></div><div 
id="social-icons-wrapper"><a class="github-button" 
href="https://github.com/apache/incubator-predictionio"; data-style="mega" 
data-count-href="/apache/incubator-predictionio/stargazers" 
data-count-api="/repos/apache/incubator-predictionio#stargazers_count" 
data-count-aria-label="# stargazers on GitHub" aria-label="Star 
apache/incubator-
 predictionio on GitHub">Star</a> <a class="github-button" 
href="https://github.com/apache/incubator-predictionio/fork"; 
data-icon="octicon-git-branch" data-style="mega" 
data-count-href="/apache/incubator-predictionio/network" 
data-count-api="/repos/apache/incubator-predictionio#forks_count" 
data-count-aria-label="# forks on GitHub" aria-label="Fork 
apache/incubator-predictionio on GitHub">Fork</a> <script id="github-bjs" 
async="" defer="" src="https://buttons.github.io/buttons.js";></script><a 
href="//www.facebook.com/predictionio" target="blank"><img alt="PredictionIO on 
Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a 
href="//twitter.com/predictionio" target="blank"><img alt="PredictionIO on 
Facebook" src="/images/icons/facebook-5c57939c.png"/></a> 
</div></div></div></div></div></footer></div><script>(function(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+(w[n].q=w[n].q||[]).push(arguments);};s=d.createElement(t);
+e=d.getElementsByTagName(t)[0];s.async=1;s.src=u;e.parentNode.insertBefore(s,e);
+})(window,document,'script','//s.swiftypecdn.com/install/v1/st.js','_st');
+
+_st('install','HaUfpXXV87xoB_zzCQ45');</script><script 
src="/javascripts/application-280db181.js"></script></body></html>
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/0bdbf8fe/demo/tapster/index.html.gz
----------------------------------------------------------------------
diff --git a/demo/tapster/index.html.gz b/demo/tapster/index.html.gz
new file mode 100644
index 0000000..fda62f7
Binary files /dev/null and b/demo/tapster/index.html.gz differ


Reply via email to