http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/1b72b303/templates/classification/add-algorithm/index.html
----------------------------------------------------------------------
diff --git a/templates/classification/add-algorithm/index.html 
b/templates/classification/add-algorithm/index.html
new file mode 100644
index 0000000..194ecb9
--- /dev/null
+++ b/templates/classification/add-algorithm/index.html
@@ -0,0 +1,147 @@
+<!DOCTYPE html><html><head><title>Using Alternative Algorithm</title><meta 
charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="Using Alternative Algorithm"/><link 
rel="canonical" 
href="https://predictionio.incubator.apache.org/templates/classification/add-algorithm/"/><link
 href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-eccfc6cb.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><sc
 ript 
src="//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script
 src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.incubator.apache.org/";><img 
alt="PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a><span>™</span></div><div 
id="menu-wrapper"><div id="pill-wrapper"><a class="pill left" 
href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/incubator-predictionio/">OPEN 
SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md 
hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" 
id="search-bar-row"><div class="row"><
 div class="col-md-9 col-sm-11 col-xs-11"><div class="hidden-md hidden-lg" 
id="mobile-page-heading-wrapper"><p>PredictionIO Docs</p><h4>Using Alternative 
Algorithm</h4></div><h4 class="hidden-sm hidden-xs">PredictionIO 
Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 hidden-md hidden-lg"><img 
id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md 
hidden-lg"></div></div></div></div><div id="page" class="container-fl
 uid"><div class="row"><div id="left-menu-wrapper" class="col-md-3"><nav 
id="nav-main"><ul><li class="level-1"><a class="expandible" 
href="/"><span>Apache PredictionIO™ (incubating) 
Documentation</span></a><ul><li class="level-2"><a class="final" 
href="/"><span>Welcome to Apache PredictionIO 
(incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Started</span></a><ul><li class="level-2"><a 
class="final" href="/start/"><span>A Quick Intro</span></a></li><li 
class="level-2"><a class="final" href="/install/"><span>Installing Apache 
PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" 
href="/start/download/"><span>Downloading an Engine Template</span></a></li><li 
class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your 
First Engine</span></a></li><li class="level-2"><a class="final" 
href="/start/customize/"><span>Customizing the 
Engine</span></a></li></ul></li><li class="level-1"><a class="expan
 dible" href="#"><span>Integrating with Your App</span></a><ul><li 
class="level-2"><a class="final" href="/appintegration/"><span>App Integration 
Overview</span></a></li><li class="level-2"><a class="expandible" 
href="/sdk/"><span>List of SDKs</span></a><ul><li class="level-3"><a 
class="final" href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
SDK</span></a></li><li class="level-3"><a class="final" 
href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered 
SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
Service</span></a></li><li class="level-2"><a class="final" 
href="/batchpredict/"><span>Batch P
 redictions</span></a></li><li class="level-2"><a class="final" 
href="/deploy/monitoring/"><span>Monitoring Engine</span></a></li><li 
class="level-2"><a class="final" href="/deploy/engineparams/"><span>Setting 
Engine Parameters</span></a></li><li class="level-2"><a class="final" 
href="/deploy/enginevariants/"><span>Deploying Multiple Engine 
Variants</span></a></li><li class="level-2"><a class="final" 
href="/deploy/plugin/"><span>Engine Server Plugin</span></a></li></ul></li><li 
class="level-1"><a class="expandible" href="#"><span>Customizing an 
Engine</span></a><ul><li class="level-2"><a class="final" 
href="/customize/"><span>Learning DASE</span></a></li><li class="level-2"><a 
class="final" href="/customize/dase/"><span>Implement DASE</span></a></li><li 
class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>Engine Scala APIs</span></a></li></ul>
 </li><li class="level-1"><a class="expandible" href="#"><span>Collecting and 
Analyzing Data</span></a><ul><li class="level-2"><a class="final" 
href="/datacollection/"><span>Event Server Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/eventapi/"><span>Collecting Data with 
REST/SDKs</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
