http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/921d6861/docs/manual/build/fonts/bootstrap/glyphicons-halflings-regular.woff2
----------------------------------------------------------------------
diff --git 
a/docs/manual/build/fonts/bootstrap/glyphicons-halflings-regular.woff2 
b/docs/manual/build/fonts/bootstrap/glyphicons-halflings-regular.woff2
new file mode 100644
index 0000000..64539b5
Binary files /dev/null and 
b/docs/manual/build/fonts/bootstrap/glyphicons-halflings-regular.woff2 differ

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/921d6861/docs/manual/build/gallery/template-gallery/index.html
----------------------------------------------------------------------
diff --git a/docs/manual/build/gallery/template-gallery/index.html 
b/docs/manual/build/gallery/template-gallery/index.html
new file mode 100644
index 0000000..26f09d2
--- /dev/null
+++ b/docs/manual/build/gallery/template-gallery/index.html
@@ -0,0 +1,6 @@
+<!DOCTYPE html><html><head><title>Engine Template Gallery</title><meta 
charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="Engine Template Gallery"/><link 
rel="canonical" 
href="https://docs.prediction.io/gallery/template-gallery/"/><link 
href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-3a3867f7.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><script
 src="//cdn.mathjax.org/mathjax/l
 atest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script 
src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.incubator.apache.org/";><img 
alt="PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a></div><div id="menu-wrapper"><div 
id="pill-wrapper"><a class="pill left" 
href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/incubator-predictionio/">OPEN 
SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md 
hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" 
id="search-bar-row"><div class="row"><div class="col-md-9 col-sm-11 
col-xs-11"><div class="
 hidden-md hidden-lg" id="mobile-page-heading-wrapper"><p>PredictionIO 
Docs</p><h4>Browse</h4></div><h4 class="hidden-sm hidden-xs">PredictionIO 
Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 hidden-md hidden-lg"><img 
id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md 
hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div 
class="row"><div id="left-menu-wrapper" class="col-md-3"><nav id
 ="nav-main"><ul><li class="level-1"><a class="expandible" 
href="/"><span>Apache PredictionIO (incubating) Documentation</span></a><ul><li 
class="level-2"><a class="final" href="/"><span>Welcome to Apache PredictionIO 
(incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Started</span></a><ul><li class="level-2"><a 
class="final" href="/start/"><span>A Quick Intro</span></a></li><li 
class="level-2"><a class="final" href="/install/"><span>Installing Apache 
PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" 
href="/start/download/"><span>Downloading an Engine Template</span></a></li><li 
class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your 
First Engine</span></a></li><li class="level-2"><a class="final" 
href="/start/customize/"><span>Customizing the 
Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Integrating with Your App</span></a><ul><li class="leve
 l-2"><a class="final" href="/appintegration/"><span>App Integration 
Overview</span></a></li><li class="level-2"><a class="expandible" 
href="/sdk/"><span>List of SDKs</span></a><ul><li class="level-3"><a 
class="final" href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
SDK</span></a></li><li class="level-3"><a class="final" 
href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered 
SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
Service</span></a></li><li class="level-2"><a class="final" 
href="/cli/#engine-commands"><span>Engine Command-line 
Interface</span></a></li><li class="level-2"><a class="fi
 nal" href="/deploy/monitoring/"><span>Monitoring Engine</span></a></li><li 
class="level-2"><a class="final" href="/deploy/engineparams/"><span>Setting 
Engine Parameters</span></a></li><li class="level-2"><a class="final" 
href="/deploy/enginevariants/"><span>Deploying Multiple Engine 
Variants</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Customizing an Engine</span></a><ul><li class="level-2"><a 
class="final" href="/customize/"><span>Learning DASE</span></a></li><li 
class="level-2"><a class="final" href="/customize/dase/"><span>Implement 
DASE</span></a></li><li class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>Engine Scala 
APIs</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Collecting and Analyzing Data</span></a><ul><li 
class="level-2"><a class="final" href="/datacollec
 tion/"><span>Event Server Overview</span></a></li><li class="level-2"><a 
class="final" href="/cli/#event-server-commands"><span>Event Server 
Command-line Interface</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventapi/"><span>Collecting Data with 
REST/SDKs</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
Webhooks</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/channel/"><span>Channel</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/batchimport/"><span>Importing Data in 
Batch</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/analytics/"><span>Using Analytics 
Tools</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Choosing an Algorithm(s)</span></a><ul><li class="level-2"
 ><a class="final" href="/algorithm/"><span>Built-in Algorithm 
 >Libraries</span></a></li><li class="level-2"><a class="final" 
 >href="/algorithm/switch/"><span>Switching to Another 
 >Algorithm</span></a></li><li class="level-2"><a class="final" 
 >href="/algorithm/multiple/"><span>Combining Multiple 
 >Algorithms</span></a></li><li class="level-2"><a class="final" 
 >href="/algorithm/custom/"><span>Adding Your Own 
 >Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
 >href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
 >class="final" href="/evaluation/"><span>Overview</span></a></li><li 
 >class="level-2"><a class="final" 
