http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/dd18a676/gallery/template-gallery/index.html
----------------------------------------------------------------------
diff --git a/gallery/template-gallery/index.html 
b/gallery/template-gallery/index.html
new file mode 100644
index 0000000..915ffe6
--- /dev/null
+++ b/gallery/template-gallery/index.html
@@ -0,0 +1,6 @@
+<!DOCTYPE html><html><head><title>Engine Template Gallery</title><meta 
charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="Engine Template Gallery"/><link 
rel="canonical" 
href="https://predictionio.incubator.apache.org/gallery/template-gallery/"/><link
 href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-3a3867f7.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><script
 src="//cdn.mathja
 x.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script 
src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.incubator.apache.org/";><img 
alt="PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a></div><div id="menu-wrapper"><div 
id="pill-wrapper"><a class="pill left" 
href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/incubator-predictionio/">OPEN 
SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md 
hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" 
id="search-bar-row"><div class="row"><div class="col-md-9 col-sm-11 col-xs-1
 1"><div class="hidden-md hidden-lg" 
id="mobile-page-heading-wrapper"><p>PredictionIO 
Docs</p><h4>Browse</h4></div><h4 class="hidden-sm hidden-xs">PredictionIO 
Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 hidden-md hidden-lg"><img 
id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md 
hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div 
class="row"><div id="left-menu-wrapper" class="co
 l-md-3"><nav id="nav-main"><ul><li class="level-1"><a class="expandible" 
href="/"><span>Apache PredictionIO (incubating) Documentation</span></a><ul><li 
class="level-2"><a class="final" href="/"><span>Welcome to Apache PredictionIO 
(incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Started</span></a><ul><li class="level-2"><a 
class="final" href="/start/"><span>A Quick Intro</span></a></li><li 
class="level-2"><a class="final" href="/install/"><span>Installing Apache 
PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" 
href="/start/download/"><span>Downloading an Engine Template</span></a></li><li 
class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your 
First Engine</span></a></li><li class="level-2"><a class="final" 
href="/start/customize/"><span>Customizing the 
Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Integrating with Your App</span></a><ul>
 <li class="level-2"><a class="final" href="/appintegration/"><span>App 
Integration Overview</span></a></li><li class="level-2"><a class="expandible" 
href="/sdk/"><span>List of SDKs</span></a><ul><li class="level-3"><a 
class="final" href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
SDK</span></a></li><li class="level-3"><a class="final" 
href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered 
SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
Service</span></a></li><li class="level-2"><a class="final" 
href="/batchpredict/"><span>Batch Predictions</span></a></li><li 
class="level-2"><a class="final"
  href="/deploy/monitoring/"><span>Monitoring Engine</span></a></li><li 
class="level-2"><a class="final" href="/deploy/engineparams/"><span>Setting 
Engine Parameters</span></a></li><li class="level-2"><a class="final" 
href="/deploy/enginevariants/"><span>Deploying Multiple Engine 
Variants</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Customizing an Engine</span></a><ul><li class="level-2"><a 
class="final" href="/customize/"><span>Learning DASE</span></a></li><li 
class="level-2"><a class="final" href="/customize/dase/"><span>Implement 
DASE</span></a></li><li class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>Engine Scala 
APIs</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Collecting and Analyzing Data</span></a><ul><li 
class="level-2"><a class="final" href="/datacollection
 /"><span>Event Server Overview</span></a></li><li class="level-2"><a 
class="final" href="/datacollection/eventapi/"><span>Collecting Data with 
REST/SDKs</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
Webhooks</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/channel/"><span>Channel</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/batchimport/"><span>Importing Data in 
Batch</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/analytics/"><span>Using Analytics 
Tools</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Choosing an Algorithm(s)</span></a><ul><li class="level-2"><a 
class="final" href="/algorithm/"><span>Built-in Algorithm 
Libraries</span></a></li><li class="level-2"><a class="final" href="/al
 gorithm/switch/"><span>Switching to Another Algorithm</span></a></li><li 
class="level-2"><a class="final" href="/algorithm/multiple/"><span>Combining 
Multiple Algorithms</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/custom/"><span>Adding Your Own 
Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
class="final" href="/evaluation/"><span>Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/evaluationdashboard/"><span>Evaluation 
Dashboard</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricchoose/"><span>Choosing Evaluation 
Metrics</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricbuild/"><span>Building Evaluation 
Metrics</span></a></li></ul></li><li class="level-1"><a class="
 expandible" href="#"><span>System Architecture</span></a><ul><li 
class="level-2"><a class="final" href="/system/"><span>Architecture 
Overview</span></a></li><li class="level-2"><a class="final" 
href="/system/anotherdatastore/"><span>Using Another Data 
Store</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>PredictionIO Official Templates</span></a><ul><li 
class="level-2"><a class="final" 
href="/templates/"><span>Intro</span></a></li><li class="level-2"><a 
class="expandible" href="#"><span>Recommendation</span></a><ul><li 
class="level-3"><a class="final" 
href="/templates/recommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/recommendation/evaluation/"><span>Evaluation 
Explained</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/how-to/"><span>How-To</span></a>
 </li><li class="level-3"><a class="final" 
href="/templates/recommendation/reading-custom-events/"><span>Read Custom 
Events</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-data-prep/"><span>Customize Data 
Preparator</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-serving/"><span>Customize 
Serving</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/training-with-implicit-preference/"><span>Train 
