http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/4e16ed29/demo/supervisedlearning/index.html
----------------------------------------------------------------------
diff --git a/demo/supervisedlearning/index.html 
b/demo/supervisedlearning/index.html
new file mode 100644
index 0000000..cad556e
--- /dev/null
+++ b/demo/supervisedlearning/index.html
@@ -0,0 +1,6 @@
+<!DOCTYPE html><html><head><title>Machine Learning With 
PredictionIO</title><meta charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="Machine Learning With 
PredictionIO"/><link rel="canonical" 
href="https://predictionio.incubator.apache.org/demo/supervisedlearning/"/><link
 href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-3a3867f7.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><scr
 ipt 
src="//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script
 src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.incubator.apache.org/";><img 
alt="PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a></div><div id="menu-wrapper"><div 
id="pill-wrapper"><a class="pill left" 
href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/incubator-predictionio/">OPEN 
SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md 
hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" 
id="search-bar-row"><div class="row"><div class="col-md
 -9 col-sm-11 col-xs-11"><div class="hidden-md hidden-lg" 
id="mobile-page-heading-wrapper"><p>PredictionIO Docs</p><h4>Machine Learning 
With PredictionIO</h4></div><h4 class="hidden-sm hidden-xs">PredictionIO 
Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 hidden-md hidden-lg"><img 
id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md 
hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div 
 class="row"><div id="left-menu-wrapper" class="col-md-3"><nav 
id="nav-main"><ul><li class="level-1"><a class="expandible" 
href="/"><span>Apache PredictionIO (incubating) Documentation</span></a><ul><li 
class="level-2"><a class="final" href="/"><span>Welcome to Apache PredictionIO 
(incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Started</span></a><ul><li class="level-2"><a 
class="final" href="/start/"><span>A Quick Intro</span></a></li><li 
class="level-2"><a class="final" href="/install/"><span>Installing Apache 
PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" 
href="/start/download/"><span>Downloading an Engine Template</span></a></li><li 
class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your 
First Engine</span></a></li><li class="level-2"><a class="final" 
href="/start/customize/"><span>Customizing the 
Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" href="
 #"><span>Integrating with Your App</span></a><ul><li class="level-2"><a 
class="final" href="/appintegration/"><span>App Integration 
Overview</span></a></li><li class="level-2"><a class="expandible" 
href="/sdk/"><span>List of SDKs</span></a><ul><li class="level-3"><a 
class="final" href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
SDK</span></a></li><li class="level-3"><a class="final" 
href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered 
SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
Service</span></a></li><li class="level-2"><a class="final" 
href="/batchpredict/"><span>Batch Predictions</s
 pan></a></li><li class="level-2"><a class="final" 
href="/deploy/monitoring/"><span>Monitoring Engine</span></a></li><li 
class="level-2"><a class="final" href="/deploy/engineparams/"><span>Setting 
Engine Parameters</span></a></li><li class="level-2"><a class="final" 
href="/deploy/enginevariants/"><span>Deploying Multiple Engine 
Variants</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Customizing an Engine</span></a><ul><li class="level-2"><a 
class="final" href="/customize/"><span>Learning DASE</span></a></li><li 
class="level-2"><a class="final" href="/customize/dase/"><span>Implement 
DASE</span></a></li><li class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>Engine Scala 
APIs</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Collecting and Analyzing Data</span></a><ul><li class
 ="level-2"><a class="final" href="/datacollection/"><span>Event Server 
Overview</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventapi/"><span>Collecting Data with 
REST/SDKs</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
Webhooks</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/channel/"><span>Channel</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/batchimport/"><span>Importing Data in 
Batch</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/analytics/"><span>Using Analytics 
Tools</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Choosing an Algorithm(s)</span></a><ul><li class="level-2"><a 
class="final" href="/algorithm/"><span>Built-in Algorithm Libraries</span></a></
 li><li class="level-2"><a class="final" 
href="/algorithm/switch/"><span>Switching to Another 
Algorithm</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/multiple/"><span>Combining Multiple 
Algorithms</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/custom/"><span>Adding Your Own 
Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
class="final" href="/evaluation/"><span>Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/evaluationdashboard/"><span>Evaluation 
Dashboard</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricchoose/"><span>Choosing Evaluation 
Metrics</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricbuild/"><span>Building Evaluation Metrics</span>
 </a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>System Architecture</span></a><ul><li class="level-2"><a 
class="final" href="/system/"><span>Architecture Overview</span></a></li><li 
class="level-2"><a class="final" href="/system/anotherdatastore/"><span>Using 
Another Data Store</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>PredictionIO Official 
Templates</span></a><ul><li class="level-2"><a class="final" 
href="/templates/"><span>Intro</span></a></li><li class="level-2"><a 
class="expandible" href="#"><span>Recommendation</span></a><ul><li 
class="level-3"><a class="final" 
href="/templates/recommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/recommendation/evaluation/"><span>Evaluation 
Explained</span></a></li><li class="level-3"><a class="final" href="/template
 s/recommendation/how-to/"><span>How-To</span></a></li><li class="level-3"><a 
class="final" 
href="/templates/recommendation/reading-custom-events/"><span>Read Custom 
Events</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-data-prep/"><span>Customize Data 
Preparator</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-serving/"><span>Customize 
Serving</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/training-with-implicit-preference/"><span>Train 
with Implicit Preference</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/blacklist-items/"><span>Filter Recommended 
Items by Blacklist in Query</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/batch-evaluator/"><span>Batch Persistable 
Evaluator</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>E-Commerce Recommendation</sp
 an></a><ul><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/how-to/"><span>How-To</span></a></li><li
 class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/train-with-rate-event/"><span>Train 
with Rate Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/adjust-score/"><span>Adjust 
Score</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Similar Product</span></a><ul><li class="level-3"><a 
class="final" href="/templates/similarproduct/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" href="/templa
 tes/similarproduct/how-to/"><span>How-To</span></a></li><li class="level-3"><a 
class="final" 
href="/templates/similarproduct/multi-events-multi-algos/"><span>Multiple 
Events and Multiple Algorithms</span></a></li><li class="level-3"><a 
class="final" 
href="/templates/similarproduct/return-item-properties/"><span>Returns Item 
Properties</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/train-with-rate-event/"><span>Train with Rate 
Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/rid-user-set-event/"><span>Get Rid of Events 
for Users</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/recommended-user/"><span>Recommend 
Users</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Classification</span></a><ul><li class="level-3"><a 
class="final" href="/templates/classification/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="fina
 l" href="/templates/classification/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/add-algorithm/"><span>Use Alternative 
Algorithm</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/reading-custom-properties/"><span>Read Custom 
Properties</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li 