 >href="/evaluation/paramtuning/"><span>Hyperparameter 
 >Tuning</span></a></li><li class="level-2"><a class="final" 
 >href="/evaluation/evaluationdashboard/"><span>Evaluation 
 >Dashboard</span></a></li><li class="level-2"><a class="final" 
 >href="/evaluation/metricchoose/"><span>Choosing Evaluation 
 >Metrics</span></a></li><li class="level-2"><a cl
 ass="final" href="/evaluation/metricbuild/"><span>Building Evaluation 
Metrics</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>System Architecture</span></a><ul><li class="level-2"><a 
class="final" href="/system/"><span>Architecture Overview</span></a></li><li 
class="level-2"><a class="final" href="/system/anotherdatastore/"><span>Using 
Another Data Store</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li 
class="level-2"><a class="final active" 
href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" 
href="/community/submit-template/"><span>Submit your Engine as a 
Template</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Demo Tutorials</span></a><ul><li class="level-2"><a 
class="final" href="/demo/tapster/"><span>Comics Recommendation 
Demo</span></a></li><li class="level-2"><a class="final" href="/demo/co
 mmunity/"><span>Community Contributed Demo</span></a></li><li 
class="level-2"><a class="final" href="/demo/textclassification/"><span>Text 
Classification Engine Tutorial</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="/community/"><span>Getting Involved</span></a><ul><li 
class="level-2"><a class="final" 
href="/community/contribute-code/"><span>Contribute Code</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-webhook/"><span>Contribute a 
Webhook</span></a></li><li class="level-2"><a class="final" 
href="/community/projects/"><span>Community 
Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Help</span></a><ul><li class="level-2"><a class="final" 
href="
 /resources/faq/"><span>FAQs</span></a></li><li class="level-2"><a 
class="final" href="/support/"><span>Support</span></a></li></ul></li><li 
class="level-1"><a class="expandible" 
href="#"><span>Resources</span></a><ul><li class="level-2"><a class="final" 
href="/resources/intellij/"><span>Developing Engines with IntelliJ 
IDEA</span></a></li><li class="level-2"><a class="final" 
href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li 
class="level-2"><a class="final" 
href="/resources/glossary/"><span>Glossary</span></a></li></ul></li></ul></nav></div><div
 class="col-md-9 col-sm-12"><div class="content-header hidden-md 
hidden-lg"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a 
href="#">Engine Template Gallery</a><span 
class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div></div><div id="table-of-content-wrapper"><a 
id="edit-page-link" href="https://github.com/apache/incubat
 
or-predictionio/tree/livedoc/docs/manual/source/gallery/template-gallery.html.md"><img
 src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div 
class="content-header hidden-sm hidden-xs"><div id="breadcrumbs" 
class="hidden-sm hidden xs"><ul><li><a href="#">Engine Template 
Gallery</a><span class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div></div><div class="content"><p>Pick a tab for the 
type of template you are looking for. Some still need to be ported (a simple 
process) to Apache PIO and these are marked. Also see each Template description 
for special support instructions.</p><div class="tabs"> <ul class="control"> 
<li data-lang=""><a 
href="#tab-1ed4e89d-1dce-4011-ab35-933ead081dc6">Recommenders</a></li> <li 
data-lang=""><a 
href="#tab-b8693bd1-ed31-4426-b1d8-bd81dacaaf10">Classification</a></li> <li 
data-lang=""><a href="#tab-93326e7e-1595-42d7-94e3-a866a4d23fea">Regression<
 /a></li> <li data-lang=""><a 
href="#tab-425c5868-d11f-4f67-8d14-a909f65d072e">NLP</a></li> <li 
data-lang=""><a 
href="#tab-374751cb-b3ee-4d31-81cf-13cb403ffbc2">Clustering</a></li> <li 
data-lang=""><a 
href="#tab-ce89c5b2-38fc-497f-b4ca-58faa24b3c7b">Similarity</a></li> <li 
data-lang=""><a href="#tab-bd9a1955-033b-406c-874d-c37e89fde5cf">Other</a></li> 
</ul> <div data-tab="Recommenders" 
id="tab-1ed4e89d-1dce-4011-ab35-933ead081dc6"> <h3><a 
href="https://github.com/actionml/universal-recommender";>The Universal 
Recommender</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=actionml&amp;repo=universal-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Use for: </p> <ul class="tab-list"> <li 
class="tab-list-element">Personalized recommendations—user-based</li> <li 
class="tab-list-element">Similar items—item-based</li> <li 
class="tab-list-element">Viewed this bought that—item-based cross-action</
 li> <li class="tab-list-element">Popular Items and User-defined ranking</li> 
<li class="tab-list-element">Item-set recommendations for complimentarty 
purchases or shopping carts—item-set-based</li> <li 
class="tab-list-element">Hybrid collaborative filtering and content based 
recommendations—limited content-based</li> <li 
class-tab-list-element>Business rules</li> </ul> <p>The name "Universal" refers 
to the use of this template in virtually any case that calls for 
recommendations - ecommerce, news, videos, virtually anywhere user behavioral 
data is known. This recommender uses the new <a 
href="http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html";>Cross-Occurrence
 (CCO) algorithm</a> to auto-correlate different user actions (clickstream 
data), profile data, contextual information (location, device), and some 
content types to make better recommendations. It also implements flexible 
filters and boosts for implementing business rules.</p> <p>Support: <a 
href="https
 ://groups.google.com/forum/#!forum/actionml-user">The Universal Recommender 
user group</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-recommender";>Recommendation</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> An engine template is an almost-complete 
implementation of an engine. PredictionIO's Recommendation Engine Template has 
integrated Apache Spark MLlib's Collaborative Filtering algorithm by default. 