with Implicit Preference</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/blacklist-items/"><span>Filter Recommended 
Items by Blacklist in Query</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/batch-evaluator/"><span>Batch Persistable 
Evaluator</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>E-Commerce Recommendation</span></a><ul><li class="level-3"><a 
class="final" h
 ref="/templates/ecommercerecommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/how-to/"><span>How-To</span></a></li><li
 class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/train-with-rate-event/"><span>Train 
with Rate Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/adjust-score/"><span>Adjust 
Score</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Similar Product</span></a><ul><li class="level-3"><a 
class="final" href="/templates/similarproduct/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/how-to/"><span>How-To</span></
 a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/multi-events-multi-algos/"><span>Multiple 
Events and Multiple Algorithms</span></a></li><li class="level-3"><a 
class="final" 
href="/templates/similarproduct/return-item-properties/"><span>Returns Item 
Properties</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/train-with-rate-event/"><span>Train with Rate 
Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/rid-user-set-event/"><span>Get Rid of Events 
for Users</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/recommended-user/"><span>Recommend 
Users</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Classification</span></a><ul><li class="level-3"><a 
class="final" href="/templates/classification/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/dase/"><span>D
 ASE</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/add-algorithm/"><span>Use Alternative 
Algorithm</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/reading-custom-properties/"><span>Read Custom 
Properties</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li 
class="level-2"><a class="final active" 
href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" 
href="/community/submit-template/"><span>Submit your Engine as a 
Template</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Demo Tutorials</span></a><ul><li class="level-2"><a 
class="final" href="/demo/tapster/"><span>Comics Recommendation 
Demo</span></a></li><li class="level-2"><a class="final" href="/demo/
 community/"><span>Community Contributed Demo</span></a></li><li 
class="level-2"><a class="final" href="/demo/textclassification/"><span>Text 
Classification Engine Tutorial</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="/community/"><span>Getting Involved</span></a><ul><li 
class="level-2"><a class="final" 
href="/community/contribute-code/"><span>Contribute Code</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-webhook/"><span>Contribute a 
Webhook</span></a></li><li class="level-2"><a class="final" 
href="/community/projects/"><span>Community 
Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Help</span></a><ul><li class="level-2"><a class="final" 
href
 ="/resources/faq/"><span>FAQs</span></a></li><li class="level-2"><a 
class="final" href="/support/"><span>Support</span></a></li></ul></li><li 
class="level-1"><a class="expandible" 
href="#"><span>Resources</span></a><ul><li class="level-2"><a class="final" 
href="/cli/"><span>Command-line Interface</span></a></li><li class="level-2"><a 
class="final" href="/resources/release/"><span>Release 
Cadence</span></a></li><li class="level-2"><a class="final" 
href="/resources/intellij/"><span>Developing Engines with IntelliJ 
IDEA</span></a></li><li class="level-2"><a class="final" 
href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li 
class="level-2"><a class="final" 
href="/resources/glossary/"><span>Glossary</span></a></li></ul></li><li 
class="level-1"><a class="expandible" href="#"><span>Apache Software 
Foundation</span></a><ul><li class="level-2"><a class="final" 
href="https://www.apache.org/";><span>Apache Homepage</span></a></li><li 
class="level-2"><a class="final" href="ht
 tps://www.apache.org/licenses/"><span>License</span></a></li><li 
class="level-2"><a class="final" 
href="https://www.apache.org/foundation/sponsorship.html";><span>Sponsorship</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/foundation/thanks.html";><span>Thanks</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/security/";><span>Security</span></a></li></ul></li></ul></nav></div><div
 class="col-md-9 col-sm-12"><div class="content-header hidden-md 
hidden-lg"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a 
href="#">Engine Template Gallery</a><span 
class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div></div><div id="table-of-content-wrapper"><a 
id="edit-page-link" 
href="https://github.com/apache/incubator-predictionio/tree/livedoc/docs/manual/source/gallery/template-gallery.html.md";><img
 src="/images/icons/edit-pencil-d6c1bb3d.p
 ng"/>Edit this page</a></div><div class="content-header hidden-sm 
hidden-xs"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a 
href="#">Engine Template Gallery</a><span 
class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div></div><div class="content"><p>Pick a tab for the 
type of template you are looking for. Some still need to be ported (a simple 
process) to Apache PIO and these are marked. Also see each Template description 
for special support instructions.</p><div class="tabs"> <ul class="control"> 
<li data-lang=""><a 
href="#tab-4680c9a0-dcca-4734-acd5-523a79afacc0">Recommenders</a></li> <li 
data-lang=""><a 
href="#tab-ae21b24c-31e2-4bd7-8ad9-2cb12712956e">Classification</a></li> <li 
data-lang=""><a 
href="#tab-b2617217-6aec-4f57-9f1a-87df8d8630a3">Regression</a></li> <li 
data-lang=""><a href="#tab-8f454294-8bf9-4c22-8e70-bc449b3ba6b1">NLP</a></li> 
<li data-lang=""><a href="#tab-cdefad
 02-36eb-40ea-b04e-5e417c8d8bfc">Clustering</a></li> <li data-lang=""><a 
href="#tab-0df23278-cf92-4e21-85c1-1de994567ca9">Similarity</a></li> <li 
data-lang=""><a href="#tab-a1687603-458d-44dd-80aa-10ee63e0001f">Other</a></li> 
</ul> <div data-tab="Recommenders" 
id="tab-4680c9a0-dcca-4734-acd5-523a79afacc0"> <h3><a 
href="https://github.com/actionml/universal-recommender";>The Universal 
Recommender</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=actionml&amp;repo=universal-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Use for: </p> <ul class="tab-list"> <li 
class="tab-list-element">Personalized recommendations—user-based</li> <li 
class="tab-list-element">Similar items—item-based</li> <li 
class="tab-list-element">Viewed this bought that—item-based cross-action</li> 
<li class="tab-list-element">Popular Items and User-defined ranking</li> <li 