class="level-2"><a class="final" 
href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" 
href="/community/submit-template/"><span>Submit your Engine as a 
Template</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Demo Tutorials</span></a><ul><li class="level-2"><a 
class="final" href="/demo/tapster/"><span>Comics Recommendation 
Demo</span></a></li><li cla
 ss="level-2"><a class="final" href="/demo/community/"><span>Community 
Contributed Demo</span></a></li><li class="level-2"><a class="final" 
href="/demo/textclassification/"><span>Text Classification Engine 
Tutorial</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="/community/"><span>Getting Involved</span></a><ul><li class="level-2"><a 
class="final" href="/community/contribute-code/"><span>Contribute 
Code</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-webhook/"><span>Contribute a 
Webhook</span></a></li><li class="level-2"><a class="final" 
href="/community/projects/"><span>Community 
Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Help</span></a><ul
 ><li class="level-2"><a class="final" 
 >href="/resources/faq/"><span>FAQs</span></a></li><li class="level-2"><a 
 >class="final" href="/support/"><span>Support</span></a></li></ul></li><li 
 >class="level-1"><a class="expandible" 
 >href="#"><span>Resources</span></a><ul><li class="level-2"><a class="final" 
 >href="/cli/"><span>Command-line Interface</span></a></li><li 
 >class="level-2"><a class="final" href="/resources/release/"><span>Release 
 >Cadence</span></a></li><li class="level-2"><a class="final" 
 >href="/resources/intellij/"><span>Developing Engines with IntelliJ 
 >IDEA</span></a></li><li class="level-2"><a class="final" 
 >href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li 
 >class="level-2"><a class="final" 
 >href="/resources/glossary/"><span>Glossary</span></a></li></ul></li><li 
 >class="level-1"><a class="expandible" href="#"><span>Apache Software 
 >Foundation</span></a><ul><li class="level-2"><a class="final" 
 >href="https://www.apache.org/";><span>Apache Homepage</span></a></li><li
  class="level-2"><a class="final" 
href="https://www.apache.org/licenses/";><span>License</span></a></li><li 
class="level-2"><a class="final" 
href="https://www.apache.org/foundation/sponsorship.html";><span>Sponsorship</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/foundation/thanks.html";><span>Thanks</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/security/";><span>Security</span></a></li></ul></li></ul></nav></div><div
 class="col-md-9 col-sm-12"><div class="content-header hidden-md 
hidden-lg"><div id="page-title"><h1>Machine Learning With 
PredictionIO</h1></div></div><div id="table-of-content-wrapper"><h5>On this 
page</h5><aside id="table-of-contents"><ul> <li> <a 
href="#introduction-to-supervised-learning">Introduction to Supervised 
Learning</a> </li> <li> <a 
href="#predictionio-and-supervised-learning">PredictionIO and Supervised 
Learning</a> </li> </ul> </aside><hr/><a id="edit-page-link" 
href="https://github.com/ap
 
ache/incubator-predictionio/tree/livedoc/docs/manual/source/demo/supervisedlearning.html.md"><img
 src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div 
class="content-header hidden-sm hidden-xs"><div id="page-title"><h1>Machine 
Learning With PredictionIO</h1></div></div><div class="content"> <p>This guide 
is designed to give developers a brief introduction to fundamental concepts in 
machine learning, as well as an explanation of how these concept tie into 
PredictionIO&#39;s engine development platform. This particular guide will 
largely deal with giving some</p><h2 id='introduction-to-supervised-learning' 
class='header-anchors'>Introduction to Supervised Learning</h2><p>The first 
question we must ask is: what is machine learning? <strong>Machine 
learning</strong> is the field of study at the intersection of computer 
science, engineering, mathematics, and statistics which seeks to discover or 
infer patterns hidden within a set of observations, which we call our d
 ata. Some examples of problems that machine learning seeks to solve are:</p> 
<ul> <li>Predict whether a patient has breast cancer based on their mammogram 
results.</li> <li>Predict whether an e-mail is spam or not based on the 
e-mail&#39;s content.</li> <li>Predict today&#39;s temperature based on climate 
variables collected for the previous week.</li> </ul> <h3 
id='thinking-about-data' class='header-anchors'>Thinking About Data</h3><p>In 
the latter examples, we are trying to predict an outcome \(Y\), or 
<strong>response</strong>, based on some recorded or observed variables \(X\), 
or <strong>features</strong>. For example: in the third problem each 
observation is a patient, the response variable \(Y\) is equal to 1 if this 
patient has breast cancer and 0 otherwise, and \(X\) represents the mammogram 
results.</p><p>When we say we want to predict \(Y\) using \(X\), we are trying 
to answer the question: how does a response \(Y\) depend on a set of features 
\(X\) affect the response \(
 Y\)? To do this we need a set of observations, which we call our 
<strong>training data</strong>, consisting of observations for which we have 
observed both \(Y\) and \(X\), in order to make inference about this 
relationship.</p><h3 id='different-types-of-supervised-learning-problems' 
class='header-anchors'>Different Types of Supervised Learning 
Problems</h3><p>Note that in the first two examples, the outcome \(Y\) can only 
take on two values (1 : cancer/spam, 0: no cancer/ no spam). Whenever the 
outcome variable \(Y\) denotes a label associated to a particular group of 
observations (i.e. cancer group), the <strong>supervised learning</strong> 
problem is also called a <strong>classification</strong> problem. In the third 
example, however, \(Y\) can take on any numerical value since it denotes some 
temperature reading (i.e. 25.143, 25.14233, 32.0). These types of supervised 
learning problems are also called <strong>regression</strong> problems.</p><h3 
id='training-a-predictive-model' 
 class='header-anchors'>Training a Predictive Model</h3><p>A predictive model 
should be thought of as a function \(f\) that takes as input a set of features, 
and outputs a predicted outcome (i.e. \(f(X) = Y\)). The phrase 
<strong>training a model</strong> simply refers to the process of using the 
training data to estimate such a function. </p><h2 
id='predictionio-and-supervised-learning' class='header-anchors'>PredictionIO 
and Supervised Learning</h2><p>Machine learning methods generally assume that 
our observation responses and features are numeric vectors. We will say that 
observations in this format are in <strong>standard form</strong>. However, 
when you are working with real-life data this will often not be the case. The 
data will often be formatted in a manner that is specific to the 
application&#39;s needs. As an example, let&#39;s suppose our application is <a 
href="http://stackoverflow.com";>StackOverFlow</a>. The data we want to analyze 
are questions, and we want to predict 
 based on a question&#39;s content whether or not it is related to 
Scala.</p><p><strong>Self-check:</strong> Is this a classification or 
regression problem?</p><h3 id='thinking-about-data-with-predictionio' 
class='header-anchors'>Thinking About Data With 
PredictionIO</h3><p>PredictionIO&#39;s predictive engine development platform 
allows you to easily incorporate observations that are not in standard form. 
Continuing with our example, we can import the observations, or StackOverFlow 
questions, into <a href="/datacollection/">PredictionIO&#39;s Event Server</a> 
as events with the following properties:</p><p><code>properties = {question : 
String, topic : String}</code></p><p>The value <code>question</code> is the 
actual question stored as a <code>String</code>, and topic is also a string 
equal to either <code>&quot;Scala&quot;</code> or 
<code>&quot;Other&quot;</code>. Our outcome here is <code>topic</code>, and 
<code>question</code> will provide a source for extracting features. That i
 s, we will be using <code>question</code> to predict the outcome 
<code>topic</code>.</p><p>Once the observations are loaded as events into the 
Event Server, the engine&#39;s <a href="/customize/">Data Source</a> component 
is able to read them, which allows you to treat them as objects in a Scala 
project. The engine&#39;s Preparator component is in charge of converting these 
observations into standard form. To do this, we can first map the topic values 
as follows:</p><p><code>Map(&quot;Other&quot; -&gt; 0, &quot;Scala&quot; -&gt; 
1)</code>.</p><p>We can then vectorize the observation&#39;s associated 
question text to obtain a numeric feature vector for each of our observations. 