Webhooks</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/channel/"><span>Channel</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/batchimport/"><span>Importing Data in 
Batch</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/analytics/"><span>Using Analytics 
Tools</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/plugin/"><span>Event Server Plugin<
 /span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Choosing an Algorithm(s)</span></a><ul><li class="level-2"><a 
class="final" href="/algorithm/"><span>Built-in Algorithm 
Libraries</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/switch/"><span>Switching to Another 
Algorithm</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/multiple/"><span>Combining Multiple 
Algorithms</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/custom/"><span>Adding Your Own 
Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
class="final" href="/evaluation/"><span>Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/evaluationdashboard/"><span>Evaluation 
Dashboard</span></a></li><li 
 class="level-2"><a class="final" 
href="/evaluation/metricchoose/"><span>Choosing Evaluation 
Metrics</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricbuild/"><span>Building Evaluation 
Metrics</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>System Architecture</span></a><ul><li class="level-2"><a 
class="final" href="/system/"><span>Architecture Overview</span></a></li><li 
class="level-2"><a class="final" href="/system/anotherdatastore/"><span>Using 
Another Data Store</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>PredictionIO Official 
Templates</span></a><ul><li class="level-2"><a class="final" 
href="/templates/"><span>Intro</span></a></li><li class="level-2"><a 
class="expandible" href="#"><span>Recommendation</span></a><ul><li 
class="level-3"><a class="final" 
href="/templates/recommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" href="/templates/
 recommendation/dase/"><span>DASE</span></a></li><li class="level-3"><a 
class="final" href="/templates/recommendation/evaluation/"><span>Evaluation 
Explained</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/recommendation/reading-custom-events/"><span>Read Custom 
Events</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-data-prep/"><span>Customize Data 
Preparator</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-serving/"><span>Customize 
Serving</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/training-with-implicit-preference/"><span>Train 
with Implicit Preference</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/blacklist-items/"><span>Filter Recommended 
Items by Blacklist in Query</span></a></li><li clas
 s="level-3"><a class="final" 
href="/templates/recommendation/batch-evaluator/"><span>Batch Persistable 
Evaluator</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>E-Commerce Recommendation</span></a><ul><li class="level-3"><a 
class="final" href="/templates/ecommercerecommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/how-to/"><span>How-To</span></a></li><li
 class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/train-with-rate-event/"><span>Train 
with Rate Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/adjust-score/"><span>Adjust 
Score</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Similar Product</span></a><ul><li class="level-3"><a 
class="final" href="
 /templates/similarproduct/quickstart/"><span>Quick Start</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/multi-events-multi-algos/"><span>Multiple 
Events and Multiple Algorithms</span></a></li><li class="level-3"><a 
class="final" 
href="/templates/similarproduct/return-item-properties/"><span>Returns Item 
Properties</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/train-with-rate-event/"><span>Train with Rate 
Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/rid-user-set-event/"><span>Get Rid of Events 
for Users</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/recommended-user/"><span>Recommend 
Users</span></a></li></ul></li><li class="
 level-2"><a class="expandible" href="#"><span>Classification</span></a><ul><li 
class="level-3"><a class="final" 
href="/templates/classification/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final active" 
href="/templates/classification/add-algorithm/"><span>Use Alternative 
Algorithm</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/reading-custom-properties/"><span>Read Custom 
Properties</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li 
class="level-2"><a class="final" 
href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" 
href="/community/submit-template/"><span>Submit your Engine as a Tem
 plate</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Demo Tutorials</span></a><ul><li class="level-2"><a 