class="tab-list-element">Item-set recommendatio
 ns for complimentarty purchases or shopping carts—item-set-based</li> <li 
class="tab-list-element">Hybrid collaborative filtering and content based 
recommendations—limited content-based</li> <li 
class-tab-list-element>Business rules</li> </ul> <p>The name "Universal" refers 
to the use of this template in virtually any case that calls for 
recommendations - ecommerce, news, videos, virtually anywhere user behavioral 
data is known. This recommender uses the new <a 
href="http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html";>Cross-Occurrence
 (CCO) algorithm</a> to auto-correlate different user actions (clickstream 
data), profile data, contextual information (location, device), and some 
content types to make better recommendations. It also implements flexible 
filters and boosts for implementing business rules.</p> <p>Support: <a 
href="https://groups.google.com/forum/#!forum/actionml-user";>The Universal 
Recommender user group</a></p> <br> <table> <tr> <th>Type</th> <
 th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.10.0-incubating</td> <td>already compatible</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/apache/incubator-predictionio-template-recommender";>Recommendation</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> An engine template is an almost-complete 
implementation of an engine. PredictionIO's Recommendation Engine Template has 
integrated Apache Spark MLlib's Collaborative Filtering algorithm by default. 
You can customize it easily to fit your specific needs. </p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <tab
 le> <tr> <th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> 
<th>PIO min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.10.0-incubating</td> <td>already compatible</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/apache/incubator-predictionio-template-ecom-recommender";>E-Commerce
 Recommendation</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-ecom-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template provides personalized 
recommendation for e-commerce applications with the following features by 
default: </p> <ul class="tab-list"> <li class="tab-list-element">Exclude 
out-of-stock items</li> <li class="tab-list-element">Provide recommendation to 
new users who sign up after the model is trained</li> <li class="tab
 -list-element">Recommend unseen items only (configurable)</li> <li 
class="tab-list-element">Recommend popular items if no information about the 
user is available (added in template version v0.4.0)</li> </ul> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-similar-product";>Similar
 Product</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-similar-product&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine templat
 e recommends products that are "similar" to the input product(s). Similarity 
is not defined by user or item attributes but by users' previous actions. By 
default, it uses 'view' action such that product A and B are considered similar 
if most users who view A also view B. The template can be customized to support 
other action types such as buy, rate, like..etc </p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-java-ecom-recommender";>E-Commerce
 Recommendation (Java)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=i
 
ncubator-predictionio-template-java-ecom-recommender&amp;type=star&amp;count=true"
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template provides personalized 
recommendation for e-commerce applications with the following features by 
default: </p> <ul class="tab-list"> <li class="tab-list-element">Exclude 
out-of-stock items</li> <li class="tab-list-element">Provide recommendation to 
new users who sign up after the model is trained</li> <li 
class="tab-list-element">Recommend unseen items only (configurable)</li> <li 
class="tab-list-element">Recommend popular items if no information about the 
user is available</li> </ul> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Java</td> <td>Apache Li
 cence 2.0</td> <td>alpha</td> <td>0.9.3</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-productranking";>Product
 Ranking</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-productranking&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template sorts a list of products for a 
user based on his/her preference. This is ideal for personalizing the display 
order of product page, catalog, or menu items if you have large number of 
options. It creates engagement and early conversion by placing products that a 
user prefers on the top. </p> <p>Support: </p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</t
 d> <td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-complementarypurchase";>Complementary
 Purchase</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-complementarypurchase&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template recommends the complementary 
items which most user frequently buy at the same time with one or more items in 
the query. </p> <p>Support: </p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/vaibhavist/template-scala-parallel-recommendation";>Music
 Recommendations</a
 ></h3> <iframe 
 >src="https://ghbtns.com/github-btn.html?user=vaibhavist&amp;repo=template-scala-parallel-recommendation&amp;type=star&amp;count=true";
 > frameborder="0" align="middle" scrolling="0" width="170px" 
 >height="20px"></iframe> <p> This is very similar to music recommendations 
 >template. It is integrated with all the events a music application can have 
 >such as song played, liked, downloaded, purchased, etc. </p> <p>Support: <a 
 >href="https://github.com/vaibhavist/template-scala-parallel-recommendation/issues";>Github
 > issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 ><th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
 >Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> 
 ><td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires 
 >conversion</td> </tr> </table> <br> <h3><a 
 >href="https://github.com/vngrs/template-scala-parallel-viewedthenbought";>Viewed
 > This Bought That</a></h3> <iframe src="https://ghbtns.com/github-btn.html
 
?user=vngrs&amp;repo=template-scala-parallel-viewedthenbought&amp;type=star&amp;count=true"
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This Engine uses co-occurence algorithm to match 
viewed items to bought items. Using this engine you may predict which item the 
user will buy, given the item(s) browsed. </p> <p>Support: <a 
href="https://github.com/vngrs/template-scala-parallel-viewedthenbought/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=star&amp;count=true";
 frameborder="0" ali