This text vectorization procedure is an example of a general concept in machine 
learning called <strong>feature extraction</strong>. After performing these 
transformations of our observations, they are now in standard form and can be 
used for training a large quantity of machine learning models.</p><h3 id='tra
 ining-the-model-with-predictionio' class='header-anchors'>Training the Model 
With PredictionIO</h3><p>The Algorithm engine component serves two purposes: 
outputting a predictive model \(f\) and using this to predict the outcome 
variable. Here \(f\) takes as input a vectorized question and outputs either 0 
or 1. However, our <code>Query</code> input will be again a question, and our 
<code>PredictedResult</code> the topic associated to the predicted label (0 or 
1):</p><p><code>Query = {question : String}</code> <code>PredictedResult = 
{topic : String}</code></p><p>With PredictionIO&#39;s engine development 
platform, you can easily automate the vectorization of the Query question, as 
well as mapping the predicted label to the appropriate topic output 
format.</p></div></div></div></div><footer><div class="container"><div 
class="seperator"></div><div class="row"><div class="col-md-6 
footer-link-column"><div 
class="footer-link-column-row"><h4>Community</h4><ul><li><a 
href="//predictionio.
 incubator.apache.org/install/" target="blank">Download</a></li><li><a 
href="//predictionio.incubator.apache.org/" target="blank">Docs</a></li><li><a 
href="//github.com/apache/incubator-predictionio" 
target="blank">GitHub</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to User Mailing List</a></li><li><a 
href="//stackoverflow.com/questions/tagged/predictionio" 
target="blank">Stackoverflow</a></li></ul></div></div><div class="col-md-6 
footer-link-column"><div 
class="footer-link-column-row"><h4>Contribute</h4><ul><li><a 
href="//predictionio.incubator.apache.org/community/contribute-code/" 
target="blank">Contribute</a></li><li><a 
href="//github.com/apache/incubator-predictionio" target="blank">Source 
Code</a></li><li><a href="//issues.apache.org/jira/browse/PIO" 
target="blank">Bug Tracker</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to Development Mailing List</a></li></ul></d
 iv></div></div><div class="row"><div class="col-md-12 footer-link-column"><a 
class="pull-right" 
href="http://incubator.apache.org/projects/predictionio.html";><img alt="Apache 
Incubator" src="/images/logos/apache_incubator-6954bd16.png"/></a><span>Apache 
PredictionIO is an effort undergoing incubation at The Apache Software 
Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of 
all newly accepted projects until a further review indicates that the 
infrastructure, communications, and decision making process have stabilized in 
a manner consistent with other successful ASF projects. While incubation status 
is not necessarily a reflection of the completeness or stability of the code, 
it does indicate that the project has yet to be fully endorsed by the 
ASF.</span></div></div></div><div id="footer-bottom"><div 
class="container"><div class="row"><div class="col-md-12"><div 
id="footer-logo-wrapper"><img alt="PredictionIO" 
src="/images/logos/logo-white-d1e9c6e6.png"/><
 /div><div id="social-icons-wrapper"><a class="github-button" 
href="https://github.com/apache/incubator-predictionio"; data-style="mega" 
data-count-href="/apache/incubator-predictionio/stargazers" 
data-count-api="/repos/apache/incubator-predictionio#stargazers_count" 
data-count-aria-label="# stargazers on GitHub" aria-label="Star 
apache/incubator-predictionio on GitHub">Star</a> <a class="github-button" 
href="https://github.com/apache/incubator-predictionio/fork"; 
data-icon="octicon-git-branch" data-style="mega" 
data-count-href="/apache/incubator-predictionio/network" 
data-count-api="/repos/apache/incubator-predictionio#forks_count" 
data-count-aria-label="# forks on GitHub" aria-label="Fork 
apache/incubator-predictionio on GitHub">Fork</a> <script id="github-bjs" 
async="" defer="" src="https://buttons.github.io/buttons.js";></script><a 
href="https://twitter.com/predictionio"; target="blank"><img alt="PredictionIO 
on Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a href="https:/
 /www.facebook.com/predictionio" target="blank"><img alt="PredictionIO on 
Facebook" src="/images/icons/facebook-5c57939c.png"/></a> 
</div></div></div></div></div></footer></div><script>(function(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+(w[n].q=w[n].q||[]).push(arguments);};s=d.createElement(t);
+e=d.getElementsByTagName(t)[0];s.async=1;s.src=u;e.parentNode.insertBefore(s,e);
+})(window,document,'script','//s.swiftypecdn.com/install/v1/st.js','_st');
+
+_st('install','HaUfpXXV87xoB_zzCQ45');</script><script 
src="/javascripts/application-a6acb1f5.js"></script></body></html>
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/4e16ed29/demo/supervisedlearning/index.html.gz
----------------------------------------------------------------------
diff --git a/demo/supervisedlearning/index.html.gz 
b/demo/supervisedlearning/index.html.gz
new file mode 100644
index 0000000..047ff30
Binary files /dev/null and b/demo/supervisedlearning/index.html.gz differ

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/4e16ed29/demo/tapster/index.html
----------------------------------------------------------------------
diff --git a/demo/tapster/index.html b/demo/tapster/index.html
new file mode 100644
index 0000000..ee5412f
--- /dev/null
+++ b/demo/tapster/index.html
@@ -0,0 +1,269 @@
+<!DOCTYPE html><html><head><title>Comics Recommendation Demo</title><meta 
charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="Comics Recommendation Demo"/><link 
rel="canonical" 
href="https://predictionio.incubator.apache.org/demo/tapster/"/><link 
href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-3a3867f7.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><script
 src="//cdn.mathjax.org/
 mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script 
src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.incubator.apache.org/";><img 
alt="PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a></div><div id="menu-wrapper"><div 
id="pill-wrapper"><a class="pill left" 
href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/incubator-predictionio/">OPEN 
SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md 
hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" 
id="search-bar-row"><div class="row"><div class="col-md-9 col-sm-11 
col-xs-11"><di
 v class="hidden-md hidden-lg" id="mobile-page-heading-wrapper"><p>PredictionIO 
Docs</p><h4>Comics Recommendation Demo</h4></div><h4 class="hidden-sm 
hidden-xs">PredictionIO Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 
hidden-md hidden-lg"><img id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md 
hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div 
class="row"><div id="left-menu-wrap
 per" class="col-md-3"><nav id="nav-main"><ul><li class="level-1"><a 
class="expandible" href="/"><span>Apache PredictionIO (incubating) 
Documentation</span></a><ul><li class="level-2"><a class="final" 
href="/"><span>Welcome to Apache PredictionIO 
(incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Started</span></a><ul><li class="level-2"><a 
class="final" href="/start/"><span>A Quick Intro</span></a></li><li 
class="level-2"><a class="final" href="/install/"><span>Installing Apache 
PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" 
href="/start/download/"><span>Downloading an Engine Template</span></a></li><li 
class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your 
First Engine</span></a></li><li class="level-2"><a class="final" 
href="/start/customize/"><span>Customizing the 
Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Integrating with Your App<
 /span></a><ul><li class="level-2"><a class="final" 
href="/appintegration/"><span>App Integration Overview</span></a></li><li 
class="level-2"><a class="expandible" href="/sdk/"><span>List of 
SDKs</span></a><ul><li class="level-3"><a class="final" 