class="final" href="/demo/tapster/"><span>Comics Recommendation 
Demo</span></a></li><li class="level-2"><a class="final" 
href="/demo/community/"><span>Community Contributed Demo</span></a></li><li 
class="level-2"><a class="final" href="/demo/textclassification/"><span>Text 
Classification Engine Tutorial</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="/community/"><span>Getting Involved</span></a><ul><li 
class="level-2"><a class="final" 
href="/community/contribute-code/"><span>Contribute Code</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" href="/community/contribute-webhook/"><span>Con
 tribute a Webhook</span></a></li><li class="level-2"><a class="final" 
href="/community/projects/"><span>Community 
Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Help</span></a><ul><li class="level-2"><a class="final" 
href="/resources/faq/"><span>FAQs</span></a></li><li class="level-2"><a 
class="final" href="/support/"><span>Support</span></a></li></ul></li><li 
class="level-1"><a class="expandible" 
href="#"><span>Resources</span></a><ul><li class="level-2"><a class="final" 
href="/cli/"><span>Command-line Interface</span></a></li><li class="level-2"><a 
class="final" href="/resources/release/"><span>Release 
Cadence</span></a></li><li class="level-2"><a class="final" 
href="/resources/intellij/"><span>Developing Engines with IntelliJ 
IDEA</span></a></li><li class="level-2"><a class="final" 
href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li 
class="level-2"><a class="final" href="/resources/glossary/"><span>Glossary<
 /span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Apache Software Foundation</span></a><ul><li class="level-2"><a 
class="final" href="https://www.apache.org/";><span>Apache 
Homepage</span></a></li><li class="level-2"><a class="final" 
href="https://www.apache.org/licenses/";><span>License</span></a></li><li 
class="level-2"><a class="final" 
href="https://www.apache.org/foundation/sponsorship.html";><span>Sponsorship</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/foundation/thanks.html";><span>Thanks</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/security/";><span>Security</span></a></li></ul></li></ul></nav></div><div
 class="col-md-9 col-sm-12"><div class="content-header hidden-md 
hidden-lg"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a 
href="#">PredictionIO Official Templates</a><span 
class="spacer">&gt;</span></li><li><a href="#">Classification</a><span 
class="spacer">&gt;</
 span></li><li><span class="last">Use Alternative 
Algorithm</span></li></ul></div><div id="page-title"><h1>Using Alternative 
Algorithm</h1></div></div><div id="table-of-content-wrapper"><h5>On this 
page</h5><aside id="table-of-contents"><ul> <li> <a 
href="#create-a-new-file-randomforestalgorithm-scala">Create a new file 
RandomForestAlgorithm.scala</a> </li> <li> <a 
href="#define-the-algorithm-class-and-parameters">Define the algorithm class 
and parameters</a> </li> <li> <a href="#update-engine-scala">Update 
Engine.scala</a> </li> <li> <a href="#update-engine-json">Update 
engine.json</a> </li> </ul> </aside><hr/><a id="edit-page-link" 
href="https://github.com/apache/incubator-predictionio/tree/livedoc/docs/manual/source/templates/classification/add-algorithm.html.md";><img
 src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div 
class="content-header hidden-sm hidden-xs"><div id="breadcrumbs" 
class="hidden-sm hidden xs"><ul><li><a href="#">PredictionIO Official Templa
 tes</a><span class="spacer">&gt;</span></li><li><a 
href="#">Classification</a><span class="spacer">&gt;</span></li><li><span 
class="last">Use Alternative Algorithm</span></li></ul></div><div 
id="page-title"><h1>Using Alternative Algorithm</h1></div></div><div 
class="content"> <p>The classification template uses the Naive Bayes algorithm 
by default. You can easily add and use other MLlib classification algorithms. 
The following will demonstrate how to add the <a 
href="https://spark.apache.org/docs/latest/mllib-ensembles.html";>MLlib Random 
Forests algorithm</a> into the engine.</p><p>You can find the complete modified 
source code <a 
href="https://github.com/apache/incubator-predictionio/tree/develop/examples/scala-parallel-classification/add-algorithm";>here</a>.</p><h2
 id='create-a-new-file-randomforestalgorithm.scala' 
class='header-anchors'>Create a new file 
RandomForestAlgorithm.scala</h2><p>Locate 
<code>src/main/scala/NaiveBayesAlgorithm.scala</code> under your engine 
directory, wh
 ich should be /MyClassification if you are following the <a 
href="/templates/classification/quickstart/">Classification QuickStart</a>. 