 gn="middle" scrolling="0" width="170px" height="20px"></iframe> <p> Template 
uses FP Growth algorithm allowing to mine for frequent patterns. Template 
returns subsequent items together with confidence score. Sometimes used as a 
shopping cart recommender but has other uses. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-fpm/issues";>Github issues</a></p> 
<br> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating";>Similar
 Product with Rating</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=ramaboo&amp;repo=template-scala-parallel-similarproduct-with-rating&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" 
 width="170px" height="20px"></iframe> <p> Similar product template with rating 
support! Used for the MovieLens Demo. </p> <p>Support: <a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Template uses FP Growth algorithm allowing to mine 
for frequent patterns. Template returns subsequent items together with 
confidence score. </p> <p>Suppor
 t: <a href="https://github.com/goliasz/pio-template-fpm/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> 
</tr> </table> <br> </div> <div data-tab="Classification" 
id="tab-ae21b24c-31e2-4bd7-8ad9-2cb12712956e"> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-attribute-based-classifier";>Classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-attribute-based-classifier&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> An engine template is an almost-complete 
implementation of an engine. PredictionIO's Classification Engine Template has 
integrated Apache Spark MLlib's Naive Ba
 yes algorithm by default. </p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>already compatible</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/haricharan123/PredictionIo-lingpipe-MultiLabelClassification";>Classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=haricharan123&amp;repo=PredictionIo-lingpipe-MultiLabelClassification&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template is an almost-complete 
implementation of an engine meant to used with PredictionIO. This Multi-label 
Classification Engine Template has integrated LingPipe (http://alias-i.com/
 lingpipe/) algorithm by default. </p> <p>Support: </p> <br> <table> <tr> 
<th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> <th>PIO min 
version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Java</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.9.5</td> <td>already compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-leadscoring";>Lead 
Scoring</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-leadscoring&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template predicts the probability of an 
user will convert (conversion event by user) in the current session. </p> 
<p>Support: </p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel
 </td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-text-classifier";>Text
 Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-text-classifier&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Use this engine for general text classification 
purposes. Uses OpenNLP library for text vectorization, includes 
t.f.-i.d.f.-based feature transformation and reduction, and uses Spark MLLib's 
Multinomial Naive Bayes implementation for classification. </p> <p>Support: <a 
href="https://github.com/apache/incubator-predictionio-template-text-classifier/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Requi
 red</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 
2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a 
href="https://github.com/andrewwuan/PredictionIO-Churn-Prediction-H2O-Sparkling-Water";>Churn
 Prediction - H2O Sparkling Water</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=andrewwuan&amp;repo=PredictionIO-Churn-Prediction-H2O-Sparkling-Water&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is an engine template with Sparkling Water 
integration. The goal is to use Deep Learning algorithm to predict the churn 
rate for a phone carrier's customers. </p> <p>Support: <a 
href="https://github.com/andrewwuan/PredictionIO-Churn-Prediction-H2O-Sparkling-Water/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr
 > <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
 > <td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
 > href="https://github.com/detrevid/predictionio-template-classification-dl4j";>Classification
 >  Deeplearning4j</a></h3> <iframe 
 > src="https://ghbtns.com/github-btn.html?user=detrevid&amp;repo=predictionio-template-classification-dl4j&amp;type=star&amp;count=true";
 >  frameborder="0" align="middle" scrolling="0" width="170px" 
 > height="20px"></iframe> <p> A classification engine template that uses 
 > Deeplearning4j library. </p> <p>Support: <a 
 > href="https://github.com/detrevid/predictionio-template-classification-dl4j/issues";>Github
 >  issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 > <th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
 > Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> 
 > <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires 
 > conversion</td> </tr> </table> <br> <h3><a href
 
="https://github.com/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs";>Probabilistic
 Classifier (Logistic Regression w/ LBFGS)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=EmergentOrder&amp;repo=template-scala-probabilistic-classifier-batch-lbfgs&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A PredictionIO engine template using logistic 
regression (trained with limited-memory BFGS ) with raw (probabilistic) 
outputs. </p> <p>Support: <a 
href="https://github.com/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>MIT 
License</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a href="https://github.com/chrischr
 is292/template-classification-opennlp">Document Classification with 
OpenNLP</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=chrischris292&amp;repo=template-classification-opennlp&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Document Classification template with OpenNLP 
GISModel. </p> <p>Support: <a 
href="https://github.com/chrischris292/template-classification-opennlp/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/harry5z/template-circuit-classification-sparkling-water";>Circuit
 End Use Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=harry5z&amp;repo=template-circ
 uit-classification-sparkling-water&amp;type=star&amp;count=true" 
frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A classification engine template that uses machine 
learning models trained with sample circuit energy consumption data and end 
usage to predict the end use of a circuit by its energy consumption history. 