You can customize it easily to fit your specific needs. 
 </p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-ecom-recommender";>E-Commerce
 Recommendation</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-ecom-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template provides personalized 
recommendation for e-commerce applications with the following features by 
default: </p> <ul class="tab-list"> <li class="tab-list-element">Exclude 
out-of-stock items<
 /li> <li class="tab-list-element">Provide recommendation to new users who sign 
up after the model is trained</li> <li class="tab-list-element">Recommend 
unseen items only (configurable)</li> <li class="tab-list-element">Recommend 
popular items if no information about the user is available (added in template 
version v0.4.0)</li> </ul> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-similar-product";>Similar
 Product</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-similar-product&amp;type
 =star&amp;count=true" frameborder="0" align="middle" scrolling="0" 
width="170px" height="20px"></iframe> <p> This engine template recommends 
products that are "similar" to the input product(s). Similarity is not defined 
by user or item attributes but by users' previous actions. By default, it uses 
'view' action such that product A and B are considered similar if most users 
who view A also view B. The template can be customized to support other action 
types such as buy, rate, like..etc </p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-java-ec
 om-recommender">E-Commerce Recommendation (Java)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-java-ecom-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template provides personalized 
recommendation for e-commerce applications with the following features by 
default: </p> <ul class="tab-list"> <li class="tab-list-element">Exclude 
out-of-stock items</li> <li class="tab-list-element">Provide recommendation to 
new users who sign up after the model is trained</li> <li 
class="tab-list-element">Recommend unseen items only (configurable)</li> <li 
class="tab-list-element">Recommend popular items if no information about the 
user is available</li> </ul> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Stat
 us</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> </tr> 
<tr> <td>Parallel</td> <td>Java</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.3</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-productranking";>Product
 Ranking</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-productranking&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template sorts a list of products for a 
user based on his/her preference. This is ideal for personalizing the display 
order of product page, catalog, or menu items if you have large number of 
options. It creates engagement and early conversion by placing products that a 
user prefers on the top. </p> <p>Support: </p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</
 th> <th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-complementarypurchase";>Complementary
 Purchase</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-complementarypurchase&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template recommends the complementary 
items which most user frequently buy at the same time with one or more items in 
the query. </p> <p>Support: </p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td>
  </tr> </table> <br> <h3><a 
href="https://github.com/vaibhavist/template-scala-parallel-recommendation";>Music
 Recommendations</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=vaibhavist&amp;repo=template-scala-parallel-recommendation&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is very similar to music recommendations 
template. It is integrated with all the events a music application can have 
such as song played, liked, downloaded, purchased, etc. </p> <p>Support: <a 
href="https://github.com/vaibhavist/template-scala-parallel-recommendation/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a href="https://github.com/
 vngrs/template-scala-parallel-viewedthenbought">Viewed This Bought 
That</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=vngrs&amp;repo=template-scala-parallel-viewedthenbought&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This Engine uses co-occurence algorithm to match 
viewed items to bought items. Using this engine you may predict which item the 
user will buy, given the item(s) browsed. </p> <p>Support: <a 
href="https://github.com/vngrs/template-scala-parallel-viewedthenbought/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Template uses FP Growth algorithm allowing to mine 
for frequent patterns. Template returns subsequent items together with 
confidence score. Sometimes used as a shopping cart recommender but has other 
uses. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-fpm/issues";>Github issues</a></p> 
<br> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating";>Similar
 Product with Rating</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=ramaboo&amp;rep
 
o=template-scala-parallel-similarproduct-with-rating&amp;type=star&amp;count=true"
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Similar product template with rating support! Used 
for the MovieLens Demo. </p> <p>Support: <a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Template uses FP Growth al
 gorithm allowing to mine for frequent patterns. Template returns subsequent 
items together with confidence score. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-fpm/issues";>Github issues</a></p> 
<br> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> </tr> </table> <br> 
</div> <div data-tab="Classification" 
id="tab-b8693bd1-ed31-4426-b1d8-bd81dacaaf10"> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-attribute-based-classifier";>Classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-attribute-based-classifier&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> An engine template is an almost-
 complete implementation of an engine. PredictionIO's Classification Engine 
Template has integrated Apache Spark MLlib's Naive Bayes algorithm by default. 