href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
SDK</span></a></li><li class="level-3"><a class="final" 
href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered 
SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
Service</span></a></li><li class="level-2"><a class="final" 
href="/batchpredict/"><span>Batch Predictions</span></a></li><li 
class="level-2"><a
  class="final" href="/deploy/monitoring/"><span>Monitoring 
Engine</span></a></li><li class="level-2"><a class="final" 
href="/deploy/engineparams/"><span>Setting Engine Parameters</span></a></li><li 
class="level-2"><a class="final" href="/deploy/enginevariants/"><span>Deploying 
Multiple Engine Variants</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Customizing an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/customize/"><span>Learning 
DASE</span></a></li><li class="level-2"><a class="final" 
href="/customize/dase/"><span>Implement DASE</span></a></li><li 
class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>Engine Scala 
APIs</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Collecting and Analyzing Data</span></a><ul><li 
class="level-2"><a class="final" href="/
 datacollection/"><span>Event Server Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/eventapi/"><span>Collecting Data with 
REST/SDKs</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
Webhooks</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/channel/"><span>Channel</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/batchimport/"><span>Importing Data in 
Batch</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/analytics/"><span>Using Analytics 
Tools</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Choosing an Algorithm(s)</span></a><ul><li class="level-2"><a 
class="final" href="/algorithm/"><span>Built-in Algorithm 
Libraries</span></a></li><li class="level-2"><a class="fi
 nal" href="/algorithm/switch/"><span>Switching to Another 
Algorithm</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/multiple/"><span>Combining Multiple 
Algorithms</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/custom/"><span>Adding Your Own 
Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
class="final" href="/evaluation/"><span>Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/evaluationdashboard/"><span>Evaluation 
Dashboard</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricchoose/"><span>Choosing Evaluation 
Metrics</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricbuild/"><span>Building Evaluation 
Metrics</span></a></li></ul></li><li class="level
 -1"><a class="expandible" href="#"><span>System Architecture</span></a><ul><li 
class="level-2"><a class="final" href="/system/"><span>Architecture 
Overview</span></a></li><li class="level-2"><a class="final" 
href="/system/anotherdatastore/"><span>Using Another Data 
Store</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>PredictionIO Official Templates</span></a><ul><li 
class="level-2"><a class="final" 
href="/templates/"><span>Intro</span></a></li><li class="level-2"><a 
class="expandible" href="#"><span>Recommendation</span></a><ul><li 
class="level-3"><a class="final" 
href="/templates/recommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/recommendation/evaluation/"><span>Evaluation 
Explained</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/how-to/"><span>How
 -To</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/reading-custom-events/"><span>Read Custom 
Events</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-data-prep/"><span>Customize Data 
Preparator</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-serving/"><span>Customize 
Serving</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/training-with-implicit-preference/"><span>Train 
with Implicit Preference</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/blacklist-items/"><span>Filter Recommended 
Items by Blacklist in Query</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/batch-evaluator/"><span>Batch Persistable 
Evaluator</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>E-Commerce Recommendation</span></a><ul><li class="level-3"><a c
 lass="final" href="/templates/ecommercerecommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/how-to/"><span>How-To</span></a></li><li
 class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/train-with-rate-event/"><span>Train 
with Rate Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/adjust-score/"><span>Adjust 
Score</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Similar Product</span></a><ul><li class="level-3"><a 
class="final" href="/templates/similarproduct/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/how-to/"><span>H
 ow-To</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/multi-events-multi-algos/"><span>Multiple 
Events and Multiple Algorithms</span></a></li><li class="level-3"><a 
class="final" 
href="/templates/similarproduct/return-item-properties/"><span>Returns Item 
Properties</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/train-with-rate-event/"><span>Train with Rate 
Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/rid-user-set-event/"><span>Get Rid of Events 
for Users</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/recommended-user/"><span>Recommend 
Users</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Classification</span></a><ul><li class="level-3"><a 
class="final" href="/templates/classification/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/
 dase/"><span>DASE</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/add-algorithm/"><span>Use Alternative 
Algorithm</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/reading-custom-properties/"><span>Read Custom 
Properties</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li 
class="level-2"><a class="final" 
href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" 
href="/community/submit-template/"><span>Submit your Engine as a 
Template</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Demo Tutorials</span></a><ul><li class="level-2"><a class="final 
active" href="/demo/tapster/"><span>Comics Recommendation 
Demo</span></a></li><li class="level-2"><a class="final
 " href="/demo/community/"><span>Community Contributed Demo</span></a></li><li 
class="level-2"><a class="final" href="/demo/textclassification/"><span>Text 
Classification Engine Tutorial</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="/community/"><span>Getting Involved</span></a><ul><li 
class="level-2"><a class="final" 
href="/community/contribute-code/"><span>Contribute Code</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-webhook/"><span>Contribute a 
Webhook</span></a></li><li class="level-2"><a class="final" 
href="/community/projects/"><span>Community 
Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Help</span></a><ul><li class="level-2"><a clas
 s="final" href="/resources/faq/"><span>FAQs</span></a></li><li 
class="level-2"><a class="final" 
href="/support/"><span>Support</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Resources</span></a><ul><li 
class="level-2"><a class="final" href="/cli/"><span>Command-line 
Interface</span></a></li><li class="level-2"><a class="final" 
href="/resources/release/"><span>Release Cadence</span></a></li><li 
class="level-2"><a class="final" href="/resources/intellij/"><span>Developing 
Engines with IntelliJ IDEA</span></a></li><li class="level-2"><a class="final" 
href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li 
class="level-2"><a class="final" 
href="/resources/glossary/"><span>Glossary</span></a></li></ul></li><li 
class="level-1"><a class="expandible" href="#"><span>Apache Software 
Foundation</span></a><ul><li class="level-2"><a class="final" 
href="https://www.apache.org/";><span>Apache Homepage</span></a></li><li 
class="level-2"><a class="f
 inal" href="https://www.apache.org/licenses/";><span>License</span></a></li><li 
class="level-2"><a class="final" 