</p> <p>Support: <a 
href="https://github.com/harry5z/template-circuit-classification-sparkling-water/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.1</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/ailurus1991/GBRT_Template_PredictionIO";>GBRT_Classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=ailurus1991&amp;repo=GBRT_Template_PredictionIO&amp;type=s
 tar&amp;count=true" frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> The Gradient-Boosted Regression Trees(GBRT) for 
classification. </p> <p>Support: <a 
href="https://github.com/ailurus1991/GBRT_Template_PredictionIO/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/mohanaprasad1994/PredictionIO-MLlib-Decision-Trees-Template";>MLlib-Decision-Trees-Template</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=mohanaprasad1994&amp;repo=PredictionIO-MLlib-Decision-Trees-Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> An engine template is an almost-complete im
 plementation of an engine. This is a classification engine template which has 
integrated Apache Spark MLlib's Decision tree algorithm by default. </p> 
<p>Support: <a 
href="https://github.com/mohanaprasad1994/PredictionIO-MLlib-Decision-Trees-Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/jimmyywu/predictionio-template-classification-dl4j-multilayer-network";>Classification
 with MultiLayerNetwork</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=jimmyywu&amp;repo=predictionio-template-classification-dl4j-multilayer-network&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine templat
 e integrates the MultiLayerNetwork implementation from the Deeplearning4j 
library into PredictionIO. In this template, we use PredictionIO to classify 
the widely-known IRIS flower dataset by constructing a deep-belief net. </p> 
<p>Support: <a 
href="https://github.com/jimmyywu/predictionio-template-classification-dl4j-multilayer-network/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/thomasste/template-scala-parallel-dl4j-rntn";>Deeplearning4j
 RNTN</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=template-scala-parallel-dl4j-rntn&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Re
 cursive Neural Tensor Network algorithm is supervised learning algorithm used 
to predict sentiment of sentences. This template is based on deeplearning4j 
RNTN example: 
https://github.com/SkymindIO/deeplearning4j-nlp-examples/tree/master/src/main/java/org/deeplearning4j/rottentomatoes/rntn.
 It's goal is to show how to integrate deeplearning4j library with 
PredictionIO. </p> <p>Support: <a 
href="https://github.com/thomasste/template-scala-parallel-dl4j-rntn/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/singsanj/classifier-kafka-streaming-template";>classifier-kafka-streaming-template</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=singsanj&amp;repo=classifier-kafk
 a-streaming-template&amp;type=star&amp;count=true" frameborder="0" 
align="middle" scrolling="0" width="170px" height="20px"></iframe> <p> The 
template will provide a simple integration of DASE with kafka using spark 
streaming capabilites in order to play around with real time notification, 
messages .. </p> <p>Support: <a 
href="https://github.com/singsanj/classifier-kafka-streaming-template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template";>Sentiment
 Analysis - Bag of Words Model</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=BagOfWords_SentimentAnalysis_Template&amp;type=star&amp;count=true";
 frameborde
 r="0" align="middle" scrolling="0" width="170px" height="20px"></iframe> <p> 
This sentiment analysis template uses a bag of words model. Given text, the 
engine will return sentiment as 1.0 (positive) or 0.0 (negative) along with 
scores indicating how +ve or -ve it is. </p> <p>Support: <a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> </div> <div data-tab="Regression" 
id="tab-b2617217-6aec-4f57-9f1a-87df8d8630a3"> <h3><a 
href="https://github.com/goliasz/pio-template-sr";>Survival Regression</a></h3> 
<iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-sr&amp;type=star&amp;count=true";
 frameborder=
 "0" align="middle" scrolling="0" width="170px" height="20px"></iframe> <p> 
Survival regression template is based on brand new Spark 1.6 AFT (accelerated 
failure time) survival analysis algorithm. There are interesting applications 
of survival analysis like: </p> <ul class="tab-list"> <li 
class="tab-list-element">Business Planning : Profiling customers who has a 
higher survival rate and make strategy accordingly.</li> <li 
class="tab-list-element">Lifetime Value Prediction : Engage with customers 
according to their lifetime value</li> <li class="tab-list-element">Active 
customers : Predict when the customer will be active for the next time and take 
interventions accordingly. * Campaign evaluation : Monitor effect of campaign 
on the survival rate of customers.</li> </ul> Source: 
http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/ 
<p>Support: <a 
href="http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/";>Blog
 post</a></p> <br> <table> <tr> <th>Ty
 pe</th> <th>Language</th> <th>License</th> <th>Status</th> <th>PIO min 
version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>beta</td> 
<td>0.9.5</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/BensonQiu/predictionio-template-recommendation-sparklingwater";>Sparkling
 Water-Deep Learning Energy Forecasting</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=BensonQiu&amp;repo=predictionio-template-recommendation-sparklingwater&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This Engine Template demonstrates an energy 
forecasting engine. It integrates Deep Learning from the Sparkling Water 
library to perform energy analysis. We can query the circuit and time, and 
return predicted energy usage. </p> <p>Support: <a 
href="https://github.com/BensonQiu/predictionio-template-recommendation-sparklingwater/
 issues">Github issues</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/detrevid/predictionio-load-forecasting";>Electric Load 
Forecasting</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=detrevid&amp;repo=predictionio-load-forecasting&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is a PredictionIO engine for electric load 
forecasting. The engine is using linear regression with stochastic gradient 
descent from Spark MLlib. </p> <p>Support: <a 
href="https://github.com/detrevid/predictionio-load-forecasting/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</t
 h> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/RAditi/PredictionIO-MLLib-LinReg-Template";>MLLib-LinearRegression</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=RAditi&amp;repo=PredictionIO-MLLib-LinReg-Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template uses the linear regression with 
stochastic gradient descent algorithm from MLLib to make predictions on 
real-valued data based on features (explanatory variables) </p> <p>Support: <a 
href="https://github.com/RAditi/PredictionIO-MLLib-LinReg-Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr
 > <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
 > <td>0.9.1</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
 > href="https://github.com/mgcdanny/pio-linear-regression-bfgs";>Linear 
 > Regression BFGS</a></h3> <iframe 
 > src="https://ghbtns.com/github-btn.html?user=mgcdanny&amp;repo=pio-linear-regression-bfgs&amp;type=star&amp;count=true";
 >  frameborder="0" align="middle" scrolling="0" width="170px" 
 > height="20px"></iframe> <p> Modeling the relationship between a dependent 
 > variable, y, and one or more explanatory variables, denoted X. </p> 
 > <p>Support: </p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 > <th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
 > Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> 
 > <td>Apache Licence 2.0</td> <td>beta</td> <td>0.10.0</td> <td></td> </tr> 
 > </table> <br> </div> <div data-tab="NLP" 
 > id="tab-8f454294-8bf9-4c22-8e70-bc449b3ba6b1"> <h3><a 
 > href="https://github.com/goliasz/pio-template-te
 xt-similarity">Cstablo-template-text-similarity-classification</a></h3> 
<iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-text-similarity&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Text similarity engine based on Word2Vec algorithm. 