Copy <code>NaiveBayesAlgorithm.scala</code> and create a new file 
<code>RandomForestAlgorithm.scala</code>. You will modify this file and follow 
the instructions below to define a new RandomForestAlgorithm class.</p><h2 
id='define-the-algorithm-class-and-parameters' class='header-anchors'>Define 
the algorithm class and parameters</h2><p>In 
&#39;RandomForestAlgorithm.scala&#39;, import the MLlib Random Forests 
algorithm by changing the following lines:</p><p>Original</p><div 
class="highlight scala"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2</pre></td><td class="code"><pre><span class="k">import</span> <span 
class="nn">org.apache.spark.mllib.classification.NaiveBayes</span>
+<span class="k">import</span> <span 
class="nn">org.apache.spark.mllib.classification.NaiveBayesModel</span>
+</pre></td></tr></tbody></table> </div> <p>Change to:</p><div class="highlight 
scala"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
+2</pre></td><td class="code"><pre><span class="k">import</span> <span 
class="nn">org.apache.spark.mllib.tree.RandomForest</span> <span class="c1">// 
CHANGED
+</span><span class="k">import</span> <span 
class="nn">org.apache.spark.mllib.tree.model.RandomForestModel</span> <span 
class="c1">// CHANGED
+</span></pre></td></tr></tbody></table> </div> <p>These are the necessary 
classes in order to use the MLLib&#39;s Random Forest algorithm.</p><p>Modify 
the <code>AlgorithmParams</code> class for the Random Forest algorithm:</p><div 
class="highlight scala"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9</pre></td><td class="code"><pre><span class="c1">// CHANGED
+</span><span class="k">case</span> <span class="k">class</span> <span 
class="nc">RandomForestAlgorithmParams</span><span class="o">(</span>
+  <span class="n">numClasses</span><span class="k">:</span> <span 
class="kt">Int</span><span class="o">,</span>
+  <span class="n">numTrees</span><span class="k">:</span> <span 
class="kt">Int</span><span class="o">,</span>
+  <span class="n">featureSubsetStrategy</span><span class="k">:</span> <span 
class="kt">String</span><span class="o">,</span>
+  <span class="n">impurity</span><span class="k">:</span> <span 
class="kt">String</span><span class="o">,</span>
+  <span class="n">maxDepth</span><span class="k">:</span> <span 
class="kt">Int</span><span class="o">,</span>
+  <span class="n">maxBins</span><span class="k">:</span> <span 
class="kt">Int</span>
+<span class="o">)</span> <span class="k">extends</span> <span 
class="nc">Params</span>
+</pre></td></tr></tbody></table> </div> <p>This class defines the parameters 
of the Random Forest algorithm (which later you can specify the value in 
engine.json). Please refer to <a 
href="https://spark.apache.org/docs/latest/mllib-ensembles.html";>MLlib 
documentation</a> for the description and usage of these 
parameters.</p><p>Modify the <code>NaiveBayesAlgorithm</code> class to 
<code>RandomForestAlgorithm</code>. The changes are:</p> <ul> <li>The new 
<code>RandomForestAlgorithmParams</code> class is used as parameter.</li> 
<li><code>RandomForestModel</code> is used in type parameter. This is the model 
returned by the Random Forest algorithm.</li> <li>the <code>train()</code> 
function is modified and it returns the <code>RandomForestModel</code> instead 
of <code>NaiveBayesModel</code>.</li> <li>the <code>predict()</code> function 
takes the <code>RandomForestModel</code> as input.</li> </ul> <div 
class="highlight scala"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl
 " style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33</pre></td><td class="code"><pre><span class="c1">// extends P2LAlgorithm 
because the MLlib's RandomForestModel doesn't
+// contain RDD.
+</span><span class="k">class</span> <span 
class="nc">RandomForestAlgorithm</span><span class="o">(</span><span 
class="k">val</span> <span class="n">ap</span><span class="k">:</span> <span 
class="kt">RandomForestAlgorithmParams</span><span class="o">)</span> <span 
class="c1">// CHANGED
+</span>  <span class="k">extends</span> <span 
class="n">P2LAlgorithm</span><span class="o">[</span><span 
class="kt">PreparedData</span>, <span class="kt">RandomForestModel</span>, 
<span class="kt">//</span> <span class="kt">CHANGED</span>
+  <span class="kt">Query</span>, <span class="kt">PredictedResult</span><span 
class="o">]</span> <span class="o">{</span>
+
+  <span class="c1">// CHANGED
+</span>  <span class="k">def</span> <span class="n">train</span><span 
class="o">(</span><span class="n">sc</span><span class="k">:</span> <span 
class="kt">SparkContext</span><span class="o">,</span> <span 
class="n">data</span><span class="k">:</span> <span 
class="kt">PreparedData</span><span class="o">)</span><span class="k">:</span> 
<span class="kt">RandomForestModel</span> <span class="o">=</span> <span 
class="o">{</span>
+    <span class="c1">// CHANGED
+</span>    <span class="c1">// Empty categoricalFeaturesInfo indicates all 
features are continuous.