</p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>already compatible</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-leadscoring";>Lead 
Scoring</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-leadscoring&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template predicts the probability of an 
user will convert (conversion event by use
 r) in the current session. </p> <p>Support: </p> <br> <table> <tr> 
<th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> <th>PIO min 
version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-text-classifier";>Text
 Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-text-classifier&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Use this engine for general text classification 
purposes. Uses OpenNLP library for text vectorization, includes 
t.f.-i.d.f.-based feature transformation and reduction, and uses Spark MLLib's 
Multinomial Naive Bayes implementation for classification. </p> <p>Support: <a 
href="https://github.com/apac
 he/incubator-predictionio-template-text-classifier/issues">Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/andrewwuan/PredictionIO-Churn-Prediction-H2O-Sparkling-Water";>Churn
 Prediction - H2O Sparkling Water</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=andrewwuan&amp;repo=PredictionIO-Churn-Prediction-H2O-Sparkling-Water&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is an engine template with Sparkling Water 
integration. The goal is to use Deep Learning algorithm to predict the churn 
rate for a phone carrier's customers. </p> <p>Support: <a 
href="https://github.com/andrewwuan/PredictionIO-Chur
 n-Prediction-H2O-Sparkling-Water/issues">Github issues</a></p> <br> <table> 
<tr> <th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> <th>PIO 
min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/detrevid/predictionio-template-classification-dl4j";>Classification
 Deeplearning4j</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=detrevid&amp;repo=predictionio-template-classification-dl4j&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A classification engine template that uses 
Deeplearning4j library. </p> <p>Support: <a 
href="https://github.com/detrevid/predictionio-template-classification-dl4j/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO
  min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs";>Probabilistic
 Classifier (Logistic Regression w/ LBFGS)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=EmergentOrder&amp;repo=template-scala-probabilistic-classifier-batch-lbfgs&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A PredictionIO engine template using logistic 
regression (trained with limited-memory BFGS ) with raw (probabilistic) 
outputs. </p> <p>Support: <a 
href="https://github.com/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>
 Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> 
<td>MIT License</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/chrischris292/template-classification-opennlp";>Document
 Classification with OpenNLP</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=chrischris292&amp;repo=template-classification-opennlp&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Document Classification template with OpenNLP 
GISModel. </p> <p>Support: <a 
href="https://github.com/chrischris292/template-classification-opennlp/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table
 > <br> <h3><a 
 > href="https://github.com/harry5z/template-circuit-classification-sparkling-water";>Circuit
 >  End Use Classification</a></h3> <iframe 
 > src="https://ghbtns.com/github-btn.html?user=harry5z&amp;repo=template-circuit-classification-sparkling-water&amp;type=star&amp;count=true";
 >  frameborder="0" align="middle" scrolling="0" width="170px" 
 > height="20px"></iframe> <p> A classification engine template that uses 
 > machine learning models trained with sample circuit energy consumption data 
 > and end usage to predict the end use of a circuit by its energy consumption 
 > history. </p> <p>Support: <a 
 > href="https://github.com/harry5z/template-circuit-classification-sparkling-water/issues";>Github
 >  issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 > <th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
 > Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> 
 > <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.1</td> <td>requires 
 > conversion</td> </tr> </table
 > <br> <h3><a 
 > href="https://github.com/ailurus1991/GBRT_Template_PredictionIO";>GBRT_Classification</a></h3>
 >  <iframe 
 > src="https://ghbtns.com/github-btn.html?user=ailurus1991&amp;repo=GBRT_Template_PredictionIO&amp;type=star&amp;count=true";
 >  frameborder="0" align="middle" scrolling="0" width="170px" 
 > height="20px"></iframe> <p> The Gradient-Boosted Regression Trees(GBRT) for 
 > classification. </p> <p>Support: <a 
 > href="https://github.com/ailurus1991/GBRT_Template_PredictionIO/issues";>Github
 >  issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 > <th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
 > Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> 
 > <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires 
 > conversion</td> </tr> </table> <br> <h3><a 
 > href="https://github.com/mohanaprasad1994/PredictionIO-MLlib-Decision-Trees-Template";>MLlib-Decision-Trees-Template</a></h3>
 >  <iframe src="https://ghbtns.com/github-btn.html?user=mohanapras
 
ad1994&amp;repo=PredictionIO-MLlib-Decision-Trees-Template&amp;type=star&amp;count=true"
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> An engine template is an almost-complete 
implementation of an engine. This is a classification engine template which has 
integrated Apache Spark MLlib's Decision tree algorithm by default. </p> 
<p>Support: <a 
href="https://github.com/mohanaprasad1994/PredictionIO-MLlib-Decision-Trees-Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/jimmyywu/predictionio-template-classification-dl4j-multilayer-network";>Classification
 with MultiLayerNetwork</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?u
 
ser=jimmyywu&amp;repo=predictionio-template-classification-dl4j-multilayer-network&amp;type=star&amp;count=true"
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template integrates the 
MultiLayerNetwork implementation from the Deeplearning4j library into 
PredictionIO. In this template, we use PredictionIO to classify the 
widely-known IRIS flower dataset by constructing a deep-belief net. </p> 
<p>Support: <a 
href="https://github.com/jimmyywu/predictionio-template-classification-dl4j-multilayer-network/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/ts335793/template-scala-parallel-dl4j-rntn";>Deeplearning4j
 RNTN</a></h3> <iframe
  
src="https://ghbtns.com/github-btn.html?user=ts335793&amp;repo=template-scala-parallel-dl4j-rntn&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Recursive Neural Tensor Network algorithm is 
supervised learning algorithm used to predict sentiment of sentences. This 
template is based on deeplearning4j RNTN example: 
https://github.com/SkymindIO/deeplearning4j-nlp-examples/tree/master/src/main/java/org/deeplearning4j/rottentomatoes/rntn.