Builds vectors of full documents in training phase. Finds similar documents in 
query phase. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-text-similarity/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia";>Topic
 Labelling with Wikipedia</a></h3> <iframe src="https://ghbtns.com
 
/github-btn.html?user=peoplehum&amp;repo=template-Labelling-Topics-with-wikipedia&amp;type=star&amp;count=true"
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template will label topics (e.g. topic 
generated through LDA topic modeling) with relevant category by referring to 
Wikipedia as a knowledge base. </p> <p>Support: <a 
href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-text-classifier";>Text
 Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-t
 emplate-text-classifier&amp;type=star&amp;count=true" frameborder="0" 
align="middle" scrolling="0" width="170px" height="20px"></iframe> <p> Use this 
engine for general text classification purposes. Uses OpenNLP library for text 
vectorization, includes t.f.-i.d.f.-based feature transformation and reduction, 
and uses Spark MLLib's Multinomial Naive Bayes implementation for 
classification. </p> <p>Support: <a 
href="https://github.com/apache/incubator-predictionio-template-text-classifier/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/thomasste/template-scala-parallel-dl4j-rntn";>Deeplearning4j
 RNTN</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=
 template-scala-parallel-dl4j-rntn&amp;type=star&amp;count=true" 
frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Recursive Neural Tensor Network algorithm is 
supervised learning algorithm used to predict sentiment of sentences. This 
template is based on deeplearning4j RNTN example: 
https://github.com/SkymindIO/deeplearning4j-nlp-examples/tree/master/src/main/java/org/deeplearning4j/rottentomatoes/rntn.
 It's goal is to show how to integrate deeplearning4j library with 
PredictionIO. </p> <p>Support: <a 
href="https://github.com/thomasste/template-scala-parallel-dl4j-rntn/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a href="https://github.com/peoplehum/BagOfWords_Sen
 timentAnalysis_Template">Sentiment Analysis - Bag of Words Model</a></h3> 
<iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=BagOfWords_SentimentAnalysis_Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This sentiment analysis template uses a bag of 
words model. Given text, the engine will return sentiment as 1.0 (positive) or 
0.0 (negative) along with scores indicating how +ve or -ve it is. </p> 
<p>Support: <a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/infoquestsolutions/OpenNLP-SentimentAna
 lysis-Template">OpenNLP Sentiment Analysis Template</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=infoquestsolutions&amp;repo=OpenNLP-SentimentAnalysis-Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Given a sentence, this engine will return a score 
between 0 and 4. This is the sentiment of the sentence. The lower the number 
the more negative the sentence is. It uses the OpenNLP library. </p> 
<p>Support: <a 
href="https://github.com/infoquestsolutions/OpenNLP-SentimentAnalysis-Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/pawel-n/template-scala-cml-sentiment";>Senti
 ment analysis</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=pawel-n&amp;repo=template-scala-cml-sentiment&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template implements various algorithms for 
sentiment analysis, most based on recursive neural networks (RNN) and recursive 
neural tensor networks (RNTN)[1]. It uses an experimental library called 
Composable Machine Learning (CML) and the Stanford Parser. The example data set 
is the Stanford Sentiment Treebank. </p> <p>Support: <a 
href="https://github.com/pawel-n/template-scala-cml-sentiment/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a href="https://github.com
 /pawel-n/template-scala-parallel-word2vec">Word2Vec</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=pawel-n&amp;repo=template-scala-parallel-word2vec&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template integrates the Word2Vec 
implementation from deeplearning4j with PredictionIO. The Word2Vec algorithm 
takes a corpus of text and computes a vector representation for each word. 