href="https://www.apache.org/foundation/sponsorship.html";><span>Sponsorship</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/foundation/thanks.html";><span>Thanks</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/security/";><span>Security</span></a></li></ul></li></ul></nav></div><div
 class="col-md-9 col-sm-12"><div class="content-header hidden-md 
hidden-lg"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a 
href="#">Demo Tutorials</a><span class="spacer">&gt;</span></li><li><span 
class="last">Comics Recommendation Demo</span></li></ul></div><div 
id="page-title"><h1>Comics Recommendation Demo</h1></div></div><div 
id="table-of-content-wrapper"><h5>On this page</h5><aside 
id="table-of-contents"><ul> <li> <a href="#introduction">Introduction</a> </li> 
<li> <a href="#tapster-demo-application">Tapster Demo 
 Application</a> </li> <li> <a 
href="#apache-predictionio-incubating-setup">Apache PredictionIO (incubating) 
Setup</a> </li> <li> <a href="#import-data">Import Data</a> </li> <li> <a 
href="#connect-demo-app-with-apache-predictionio-incubating">Connect Demo app 
with Apache PredictionIO (incubating)</a> </li> <li> <a href="#links">Links</a> 
</li> <li> <a href="#conclusion">Conclusion</a> </li> </ul> </aside><hr/><a 
id="edit-page-link" 
href="https://github.com/apache/incubator-predictionio/tree/livedoc/docs/manual/source/demo/tapster.html.md";><img
 src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div 
class="content-header hidden-sm hidden-xs"><div id="breadcrumbs" 
class="hidden-sm hidden xs"><ul><li><a href="#">Demo Tutorials</a><span 
class="spacer">&gt;</span></li><li><span class="last">Comics Recommendation 
Demo</span></li></ul></div><div id="page-title"><h1>Comics Recommendation 
Demo</h1></div></div><div class="content"> <h2 id='introduction' 
class='header-anchor
 s'>Introduction</h2><p>In this demo, we will show you how to build a 
Tinder-style web application (named &quot;Tapster&quot;) recommending comics to 
users based on their likes/dislikes of episodes interactively.</p><p>The demo 
will use <a 
href="https://predictionio.incubator.apache.org/templates/similarproduct/quickstart/";>Similar
 Product Template</a>. Similar Product Template is a great choice if you want 
to make recommendations based on immediate user activities or for new users 
with limited history. It uses MLLib Alternating Least Squares (ALS) 
recommendation algorithm, a <a 
href="http://en.wikipedia.org/wiki/Recommender_system#Collaborative_filtering";>Collaborative
 filtering</a> (CF) algorithm commonly used for recommender systems. These 
techniques aim to fill in the missing entries of a user-item association 
matrix. Users and products are described by a small set of latent factors that 
can be used to predict missing entries. A layman&#39;s interpretation of 
Collaborative Filter
 ing is &quot;People who like this comic, also like these 
comics.&quot;</p><p>All the code and data is on GitHub at: <a 
href="https://github.com/PredictionIO/Demo-Tapster";>github.com/PredictionIO/Demo-Tapster</a>.</p><h3
 id='data' class='header-anchors'>Data</h3><p>The source of the data is from <a 
href="http://tapastic.com/";>Tapastic</a>. You can find the data files <a 
href="https://github.com/PredictionIO/Demo-Tapster/tree/master/data";>here</a>.</p><p>The
 data structure looks like this:</p><p><a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/data/episode_list.csv";>Episode
 List</a> <code>data/episode_list.csv</code></p><p><strong>Fields:</strong> 
episodeId | episodeTitle | episodeCategories | episodeUrl | 
episodeImageUrls</p><p>1,000 rows. Each row represents one episode.</p><p><a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/data/user_list.csv";>User
 Like Event List</a> 
<code>data/user_list.csv</code></p><p><strong>Fields:</strong> userId | 
episodeId
  | likedTimestamp</p><p>192,587 rows. Each row represents one user like for 
the given episode.</p><p>The tutorial has four major steps:</p> <ul> <li>Demo 
application setup</li> <li>PredictionIO installation and setup</li> <li>Import 
data into database and PredictionIO</li> <li>Integrate demo application with 
PredictionIO</li> </ul> <h2 id='tapster-demo-application' 
class='header-anchors'>Tapster Demo Application</h2><p>The demo application is 
built using Rails.</p><p>You can clone the existing application with:</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span>git clone  
https://github.com/PredictionIO/Demo-Tapster.git
+<span class="gp">$ </span><span class="nb">cd </span>Demo-Tapster
+<span class="gp">$ </span>bundle install
+</pre></td></tr></tbody></table> </div> <p>You will need to edit 
<code>config/database.yml</code> to match your local database settings. We have 
provided some sensible defaults for PostgreSQL, MySQL, and SQLite.</p><p>Setup 
the database with:</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2</pre></td><td class="code"><pre><span class="gp">$ </span>rake db:create
+<span class="gp">$ </span>rake db:migrate
+</pre></td></tr></tbody></table> </div> <p>At this point, you should have the 
demo application ready but with an empty database. Lets import the episodes 
data into our database. We will do this with: <code>$ rake 
import:episodes</code>. An &quot;Episode&quot; is a single <a 
href="http://en.wikipedia.org/wiki/Comic_strip";>comic strip</a>.</p><p><a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/lib/tasks/import/episodes.rake";>View
 on GitHub</a></p><p>This script is pretty simple. It loops through the CSV 
file and creates a new episode for each line in the file in our local 
database.</p><p>You can start the app and point your browser to <a 
href="http://localhost:3000";>http://localhost:3000</a></p><div class="highlight 
shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" 
style="text-align: right"><pre class="lineno">1</pre></td><td 
class="code"><pre><span class="nv">$rails</span> server
+</pre></td></tr></tbody></table> </div> <p><img alt="Rails Server" 
src="/images/demo/tapster/rails-server-997d690e.png"/></p><h2 
id='apache-predictionio-(incubating)-setup' class='header-anchors'>Apache 
PredictionIO (incubating) Setup</h2><h3 
id='install-apache-predictionio-(incubating)' class='header-anchors'>Install 
Apache PredictionIO (incubating)</h3><p>Follow the installation instructions <a 
href="http://predictionio.incubator.apache.org/install/";>here</a> or simply 
run:</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1</pre></td><td class="code"><pre><span class="gp">$ </span>bash 
-c <span class="s2">"</span><span class="k">$(</span>curl -s 
https://raw.githubusercontent.com/apache/incubator-predictionio/master/bin/install.sh<span
 class="k">)</span><span class="s2">"</span>
+</pre></td></tr></tbody></table> </div> <p><img alt="PIO Install" 
src="/images/demo/tapster/pio-install-2d870aed.png"/></p><h3 
id='create-a-new-app' class='header-anchors'>Create a New App</h3><p>You will 
need to create a new app on Apache PredictionIO (incubating) to house the 
Tapster demo. You can do this with:</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1</pre></td><td class="code"><pre><span class="gp">$ 
</span>pio app new tapster
+</pre></td></tr></tbody></table> </div> <p>Take note of the App ID and Access 
Key.</p><p><img alt="PIO App New" 
src="/images/demo/tapster/pio-app-new-5a8ae503.png"/></p><h3 id='setup-engine' 
class='header-anchors'>Setup Engine</h3><p>We are going to copy the Similar 
Product Template into the PIO directory.</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2</pre></td><td class="code"><pre><span class="gp">$ </span><span 
class="nb">cd </span>PredictionIO
+<span class="gp">$ </span>git clone 
https://github.com/apache/incubator-predictionio-template-similar-product.git 
tapster-episode-similar
+</pre></td></tr></tbody></table> </div> <p>Next we are going to update the App 
ID in the ‘engine.json’ file to match the App ID we just created.</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span><span 
class="nb">cd </span>tapster-episode-similar
+<span class="gp">$ </span>nano engine.json
+<span class="gp">$ </span><span class="nb">cd</span> ..