+</span>    <span class="k">val</span> <span 
class="n">categoricalFeaturesInfo</span> <span class="k">=</span> <span 
class="nc">Map</span><span class="o">[</span><span class="kt">Int</span>, <span 
class="kt">Int</span><span class="o">]()</span>
+    <span class="nc">RandomForest</span><span class="o">.</span><span 
class="n">trainClassifier</span><span class="o">(</span>
+      <span class="n">data</span><span class="o">.</span><span 
class="n">labeledPoints</span><span class="o">,</span>
+      <span class="n">ap</span><span class="o">.</span><span 
class="n">numClasses</span><span class="o">,</span>
+      <span class="n">categoricalFeaturesInfo</span><span class="o">,</span>
+      <span class="n">ap</span><span class="o">.</span><span 
class="n">numTrees</span><span class="o">,</span>
+      <span class="n">ap</span><span class="o">.</span><span 
class="n">featureSubsetStrategy</span><span class="o">,</span>
+      <span class="n">ap</span><span class="o">.</span><span 
class="n">impurity</span><span class="o">,</span>
+      <span class="n">ap</span><span class="o">.</span><span 
class="n">maxDepth</span><span class="o">,</span>
+      <span class="n">ap</span><span class="o">.</span><span 
class="n">maxBins</span><span class="o">)</span>
+  <span class="o">}</span>
+
+  <span class="k">def</span> <span class="n">predict</span><span 
class="o">(</span>
+    <span class="n">model</span><span class="k">:</span> <span 
class="kt">RandomForestModel</span><span class="o">,</span> <span class="c1">// 
CHANGED
+</span>    <span class="n">query</span><span class="k">:</span> <span 
class="kt">Query</span><span class="o">)</span><span class="k">:</span> <span 
class="kt">PredictedResult</span> <span class="o">=</span> <span 
class="o">{</span>
+
+    <span class="k">val</span> <span class="n">label</span> <span 
class="k">=</span> <span class="n">model</span><span class="o">.</span><span 
class="n">predict</span><span class="o">(</span><span 
class="nc">Vectors</span><span class="o">.</span><span 
class="n">dense</span><span class="o">(</span>
+      <span class="nc">Array</span><span class="o">(</span><span 
class="n">query</span><span class="o">.</span><span class="n">attr0</span><span 
class="o">,</span> <span class="n">query</span><span class="o">.</span><span 
class="n">attr1</span><span class="o">,</span> <span 
class="n">query</span><span class="o">.</span><span class="n">attr2</span><span 
class="o">)</span>
+    <span class="o">))</span>
+    <span class="nc">PredictedResult</span><span class="o">(</span><span 
class="n">label</span><span class="o">)</span>
+  <span class="o">}</span>
+
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <p>Note that the MLlib Random Forest 
algorithm takes the same training data as the Naive Bayes algorithm (ie, 
RDD[LabeledPoint]) so you don&#39;t need to modify the <code>DataSource</code> 
and <code>PreparedData</code> classes. If the new algorithm to be added 
requires different types of training data, then you need to modify these 
classes accordingly to accommodate your new algorithm.</p><h2 
id='update-engine.scala' class='header-anchors'>Update 
Engine.scala</h2><p>Modify the EngineFactory to add the new algorithm class 
<code>RandomForestAlgorithm</code> you just defined and give it a name 
<code>&quot;randomforest&quot;</code>. The name will be used in 
<code>engine.json</code> to specify which algorithm to use.</p><div 
class="highlight scala"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10</pre></td><td class="code"><pre><span class="k">object</span> <span 
class="nc">ClassificationEngine</span> <span class="k">extends</span> <span 
class="nc">IEngineFactory</span> <span class="o">{</span>
+  <span class="k">def</span> <span class="n">apply</span><span 
class="o">()</span> <span class="k">=</span> <span class="o">{</span>
+    <span class="k">new</span> <span class="nc">Engine</span><span 
class="o">(</span>
+      <span class="n">classOf</span><span class="o">[</span><span 
class="kt">DataSource</span><span class="o">],</span>
+      <span class="n">classOf</span><span class="o">[</span><span 