 It's goal is to show how to integrate deeplearning4j library with 
PredictionIO. </p> <p>Support: <a 
href="https://github.com/ts335793/template-scala-parallel-dl4j-rntn/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table
 > <br> <h3><a 
 > href="https://github.com/singsanj/classifier-kafka-streaming-template";>classifier-kafka-streaming-template</a></h3>
 >  <iframe 
 > src="https://ghbtns.com/github-btn.html?user=singsanj&amp;repo=classifier-kafka-streaming-template&amp;type=star&amp;count=true";
 >  frameborder="0" align="middle" scrolling="0" width="170px" 
 > height="20px"></iframe> <p> The template will provide a simple integration 
 > of DASE with kafka using spark streaming capabilites in order to play around 
 > with real time notification, messages .. </p> <p>Support: <a 
 > href="https://github.com/singsanj/classifier-kafka-streaming-template/issues";>Github
 >  issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 > <th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
 > Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> 
 > <td>Apache Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires 
 > conversion</td> </tr> </table> <br> <h3><a 
 > href="https://github.com/peoplehum/BagOfWords_SentimentAn
 alysis_Template">Sentiment Analysis - Bag of Words Model</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=BagOfWords_SentimentAnalysis_Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This sentiment analysis template uses a bag of 
words model. Given text, the engine will return sentiment as 1.0 (positive) or 
0.0 (negative) along with scores indicating how +ve or -ve it is. </p> 
<p>Support: <a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> </div> <div data-tab="Regression" 
id="tab-93326e7e-1595-42d7-94e3-a866a4d23fea"
 > <h3><a href="https://github.com/goliasz/pio-template-sr";>Survival 
 > Regression</a></h3> <iframe 
 > src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-sr&amp;type=star&amp;count=true";
 >  frameborder="0" align="middle" scrolling="0" width="170px" 
 > height="20px"></iframe> <p> Survival regression template is based on brand 
 > new Spark 1.6 AFT (accelerated failure time) survival analysis algorithm. 
 > There are interesting applications of survival analysis like: </p> <ul 
 > class="tab-list"> <li class="tab-list-element">Business Planning : Profiling 
 > customers who has a higher survival rate and make strategy accordingly.</li> 
 > <li class="tab-list-element">Lifetime Value Prediction : Engage with 
 > customers according to their lifetime value</li> <li 
 > class="tab-list-element">Active customers : Predict when the customer will 
 > be active for the next time and take interventions accordingly. * Campaign 
 > evaluation : Monitor effect of campaign on the survival rate of 
 > customers.</li> </ul> So
 urce: http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/ 
<p>Support: <a 
href="http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/";>Blog
 post</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.9.5</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/BensonQiu/predictionio-template-recommendation-sparklingwater";>Sparkling
 Water-Deep Learning Energy Forecasting</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=BensonQiu&amp;repo=predictionio-template-recommendation-sparklingwater&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This Engine Template demonstrates an energy 
forecasting engine. It integrates Deep Learning from the Sparkling Wat
 er library to perform energy analysis. We can query the circuit and time, and 
return predicted energy usage. </p> <p>Support: <a 
href="https://github.com/BensonQiu/predictionio-template-recommendation-sparklingwater/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/detrevid/predictionio-load-forecasting";>Electric Load 
Forecasting</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=detrevid&amp;repo=predictionio-load-forecasting&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is a PredictionIO engine for electric load 
forecasting. The engine is using linear regression with stochastic gradient desc
 ent from Spark MLlib. </p> <p>Support: <a 
href="https://github.com/detrevid/predictionio-load-forecasting/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/RAditi/PredictionIO-MLLib-LinReg-Template";>MLLib-LinearRegression</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=RAditi&amp;repo=PredictionIO-MLLib-LinReg-Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template uses the linear regression with 
stochastic gradient descent algorithm from MLLib to make predictions on 
real-valued data based on features (explanatory variables) </p> <p>Support: <a 
href="https://github.com/RAditi/Predi
 ctionIO-MLLib-LinReg-Template/issues">Github issues</a></p> <br> <table> <tr> 
<th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> <th>PIO min 
version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.1</td> <td>requires conversion</td> </tr> </table> <br> </div> <div 
data-tab="NLP" id="tab-425c5868-d11f-4f67-8d14-a909f65d072e"> <h3><a 
href="https://github.com/goliasz/pio-template-text-similarity";>Cstablo-template-text-similarity-classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-text-similarity&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Text similarity engine based on Word2Vec algorithm. 