These representations can be subsequently used in many natural language 
processing applications. </p> <p>Support: <a 
href="https://github.com/pawel-n/template-scala-parallel-word2vec/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a href="ht
 tps://github.com/thomasste/template-scala-spark-dl4j-word2vec">Spark 
Deeplearning4j Word2Vec</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=template-scala-spark-dl4j-word2vec&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template shows how to integrate Deeplearnign4j 
spark api with PredictionIO on example of app which uses Word2Vec algorithm to 
predict nearest words. </p> <p>Support: <a 
href="https://github.com/thomasste/template-scala-spark-dl4j-word2vec/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/whhone/template-sentiment-analysis";>Sentiment Analysis 
Template</a
 ></h3> <iframe 
 >src="https://ghbtns.com/github-btn.html?user=whhone&amp;repo=template-sentiment-analysis&amp;type=star&amp;count=true";
 > frameborder="0" align="middle" scrolling="0" width="170px" 
 >height="20px"></iframe> <p> Given a sentence, return a score between 0 and 4, 
 >indicating the sentence's sentiment. 0 being very negative, 4 being very 
 >positive, 2 being neutral. The engine uses the stanford CoreNLP library and 
 >the Scala binding `gangeli/CoreNLP-Scala` for parsing. </p> <p>Support: <a 
 >href="https://github.com/whhone/template-sentiment-analysis/issues";>Github 
 >issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 ><th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
 >Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> 
 ><td>None</td> <td>stable</td> <td>0.9.0</td> <td>requires conversion</td> 
 ></tr> </table> <br> <h3><a 
 >href="https://github.com/thomasste/template-scala-rnn";>Recursive Neural 
 >Networks (Sentiment Analysis)</a></h3> <iframe s
 
rc="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=template-scala-rnn&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Predicting sentiment of phrases with use of 
Recursive Neural Network algorithm and OpenNLP parser. </p> <p>Support: <a 
href="https://github.com/thomasste/template-scala-rnn/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/Ling-Ling/CoreNLP-Text-Classification";>CoreNLP Text 
Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=Ling-Ling&amp;repo=CoreNLP-Text-Classification&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px"
  height="20px"></iframe> <p> This engine uses CoreNLP to do text analysis in 
order to classify the category a strings of text falls under. </p> <p>Support: 
<a 
href="https://github.com/Ling-Ling/CoreNLP-Text-Classification/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires conversion</td> </tr> 
</table> <br> </div> <div data-tab="Clustering" 
id="tab-cdefad02-36eb-40ea-b04e-5e417c8d8bfc"> <h3><a 
href="https://github.com/sahiliitm/predictionio-MLlibKMeansClusteringTemplate";>MLlibKMeansClustering</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=sahiliitm&amp;repo=predictionio-MLlibKMeansClusteringTemplate&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is a template wh
 ich demonstrates the use of K-Means clustering algorithm which can be deployed 
on a spark-cluster using prediction.io. </p> <p>Support: <a 
href="https://github.com/sahiliitm/predictionio-MLlibKMeansClusteringTemplate/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a 
href="https://github.com/EmergentOrder/template-scala-topic-model-LDA";>Topc 
Model (LDA)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=EmergentOrder&amp;repo=template-scala-topic-model-LDA&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A PredictionIO engine template using Latent 
Dirichlet Allocation to learn a topic model from raw text </p> <p>Support: <a 
href="
 https://github.com/EmergentOrder/template-scala-topic-model-LDA/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.4</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/singsanj/KMeans-parallel-template";>KMeans-Clustering-Template</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=singsanj&amp;repo=KMeans-parallel-template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> forked from 
PredictionIO/template-scala-parallel-vanilla. It implements the KMeans 
Algorithm. Can be extended to mainstream implementation with minor changes. 
</p> <p>Support: <a 
href="https://github.com/singsanj/KMeans-parallel-template/issues";>Github 
issues</a></p> <br> <table> <tr> <th
 >Type</th> <th>Language</th> <th>License</th> <th>Status</th> <th>PIO min 
 >version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
 ><td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
 ><td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
 >href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia";>Topic
 > Labelling with Wikipedia</a></h3> <iframe 
 >src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=template-Labelling-Topics-with-wikipedia&amp;type=star&amp;count=true";
 > frameborder="0" align="middle" scrolling="0" width="170px" 
 >height="20px"></iframe> <p> This template will label topics (e.g. topic 
 >generated through LDA topic modeling) with relevant category by referring to 
 >Wikipedia as a knowledge base. </p> <p>Support: <a 
 >href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia/issues";>Github
 > issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 ><th>License</th> <th>Status</th> <th>P
 IO min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.10.0-incubating</td> <td>already compatible</td> </tr> </table> <br> 
</div> <div data-tab="Similarity" 
id="tab-0df23278-cf92-4e21-85c1-1de994567ca9"> <h3><a 
href="https://github.com/alexice/template-scala-parallel-svd-item-similarity";>Content
 Based SVD Item Similarity Engine</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=alexice&amp;repo=template-scala-parallel-svd-item-similarity&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Template to calculate similarity between items 
based on their attributes—sometimes called content-based similarity. 
Attributes can be either numeric or categorical in the last case it will be 
encoded using one-hot encoder. Algorithm uses SVD in order to reduce data 
dimensionality. Cosine similarity is now implemented but can
  be easily extended to other similarity measures. </p> <p>Support: <a 
href="https://groups.google.com/forum/#!forum/actionml-user";>The Universal 
Recommender user group</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/goliasz/pio-template-text-similarity";>Cstablo-template-text-similarity-classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-text-similarity&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Text similarity engine based on Word2Vec algorithm. 