+</pre></td></tr></tbody></table> </div> <p><img alt="Engine Setup" 
src="/images/demo/tapster/pio-engine-setup-88e25cc0.png"/></p><h3 
id='modify--engine-template' class='header-anchors'>Modify Engine 
Template</h3><p>By the default, the engine template reads the “view” 
events. We can easily to change it to read “like” events.</p> <p>Modify 
<code>readTraining()</code> in DataSource.scala:</p><div class="highlight 
scala"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36</pre></td><td class="code"><pre>
+  <span class="k">override</span>
+  <span class="k">def</span> <span class="n">readTraining</span><span 
class="o">(</span><span class="n">sc</span><span class="k">:</span> <span 
class="kt">SparkContext</span><span class="o">)</span><span class="k">:</span> 
<span class="kt">TrainingData</span> <span class="o">=</span> <span 
class="o">{</span>
+
+    <span class="o">...</span>
+
+    <span class="k">val</span> <span class="n">viewEventsRDD</span><span 
class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span 
class="kt">ViewEvent</span><span class="o">]</span> <span class="k">=</span> 
<span class="n">eventsDb</span><span class="o">.</span><span 
class="n">find</span><span class="o">(</span>
+      <span class="n">appId</span> <span class="k">=</span> <span 
class="n">dsp</span><span class="o">.</span><span class="n">appId</span><span 
class="o">,</span>
+      <span class="n">entityType</span> <span class="k">=</span> <span 
class="nc">Some</span><span class="o">(</span><span 
class="s">"user"</span><span class="o">),</span>
+      <span class="n">eventNames</span> <span class="k">=</span> <span 
class="nc">Some</span><span class="o">(</span><span class="nc">List</span><span 
class="o">(</span><span class="s">"like"</span><span class="o">)),</span> <span 
class="c1">// MODIFIED
+</span>      <span class="c1">// targetEntityType is optional field of an 
event.
+</span>      <span class="n">targetEntityType</span> <span class="k">=</span> 
<span class="nc">Some</span><span class="o">(</span><span 
class="nc">Some</span><span class="o">(</span><span 
class="s">"item"</span><span class="o">)))(</span><span 
class="n">sc</span><span class="o">)</span>
+      <span class="c1">// eventsDb.find() returns RDD[Event]
+</span>      <span class="o">.</span><span class="n">map</span> <span 
class="o">{</span> <span class="n">event</span> <span class="k">=&gt;</span>
+        <span class="k">val</span> <span class="n">viewEvent</span> <span 
class="k">=</span> <span class="k">try</span> <span class="o">{</span>
+          <span class="n">event</span><span class="o">.</span><span 
class="n">event</span> <span class="k">match</span> <span class="o">{</span>
+            <span class="k">case</span> <span class="s">"like"</span> <span 
class="k">=&gt;</span> <span class="nc">ViewEvent</span><span 
class="o">(</span> <span class="c1">// MODIFIED
+</span>              <span class="n">user</span> <span class="k">=</span> 
<span class="n">event</span><span class="o">.</span><span 
class="n">entityId</span><span class="o">,</span>
+              <span class="n">item</span> <span class="k">=</span> <span 
class="n">event</span><span class="o">.</span><span 
class="n">targetEntityId</span><span class="o">.</span><span 
class="n">get</span><span class="o">,</span>
+              <span class="n">t</span> <span class="k">=</span> <span 
class="n">event</span><span class="o">.</span><span 
class="n">eventTime</span><span class="o">.</span><span 
class="n">getMillis</span><span class="o">)</span>
+            <span class="k">case</span> <span class="k">_</span> <span 
class="k">=&gt;</span> <span class="k">throw</span> <span class="k">new</span> 
<span class="nc">Exception</span><span class="o">(</span><span 
class="n">s</span><span class="s">"Unexpected event ${event} is 
read."</span><span class="o">)</span>
+          <span class="o">}</span>
+        <span class="o">}</span> <span class="k">catch</span> <span 
class="o">{</span>
+          <span class="k">case</span> <span class="n">e</span><span 
class="k">:</span> <span class="kt">Exception</span> <span 
class="o">=&gt;</span> <span class="o">{</span>
+            <span class="n">logger</span><span class="o">.</span><span 
class="n">error</span><span class="o">(</span><span class="n">s</span><span 
class="s">"Cannot convert ${event} to ViewEvent."</span> <span 
class="o">+</span>
+              <span class="n">s</span><span class="s">" Exception: 
${e}."</span><span class="o">)</span>
+            <span class="k">throw</span> <span class="n">e</span>
+          <span class="o">}</span>
+        <span class="o">}</span>
+        <span class="n">viewEvent</span>
+      <span class="o">}</span>
+
+    <span class="o">...</span>
+  <span class="o">}</span>
+<span class="o">}</span>
+
+</pre></td></tr></tbody></table> </div> <p>Finally to build the engine we will 
run:</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span><span 
class="nb">cd </span>tapster-episode-similar
+<span class="gp">$ </span>pio build
+<span class="gp">$ </span><span class="nb">cd</span> ..
+</pre></td></tr></tbody></table> </div> <p><img alt="PIO Build" 
src="/images/demo/tapster/pio-build-e6eb1d7c.png"/></p><h2 id='import-data' 
class='header-anchors'>Import Data</h2><p>Once everything is installed, start 
the event server by running: <code>$ pio eventserver</code></p><p><img 
alt="Event Server" 
src="/images/demo/tapster/pio-eventserver-88889ec0.png"/></p><div 
class="alert-message info"><p>You can check the status of Apache PredictionIO 
(incubating) at any time by running: <code>$ pio 
status</code></p></div><p>ALERT: If your laptop goes to sleep you might 
manually need to restart HBase with:</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span><span 
class="nb">cd </span>PredictionIO/venders/hbase-0.98.6/bin
+<span class="gp">$ </span>./stop-hbase.sh
+<span class="gp">$ </span>./start-hbase.sh
+</pre></td></tr></tbody></table> </div> <p>The key event we are importing into 
Apache PredictionIO (incubating) event server is the &quot;Like&quot; event 
(for example, user X likes episode Y).</p><p>We will send this data to Apache 
PredictionIO (incubating) by executing <code>$ rake import:predictionio</code> 
command.</p><p><a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/lib/tasks/import/predictionio.rake";>View
 on GitHub</a></p><p>This script is a little more complex. First we need to 
connect to the Event Server.</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1</pre></td><td class="code"><pre>client <span 
class="o">=</span> PredictionIO::EventClient.new<span 
class="o">(</span>ENV[<span class="s1">'PIO_ACCESS_KEY'</span><span 
class="o">]</span>, ENV[<span class="s1">'PIO_EVENT_SERVER_URL'</span><span 
class="o">]</span>, THREADS<span class="o">)</span>
+</pre></td></tr></tbody></table> </div> <p>You will need to create the 
environmental variables <code>PIO_ACCESS_KEY</code> and 
<code>PIO_EVENT_SERVER_URL</code>. The default Event Server URL is: <a 
href="http://localhost:7070";>http://localhost:7070</a>.</p><div 
class="alert-message info"><p>If you forget your <strong>Access Key</strong> 
you can always run: <code>$ pio app list</code></p></div><p>You can set these 
values in the <code>.env</code> file located in the application root directory 
and it will be automatically loaded into your environment each time Rails is 
run.</p><p>The next part of the script loops through each line of the 
<code>data/user_list.csv</code> file and returns an array of unique user and 
episode IDs. Once we have those we can send the data to Apache PredictionIO 
(incubating) like this.</p><p>First the users:</p><div class="highlight 
shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5</pre></td><td class="code"><pre>user_ids.each_with_index <span 
class="k">do</span> |id, i|
+  <span class="c"># Send unique user IDs to PredictionIO.</span>
+  client.aset_user<span class="o">(</span>id<span class="o">)</span>
+  puts <span class="s2">"Sent user ID #{id} to PredictionIO. Action #{i + 1} 
of #{user_count}"</span>
+end
+</pre></td></tr></tbody></table> </div> <p>And now the episodes:</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17</pre></td><td class="code"><pre>episode_ids.each_with_index <span 
class="k">do</span> |id, i|
+  <span class="c"># Load episode from database - we will need this to include 
the categories!</span>
+  episode <span class="o">=</span> Episode.where<span 
class="o">(</span>episode_id: id<span class="o">)</span>.take
+
+  <span class="k">if </span>episode
+    <span class="c"># Send unique episode IDs to PredictionIO.</span>
+    client.acreate_event<span class="o">(</span>
+      <span class="s1">'$set'</span>,
+      <span class="s1">'item'</span>,
+      id,
+      properties: <span class="o">{</span> categories: episode.categories 
<span class="o">}</span>
+    <span class="o">)</span>
+    puts <span class="s2">"Sent episode ID #{id} to PredictionIO. Action #{i + 
1} of #{episode_count}"</span>
+  <span class="k">else
+    </span>puts <span class="s2">"Episode ID #{id} not found in database! 