Builds vectors of full documents in training phase. Finds similar documents in 
query phase. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-text-similar
 ity/issues">Github issues</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.5</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/peoplehum/template-Labelling-LDA-Topics-with-wikipedia";>Topic
 Labelling with Wikipedia</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=template-Labelling-LDA-Topics-with-wikipedia&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template will label topics (e.g. topic 
generated through LDA topic modeling) with relevant category by referring to 
Wikipedia as a knowledge base. </p> <p>Support: <a 
href="https://github.com/peoplehum/template-Labelling-LDA-Topics-with-wikipedia/issues";>Github
 issues</a></p> <br> <table> <tr> <th
 >Type</th> <th>Language</th> <th>License</th> <th>Status</th> <th>PIO min 
 >version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
 ><td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> 
 ><td>0.10.0-incubating</td> <td>already compatible</td> </tr> </table> <br> 
 ><h3><a 
 >href="https://github.com/apache/incubator-predictionio-template-text-classifier";>Text
 > Classification</a></h3> <iframe 
 >src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-text-classifier&amp;type=star&amp;count=true";
 > frameborder="0" align="middle" scrolling="0" width="170px" 
 >height="20px"></iframe> <p> Use this engine for general text classification 
 >purposes. Uses OpenNLP library for text vectorization, includes 
 >t.f.-i.d.f.-based feature transformation and reduction, and uses Spark 
 >MLLib's Multinomial Naive Bayes implementation for classification. </p> 
 ><p>Support: <a 
 >href="https://github.com/apache/incubator-predictionio-template-text-classifier/issues";
 >Github issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 ><th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
 >Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> 
 ><td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires 
 >conversion</td> </tr> </table> <br> <h3><a 
 >href="https://github.com/ts335793/template-scala-parallel-dl4j-rntn";>Deeplearning4j
 > RNTN</a></h3> <iframe 
 >src="https://ghbtns.com/github-btn.html?user=ts335793&amp;repo=template-scala-parallel-dl4j-rntn&amp;type=star&amp;count=true";
 > frameborder="0" align="middle" scrolling="0" width="170px" 
 >height="20px"></iframe> <p> Recursive Neural Tensor Network algorithm is 
 >supervised learning algorithm used to predict sentiment of sentences. This 
 >template is based on deeplearning4j RNTN example: 
 >https://github.com/SkymindIO/deeplearning4j-nlp-examples/tree/master/src/main/java/org/deeplearning4j/rottentomatoes/rntn.
 > It's goal is to show how to integrate deeplearning4j lib
 rary with PredictionIO. </p> <p>Support: <a 
href="https://github.com/ts335793/template-scala-parallel-dl4j-rntn/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template";>Sentiment
 Analysis - Bag of Words Model</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=BagOfWords_SentimentAnalysis_Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This sentiment analysis template uses a bag of 
words model. Given text, the engine will return sentiment as 1.0 (positive) or 
0.0 (negative) along with scores indicating how +ve or -ve it is. </p> <p>
 Support: <a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/vshwnth2/OpenNLP-SentimentAnalysis-Template";>OpenNLP 
Sentiment Analysis Template</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=vshwnth2&amp;repo=OpenNLP-SentimentAnalysis-Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Given a sentence, this engine will return a score 
between 0 and 4. This is the sentiment of the sentence. The lower the number 
the more negative the sentence is. It uses the OpenNLP library. </p> 
<p>Support: <a href="https://gi
 thub.com/vshwnth2/OpenNLP-SentimentAnalysis-Template/issues">Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a 
href="https://github.com/pawel-n/template-scala-cml-sentiment";>Sentiment 
analysis</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=pawel-n&amp;repo=template-scala-cml-sentiment&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template implements various algorithms for 
sentiment analysis, most based on recursive neural networks (RNN) and recursive 
neural tensor networks (RNTN)[1]. It uses an experimental library called 
Composable Machine Learning (CML) and the Stanford Parser. The example data set 
is the Stanford Sentiment
  Treebank. </p> <p>Support: <a 
href="https://github.com/pawel-n/template-scala-cml-sentiment/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/pawel-n/template-scala-parallel-word2vec";>Word2Vec</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=pawel-n&amp;repo=template-scala-parallel-word2vec&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template integrates the Word2Vec 
implementation from deeplearning4j with PredictionIO. The Word2Vec algorithm 
takes a corpus of text and computes a vector representation for each word. 