Builds vectors of full documents in training phase. Finds similar documents in 
query phase. </p> <p>Support: <a href="https://gi
 thub.com/goliasz/pio-template-text-similarity/issues">Github issues</a></p> 
<br> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating";>Similar
 Product with Rating</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=ramaboo&amp;repo=template-scala-parallel-similarproduct-with-rating&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Similar product template with rating support! Used 
for the MovieLens Demo. </p> <p>Support: <a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</t
 h> <th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> </div> <div data-tab="Other" 
id="tab-a1687603-458d-44dd-80aa-10ee63e0001f"> <h3><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Template uses FP Growth algorithm allowing to mine 
for frequent patterns. Template returns subsequent items together with 
confidence score. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-fpm/issues";>Github issues</a></p> 
<br> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Req
 uired</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 
2.0</td> <td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a 
href="https://github.com/anthill/template-decision-tree-feature-importance";>template-decision-tree-feature-importance</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=anthill&amp;repo=template-decision-tree-feature-importance&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template shows how to use spark' decision 
tree. It enables : - both categorical and continuous features - feature 
importance calculation - tree output in json - reading training data from a csv 
file </p> <p>Support: <a 
href="https://github.com/anthill/template-decision-tree-feature-importance/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</
 th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>stable</td> <td>0.9.0</td> <td>requires conversion</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/apache/incubator-predictionio-template-skeleton";>Skeleton</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-skeleton&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Skeleton template is for developing new engine when 
you find other engine templates do not fit your needs. This template provides a 
skeleton to kick start new engine development. </p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td
 > <td>stable</td> <td>0.9.2</td> <td>already compatible</td> </tr> </table> 
 > <br> </div> </div> </div></div></div></div><footer><div 
 > class="container"><div class="seperator"></div><div class="row"><div 
 > class="col-md-6 footer-link-column"><div 
 > class="footer-link-column-row"><h4>Community</h4><ul><li><a 
 > href="//predictionio.incubator.apache.org/install/" 
 > target="blank">Download</a></li><li><a 
 > href="//predictionio.incubator.apache.org/" 
 > target="blank">Docs</a></li><li><a 
 > href="//github.com/apache/incubator-predictionio" 
 > target="blank">GitHub</a></li><li><a 
 > href="mailto:[email protected]"; 
 > target="blank">Subscribe to User Mailing List</a></li><li><a 
 > href="//stackoverflow.com/questions/tagged/predictionio" 
 > target="blank">Stackoverflow</a></li></ul></div></div><div class="col-md-6 
 > footer-link-column"><div 
 > class="footer-link-column-row"><h4>Contribute</h4><ul><li><a 
 > href="//predictionio.incubator.apache.org/community/contribute-code/" 
 > target="blank">Contribute<
 /a></li><li><a href="//github.com/apache/incubator-predictionio" 
target="blank">Source Code</a></li><li><a 
href="//issues.apache.org/jira/browse/PIO" target="blank">Bug 
Tracker</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to Development Mailing 
List</a></li></ul></div></div></div><div class="row"><div class="col-md-12 
footer-link-column"><a class="pull-right" 
href="http://incubator.apache.org/projects/predictionio.html";><img alt="Apache 
Incubator" src="/images/logos/apache_incubator-6954bd16.png"/></a><span>Apache 
PredictionIO is an effort undergoing incubation at The Apache Software 
Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of 
all newly accepted projects until a further review indicates that the 
infrastructure, communications, and decision making process have stabilized in 
a manner consistent with other successful ASF projects. While incubation status 
is not necessarily a reflection of the co
 mpleteness or stability of the code, it does indicate that the project has yet 
to be fully endorsed by the ASF.</span></div></div></div><div 
id="footer-bottom"><div class="container"><div class="row"><div 
class="col-md-12"><div id="footer-logo-wrapper"><img alt="PredictionIO" 
src="/images/logos/logo-white-d1e9c6e6.png"/></div><div 
id="social-icons-wrapper"><a class="github-button" 
href="https://github.com/apache/incubator-predictionio"; data-style="mega" 
data-count-href="/apache/incubator-predictionio/stargazers" 
data-count-api="/repos/apache/incubator-predictionio#stargazers_count" 
data-count-aria-label="# stargazers on GitHub" aria-label="Star 
apache/incubator-predictionio on GitHub">Star</a> <a class="github-button" 
href="https://github.com/apache/incubator-predictionio/fork"; 
data-icon="octicon-git-branch" data-style="mega" 
data-count-href="/apache/incubator-predictionio/network" 
data-count-api="/repos/apache/incubator-predictionio#forks_count" 
data-count-aria-label="# forks on Gi
 tHub" aria-label="Fork apache/incubator-predictionio on GitHub">Fork</a> 
<script id="github-bjs" async="" defer="" 
src="https://buttons.github.io/buttons.js";></script><a 
href="https://twitter.com/predictionio"; target="blank"><img alt="PredictionIO 
on Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a 
href="https://www.facebook.com/predictionio"; target="blank"><img 
alt="PredictionIO on Facebook" src="/images/icons/facebook-5c57939c.png"/></a> 
</div></div></div></div></div></footer></div><script>(function(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+(w[n].q=w[n].q||[]).push(arguments);};s=d.createElement(t);
+e=d.getElementsByTagName(t)[0];s.async=1;s.src=u;e.parentNode.insertBefore(s,e);
+})(window,document,'script','//s.swiftypecdn.com/install/v1/st.js','_st');
+
+_st('install','HaUfpXXV87xoB_zzCQ45');</script><script 
src="/javascripts/application-a6acb1f5.js"></script></body></html>
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/dd18a676/gallery/template-gallery/index.html.gz
----------------------------------------------------------------------
diff --git a/gallery/template-gallery/index.html.gz 
b/gallery/template-gallery/index.html.gz
new file mode 100644
index 0000000..5e631ca
Binary files /dev/null and b/gallery/template-gallery/index.html.gz differ

Reply via email to