Skipping!"</span>.color<span class="o">(</span>:red<span class="o">)</span>
+  end
+end
+</pre></td></tr></tbody></table> </div> <p>Finally we loop through the 
<code>data/user_list.csv</code> file a final time to send the like 
events:</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14</pre></td><td class="code"><pre>CSV.foreach<span 
class="o">(</span>USER_LIST, headers: <span class="nb">true</span><span 
class="o">)</span> <span class="k">do</span> |row|
+  user_id <span class="o">=</span> row[0] <span class="c"># userId</span>
+  episode_id <span class="o">=</span> row[1] <span class="c"># episodeId</span>
+
+  <span class="c"># Send like to PredictionIO.</span>
+  client.acreate_event<span class="o">(</span>
+    <span class="s1">'like'</span>,
+    <span class="s1">'user'</span>,
+    user_id,
+    <span class="o">{</span> <span class="s1">'targetEntityType'</span> <span 
class="o">=</span>&gt; <span class="s1">'item'</span>, <span 
class="s1">'targetEntityId'</span> <span class="o">=</span>&gt; episode_id 
<span class="o">}</span>
+  <span class="o">)</span>
+
+  puts <span class="s2">"Sent user ID #{user_id} liked episode ID 
#{episode_id} to PredictionIO. Action #{</span><span 
class="nv">$INPUT_LINE_NUMBER</span><span class="s2">} of #{line_count}."</span>
+end
+</pre></td></tr></tbody></table> </div> <p>In total the script takes about 4 
minutes to run on a basic laptop. At this point all the data is now imported to 
Apache PredictionIO (incubating).</p><p><img alt="Import" 
src="/images/demo/tapster/pio-import-predictionio-1ecd11fd.png"/></p><h3 
id='engine-training' class='header-anchors'>Engine Training</h3><p>We train the 
engine with the following command:</p><div class="highlight shell"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2</pre></td><td class="code"><pre><span class="gp">$ </span><span 
class="nb">cd </span>tapster-episode-similar
+<span class="gp">$ </span>pio train -- --driver-memory 4g
+</pre></td></tr></tbody></table> </div> <p><img alt="PIO Train" 
src="/images/demo/tapster/pio-train-7edffad4.png"/></p><p>Using the 
--driver-memory option to limit the memory used by Apache PredictionIO 
(incubating). Without this Apache PredictionIO (incubating) can consume too 
much memory leading to a crash. You can adjust the 4g up or down depending on 
your system specs.</p><p>You can set up a job to periodically retrain the 
engine so the model is updated with the latest dataset.</p><h3 
id='deploy-model' class='header-anchors'>Deploy Model</h3><p>You can deploy the 
model with: <code>$ pio deploy</code> from the 
<code>tapster-episode-similar</code> directory.</p><p>At this point, you have 
an demo app with data and a Apache PredictionIO (incubating) server with a 
trained model all setup. Next, we will connect the two so you can log the live 
interaction (likes) events into Apache PredictionIO (incubating) event server 
and query the engine server for recommendation.</p><h2 id='connect
 -demo-app-with-apache-predictionio-(incubating)' 
class='header-anchors'>Connect Demo app with Apache PredictionIO 
(incubating)</h2><h3 id='overview' class='header-anchors'>Overview</h3><p>On a 
high level the application keeps a record of each like and dislike. It uses 
jQuery to send an array of both likes and dislikes to the server on each click. 
The server then queries Apache PredictionIO (incubating) for a similar episode 
which is relayed to jQuery and displayed to the user.</p><p>Data flow:</p> <ul> 
<li>The user likes an episode.</li> <li>Tapster sends the &quot;Like&quot; 
event to Apache PredictionIO (incubating) event server.</li> <li>Tapster 
queries Apache PredictionIO (incubating) engine with all the episodes the user 
has rated (likes and dislikes) in this session.</li> <li>Apache PredictionIO 
(incubating) returns 1 recommended episode.</li> </ul> <h3 id='javascript' 
class='header-anchors'>JavaScript</h3><p>All the important code lives in 
<code>app/assets/javascripts/applicat
 ion.js</code> <a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/app/assets/javascripts/application.js";>View
 on GitHub</a></p><p>Most of this file is just handlers for click things, 
displaying the loading dialog and other such things.</p><p>The most important 
function is to query the Rails server for results from Apache PredictionIO 
(incubating).</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14</pre></td><td class="code"><pre>// Query the server <span class="k">for 
</span>a comic based on previous likes. See episodes#query.
+queryPIO: <span class="k">function</span><span class="o">()</span> <span 
class="o">{</span>
+  var _this <span class="o">=</span> this; // For closure.
+  <span class="nv">$.</span>ajax<span class="o">({</span>
+    url: <span class="s1">'/episodes/query'</span>,
+    <span class="nb">type</span>: <span class="s1">'POST'</span>,
+    data: <span class="o">{</span>
+      likes: JSON.stringify<span class="o">(</span>_this.likes<span 
class="o">)</span>,
+      dislikes: JSON.stringify<span class="o">(</span>_this.dislikes<span 
class="o">)</span>,
+    <span class="o">}</span>
+  <span class="o">})</span>.done<span class="o">(</span><span 
class="k">function</span><span class="o">(</span>data<span class="o">)</span> 
<span class="o">{</span>
+    _this.setComic<span class="o">(</span>data<span class="o">)</span>;
+  <span class="o">})</span>;
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <h3 id='rails' 
class='header-anchors'>Rails</h3><p>On the Rails side all the fun things happen 
in the episodes controller located at: 
<code>app/controllers/episodes_controller</code> <a 
href="https://github.com/PredictionIO/Demo-Tapster/blob/master/app/controllers/episodes_controller.rb";>View
 on GitHub</a>.</p><div class="highlight shell"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32</pre></td><td class="code"><pre>def query
+  <span class="c"># Create PredictionIO client.</span>
+  client <span class="o">=</span> PredictionIO::EngineClient.new<span 
class="o">(</span>ENV[<span class="s1">'PIO_ENGINE_URL'</span><span 
class="o">])</span>
+
+  <span class="c"># Get posted likes and dislikes.</span>
+  likes <span class="o">=</span> ActiveSupport::JSON.decode<span 
class="o">(</span>params[:likes]<span class="o">)</span>
+  dislikes <span class="o">=</span> ActiveSupport::JSON.decode<span 
class="o">(</span>params[:dislikes]<span class="o">)</span>
+
+  <span class="k">if </span>likes.empty?