These representations can be subsequently used in many natural language pr
 ocessing applications. </p> <p>Support: <a 
href="https://github.com/pawel-n/template-scala-parallel-word2vec/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/ts335793/template-scala-spark-dl4j-word2vec";>Spark 
Deeplearning4j Word2Vec</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=ts335793&amp;repo=template-scala-spark-dl4j-word2vec&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template shows how to integrate Deeplearnign4j 
spark api with PredictionIO on example of app which uses Word2Vec algorithm to 
predict nearest words. </p> <p>Support: <a 
href="https://github.com/ts335793/template-scal
 a-spark-dl4j-word2vec/issues">Github issues</a></p> <br> <table> <tr> 
<th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> <th>PIO min 
version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/whhone/template-sentiment-analysis";>Sentiment Analysis 
Template</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=whhone&amp;repo=template-sentiment-analysis&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Given a sentence, return a score between 0 and 4, 
indicating the sentence's sentiment. 0 being very negative, 4 being very 
positive, 2 being neutral. The engine uses the stanford CoreNLP library and the 
Scala binding `gangeli/CoreNLP-Scala` for parsing. </p> <p>Support: <a 
href="https://github.com/whhone/template-sentiment-an
 alysis/issues">Github issues</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>None</td> <td>stable</td> <td>0.9.0</td> <td>requires 
conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/ts335793/template-scala-rnn";>Recursive Neural Networks 
(Sentiment Analysis)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=ts335793&amp;repo=template-scala-rnn&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Predicting sentiment of phrases with use of 
Recursive Neural Network algorithm and OpenNLP parser. </p> <p>Support: <a 
href="https://github.com/ts335793/template-scala-rnn/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </
 tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>stable</td> <td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> 
<h3><a href="https://github.com/Ling-Ling/CoreNLP-Text-Classification";>CoreNLP 
Text Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=Ling-Ling&amp;repo=CoreNLP-Text-Classification&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine uses CoreNLP to do text analysis in 
order to classify the category a strings of text falls under. </p> <p>Support: 
<a 
href="https://github.com/Ling-Ling/CoreNLP-Text-Classification/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires conversion</td> </tr> 
</table> <br> </div
 > <div data-tab="Clustering" id="tab-374751cb-b3ee-4d31-81cf-13cb403ffbc2"> 
 > <h3><a 
 > href="https://github.com/sahiliitm/predictionio-MLlibKMeansClusteringTemplate";>MLlibKMeansClustering</a></h3>
 >  <iframe 
 > src="https://ghbtns.com/github-btn.html?user=sahiliitm&amp;repo=predictionio-MLlibKMeansClusteringTemplate&amp;type=star&amp;count=true";
 >  frameborder="0" align="middle" scrolling="0" width="170px" 
 > height="20px"></iframe> <p> This is a template which demonstrates the use of 
 > K-Means clustering algorithm which can be deployed on a spark-cluster using 
 > prediction.io. </p> <p>Support: <a 
 > href="https://github.com/sahiliitm/predictionio-MLlibKMeansClusteringTemplate/issues";>Github
 >  issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 > <th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
 > Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> 
 > <td>Apache Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires 
 > conversion</td> </tr> </table> <br> <h3><a hre
 f="https://github.com/EmergentOrder/template-scala-topic-model-LDA";>Topc Model 
(LDA)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=EmergentOrder&amp;repo=template-scala-topic-model-LDA&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A PredictionIO engine template using Latent 
Dirichlet Allocation to learn a topic model from raw text </p> <p>Support: <a 
href="https://github.com/EmergentOrder/template-scala-topic-model-LDA/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.4</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/singsanj/KMeans-parallel-template";>KMeans-Clustering-Template</a></h3>
 <iframe src="https://ghbtns.com/github-btn.html?user=sin
 gsanj&amp;repo=KMeans-parallel-template&amp;type=star&amp;count=true" 
frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> forked from 
PredictionIO/template-scala-parallel-vanilla. It implements the KMeans 
Algorithm. Can be extended to mainstream implementation with minor changes. 
</p> <p>Support: <a 
href="https://github.com/singsanj/KMeans-parallel-template/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/peoplehum/template-Labelling-LDA-Topics-with-wikipedia";>Topic
 Labelling with Wikipedia</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=template-Labelling-LDA-Topics-with-wikipedia&amp;type=star&amp;count=true";
  frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template will label topics (e.g. topic 
generated through LDA topic modeling) with relevant category by referring to 
Wikipedia as a knowledge base. </p> <p>Support: <a 
href="https://github.com/peoplehum/template-Labelling-LDA-Topics-with-wikipedia/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> </div> <div data-tab="Similarity" 
id="tab-ce89c5b2-38fc-497f-b4ca-58faa24b3c7b"> <h3><a 
href="https://github.com/alexice/template-scala-parallel-svd-item-similarity";>Content
 Based SVD Item Similarity Engine</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=alexice&amp;repo=template-scala-parallel-svd-ite
 m-similarity&amp;type=star&amp;count=true" frameborder="0" align="middle" 
scrolling="0" width="170px" height="20px"></iframe> <p> Template to calculate 
similarity between items based on their attributes—sometimes called 
content-based similarity. Attributes can be either numeric or categorical in 
the last case it will be encoded using one-hot encoder. Algorithm uses SVD in 
order to reduce data dimensionality. Cosine similarity is now implemented but 
can be easily extended to other similarity measures. </p> <p>Support: <a 
href="https://groups.google.com/forum/#!forum/actionml-user";>The Universal 
Recommender user group</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/goliasz/pio-template-text-similar
 ity">Cstablo-template-text-similarity-classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-text-similarity&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Text similarity engine based on Word2Vec algorithm. 