+    <span class="c"># We can't query PredictionIO with no likes so</span>
+    <span class="c"># we will return a random comic instead.</span>
+    @episode <span class="o">=</span> random_episode
+
+    render json: @episode
+    <span class="k">return
+  </span>end
+
+  <span class="c"># Query PredictionIO.</span>
+  <span class="c"># Here we black list the disliked items so they are not 
shown again!</span>
+  response <span class="o">=</span> client.send_query<span 
class="o">(</span>items: likes, blackList: dislikes,  num: 1<span 
class="o">)</span>
+
+  <span class="c"># With a real application you would want to do some</span>
+  <span class="c"># better sanity checking of the response here!</span>
+
+  <span class="c"># Get ID of response.</span>
+  id <span class="o">=</span> response[<span 
class="s1">'itemScores'</span><span class="o">][</span>0][<span 
class="s1">'item'</span><span class="o">]</span>
+
+  <span class="c"># Find episode in database.</span>
+  @episode <span class="o">=</span> Episode.where<span 
class="o">(</span>episode_id: id<span class="o">)</span>.take
+
+  render json: @episode
+end
+</pre></td></tr></tbody></table> </div> <p>On the first line we make a 
connection to Apache PredictionIO (incubating). You will need to set the 
<code>PIO_ENGINE_URL</code>. This can be done in the <code>.env</code> file. 
The default URL is: <a 
href="http://localhost:8000";>http://localhost:8000</a>.</p><p>Next we decode 
the JSON sent from the browser.</p><p>After that we check to see if the user 
has liked anything yet. If not we just return a random episode.</p><p>If the 
user has likes then we can send that data to Apache PredictionIO (incubating) 
event server.</p><p>We also blacklist the dislikes so that they are not 
returned.</p><p>With our response from Apache PredictionIO (incubating) it’s 
just a matter of looking it up in the database and rendering that object as 
JSON.</p><p>Once the response is sent to the browser JavaScript is used to 
replace the existing comic and hide the loading message.</p><p>Thats it. 
You’re done! If Ruby is not your language of choice check out our o
 ther <a href="http://predictionio.incubator.apache.org/sdk/";>SDKs</a> and 
remember you can always interact with the Event Server though it’s native 
JSON API.</p><h2 id='links' class='header-anchors'>Links</h2><p>Source code is 
on GitHub at: <a 
href="https://github.com/PredictionIO/Demo-Tapster";>github.com/PredictionIO/Demo-Tapster</a></p><h2
 id='conclusion' class='header-anchors'>Conclusion</h2><p>Love this tutorial 
and Apache PredictionIO (incubating)? Both are open source (Apache 2 License). 
<a href="https://github.com/PredictionIO/Demo-Tapster";>Fork</a> this demo and 
build upon it. If you produce something cool shoot us an email and we will link 
to it from here.</p><p>Found a typo? Think something should be explained 
better? This tutorial (and all our other documenation) live in the main repo <a 
href="https://github.com/apache/incubator-predictionio/blob/livedoc/docs/manual/source/demo/tapster.html.md";>here</a>.
 Our documentation is in the <code>livedoc</code> branch. Find out 
 how to contribute documentation at <a 
href="http://predictionio.incubator.apache.org/community/contribute-documentation/";>http://predictionio.incubator.apache.org/community/contribute-documentation/</a>].</p><p>We
 &hearts; pull requests!</p></div></div></div></div><footer><div 
class="container"><div class="seperator"></div><div class="row"><div 
class="col-md-6 footer-link-column"><div 
class="footer-link-column-row"><h4>Community</h4><ul><li><a 
href="//predictionio.incubator.apache.org/install/" 
target="blank">Download</a></li><li><a 
href="//predictionio.incubator.apache.org/" target="blank">Docs</a></li><li><a 
href="//github.com/apache/incubator-predictionio" 
target="blank">GitHub</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to User Mailing List</a></li><li><a 
href="//stackoverflow.com/questions/tagged/predictionio" 
target="blank">Stackoverflow</a></li></ul></div></div><div class="col-md-6 
footer-link-column"><div class="foot
 er-link-column-row"><h4>Contribute</h4><ul><li><a 
href="//predictionio.incubator.apache.org/community/contribute-code/" 
target="blank">Contribute</a></li><li><a 
href="//github.com/apache/incubator-predictionio" target="blank">Source 
Code</a></li><li><a href="//issues.apache.org/jira/browse/PIO" 
target="blank">Bug Tracker</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to Development Mailing 
List</a></li></ul></div></div></div><div class="row"><div class="col-md-12 
footer-link-column"><a class="pull-right" 
href="http://incubator.apache.org/projects/predictionio.html";><img alt="Apache 
Incubator" src="/images/logos/apache_incubator-6954bd16.png"/></a><span>Apache 
PredictionIO is an effort undergoing incubation at The Apache Software 
Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of 
all newly accepted projects until a further review indicates that the 
infrastructure, communications, and decision making pr
 ocess have stabilized in a manner consistent with other successful ASF 
projects. While incubation status is not necessarily a reflection of the 
completeness or stability of the code, it does indicate that the project has 
yet to be fully endorsed by the ASF.</span></div></div></div><div 
id="footer-bottom"><div class="container"><div class="row"><div 
class="col-md-12"><div id="footer-logo-wrapper"><img alt="PredictionIO" 
src="/images/logos/logo-white-d1e9c6e6.png"/></div><div 
id="social-icons-wrapper"><a class="github-button" 
href="https://github.com/apache/incubator-predictionio"; data-style="mega" 
data-count-href="/apache/incubator-predictionio/stargazers" 
data-count-api="/repos/apache/incubator-predictionio#stargazers_count" 
data-count-aria-label="# stargazers on GitHub" aria-label="Star 
apache/incubator-predictionio on GitHub">Star</a> <a class="github-button" 
href="https://github.com/apache/incubator-predictionio/fork"; 
data-icon="octicon-git-branch" data-style="mega" data-count-hr
 ef="/apache/incubator-predictionio/network" 
data-count-api="/repos/apache/incubator-predictionio#forks_count" 
data-count-aria-label="# forks on GitHub" aria-label="Fork 
apache/incubator-predictionio on GitHub">Fork</a> <script id="github-bjs" 
async="" defer="" src="https://buttons.github.io/buttons.js";></script><a 
href="https://twitter.com/predictionio"; target="blank"><img alt="PredictionIO 
on Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a 
href="https://www.facebook.com/predictionio"; target="blank"><img 
alt="PredictionIO on Facebook" src="/images/icons/facebook-5c57939c.png"/></a> 
</div></div></div></div></div></footer></div><script>(function(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+(w[n].q=w[n].q||[]).push(arguments);};s=d.createElement(t);
+e=d.getElementsByTagName(t)[0];s.async=1;s.src=u;e.parentNode.insertBefore(s,e);
+})(window,document,'script','//s.swiftypecdn.com/install/v1/st.js','_st');
+
+_st('install','HaUfpXXV87xoB_zzCQ45');</script><script 
src="/javascripts/application-a6acb1f5.js"></script></body></html>
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/4e16ed29/demo/tapster/index.html.gz
----------------------------------------------------------------------
diff --git a/demo/tapster/index.html.gz b/demo/tapster/index.html.gz
new file mode 100644
index 0000000..9d71a15
Binary files /dev/null and b/demo/tapster/index.html.gz differ

Reply via email to