Builds vectors of full documents in training phase. Finds similar documents in 
query phase. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-text-similarity/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating";>Similar
 Product with Rating</a></h3> <iframe src="https://ghbtns.com/gith
 
ub-btn.html?user=ramaboo&amp;repo=template-scala-parallel-similarproduct-with-rating&amp;type=star&amp;count=true"
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Similar product template with rating support! Used 
for the MovieLens Demo. </p> <p>Support: <a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> </div> <div data-tab="Other" 
id="tab-bd9a1955-033b-406c-874d-c37e89fde5cf"> <h3><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=star&amp;count=true";
 frame
 border="0" align="middle" scrolling="0" width="170px" height="20px"></iframe> 
<p> Template uses FP Growth algorithm allowing to mine for frequent patterns. 
Template returns subsequent items together with confidence score. </p> 
<p>Support: <a href="https://github.com/goliasz/pio-template-fpm/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/anthill/template-decision-tree-feature-importance";>template-decision-tree-feature-importance</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=anthill&amp;repo=template-decision-tree-feature-importance&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template 
 shows how to use spark' decision tree. It enables : - both categorical and 
continuous features - feature importance calculation - tree output in json - 
reading training data from a csv file </p> <p>Support: <a 
href="https://github.com/anthill/template-decision-tree-feature-importance/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-skeleton";>Skeleton</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-skeleton&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Skeleton template is for developing new engine when 
you f
 ind other engine templates do not fit your needs. This template provides a 
skeleton to kick start new engine development. </p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>already compatible</td> 
</tr> </table> <br> </div> </div> </div></div></div></div><footer><div 
class="container"><div class="seperator"></div><div class="row"><div 
class="col-md-6 col-xs-6 footer-link-column"><div 
class="footer-link-column-row"><h4>Community</h4><ul><li><a 
href="//docs.prediction.io/install/" target="blank">Download</a></li><li><a 
href="//docs.prediction.io/" target="blank">Docs</a></li><li><a 
href="//github.com/apache/incubator-predictionio" 
target="blank">GitHub</a></li><li><a h
 ref="mailto:[email protected]"; 
target="blank">Subscribe to User Mailing List</a></li><li><a 
href="//stackoverflow.com/questions/tagged/predictionio" 
target="blank">Stackoverflow</a></li></ul></div></div><div class="col-md-6 
col-xs-6 footer-link-column"><div 
class="footer-link-column-row"><h4>Contribute</h4><ul><li><a 
href="//predictionio.incubator.apache.org/community/contribute-code/" 
target="blank">Contribute</a></li><li><a 
href="//github.com/apache/incubator-predictionio" target="blank">Source 
Code</a></li><li><a href="//issues.apache.org/jira/browse/PIO" 
target="blank">Bug Tracker</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to Development Mailing 
List</a></li></ul></div></div></div></div><div id="footer-bottom"><div 
class="container"><div class="row"><div class="col-md-12"><div 
id="footer-logo-wrapper"><img alt="PredictionIO" 
src="/images/logos/logo-white-d1e9c6e6.png"/></div><div id="social
 -icons-wrapper"><a class="github-button" 
href="https://github.com/apache/incubator-predictionio"; data-style="mega" 
data-count-href="/apache/incubator-predictionio/stargazers" 
data-count-api="/repos/apache/incubator-predictionio#stargazers_count" 
data-count-aria-label="# stargazers on GitHub" aria-label="Star 
apache/incubator-predictionio on GitHub">Star</a> <a class="github-button" 
href="https://github.com/apache/incubator-predictionio/fork"; 
data-icon="octicon-git-branch" data-style="mega" 
data-count-href="/apache/incubator-predictionio/network" 
data-count-api="/repos/apache/incubator-predictionio#forks_count" 
data-count-aria-label="# forks on GitHub" aria-label="Fork 
apache/incubator-predictionio on GitHub">Fork</a> <script id="github-bjs" 
async="" defer="" src="https://buttons.github.io/buttons.js";></script><a 
href="//www.facebook.com/predictionio" target="blank"><img alt="PredictionIO on 
Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a 
href="//twitter.com/predictionio" 
 target="blank"><img alt="PredictionIO on Facebook" 
src="/images/icons/facebook-5c57939c.png"/></a> 
</div></div></div></div></div></footer></div><script>(function(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+(w[n].q=w[n].q||[]).push(arguments);};s=d.createElement(t);
+e=d.getElementsByTagName(t)[0];s.async=1;s.src=u;e.parentNode.insertBefore(s,e);
+})(window,document,'script','//s.swiftypecdn.com/install/v1/st.js','_st');
+
+_st('install','HaUfpXXV87xoB_zzCQ45');</script><script 
src="/javascripts/application-f819cf19.js"></script></body></html>
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/921d6861/docs/manual/build/gallery/template-gallery/index.html.gz
----------------------------------------------------------------------
diff --git a/docs/manual/build/gallery/template-gallery/index.html.gz 
b/docs/manual/build/gallery/template-gallery/index.html.gz
new file mode 100644
index 0000000..cc3742c
Binary files /dev/null and 
b/docs/manual/build/gallery/template-gallery/index.html.gz differ

Reply via email to