class="kt">Preparator</span><span class="o">],</span>
+      <span class="nc">Map</span><span class="o">(</span><span 
class="s">"naive"</span> <span class="o">-&gt;</span> <span 
class="n">classOf</span><span class="o">[</span><span 
class="kt">NaiveBayesAlgorithm</span><span class="o">],</span>
+        <span class="s">"randomforest"</span> <span class="o">-&gt;</span> 
<span class="n">classOf</span><span class="o">[</span><span 
class="kt">RandomForestAlgorithm</span><span class="o">]),</span> <span 
class="c1">// ADDED
+</span>      <span class="n">classOf</span><span class="o">[</span><span 
class="kt">Serving</span><span class="o">])</span>
+  <span class="o">}</span>
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <p>This engine factory now returns an 
engine with two algorithms and they are named as <code>&quot;naive&quot;</code> 
and <code>&quot;randomforest&quot;</code> respectively.</p><h2 
id='update-engine.json' class='header-anchors'>Update engine.json</h2><p>In 
order to use the new algorithm, you need to modify <code>engine.json</code> to 
specify the name of the algorithm and the parameters.</p><p>Update the 
engine.json to use <strong>randomforest</strong>:</p><div class="highlight 
json"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15</pre></td><td class="code"><pre><span class="err">...</span><span class="w">
+</span><span class="s2">"algorithms"</span><span class="err">:</span><span 
class="w"> </span><span class="p">[</span><span class="w">
+  </span><span class="p">{</span><span class="w">
+    </span><span class="s2">"name"</span><span class="p">:</span><span 
class="w"> </span><span class="s2">"randomforest"</span><span 
class="p">,</span><span class="w">
+    </span><span class="s2">"params"</span><span class="p">:</span><span 
class="w"> </span><span class="p">{</span><span class="w">
+      </span><span class="s2">"numClasses"</span><span class="p">:</span><span 
class="w"> </span><span class="mi">4</span><span class="p">,</span><span 
class="w">
+      </span><span class="s2">"numTrees"</span><span class="p">:</span><span 
class="w"> </span><span class="mi">5</span><span class="p">,</span><span 
class="w">
+      </span><span class="s2">"featureSubsetStrategy"</span><span 
class="p">:</span><span class="w"> </span><span class="s2">"auto"</span><span 
class="p">,</span><span class="w">
+      </span><span class="s2">"impurity"</span><span class="p">:</span><span 
class="w"> </span><span class="s2">"gini"</span><span class="p">,</span><span 
class="w">
+      </span><span class="s2">"maxDepth"</span><span class="p">:</span><span 
class="w"> </span><span class="mi">4</span><span class="p">,</span><span 
class="w">
+      </span><span class="s2">"maxBins"</span><span class="p">:</span><span 
class="w"> </span><span class="mi">100</span><span class="w">
+    </span><span class="p">}</span><span class="w">
+  </span><span class="p">}</span><span class="w">
+</span><span class="p">]</span><span class="w">
+</span><span class="err">...</span><span class="w">
+</span></pre></td></tr></tbody></table> </div> <p>The engine now uses 
<strong>MLlib Random Forests algorithm</strong> instead of the default Naive 
Bayes algorithm. You are ready to build, train and deploy the engine as 
described in <a 
href="/templates/classification/quickstart/">quickstart</a>.</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span>pio build
+<span class="gp">$ </span>pio train
+<span class="gp">$ </span>pio deploy
+</pre></td></tr></tbody></table> </div> <div class="alert-message info"><p>To 
switch back using Naive Bayes algorithm, simply modify 
engine.json.</p></div></div></div></div></div><footer><div 
class="container"><div class="seperator"></div><div class="row"><div 
class="col-md-6 footer-link-column"><div 
class="footer-link-column-row"><h4>Community</h4><ul><li><a 
href="//predictionio.incubator.apache.org/install/" 
target="blank">Download</a></li><li><a 
href="//predictionio.incubator.apache.org/" target="blank">Docs</a></li><li><a 
href="//github.com/apache/incubator-predictionio" 
target="blank">GitHub</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to User Mailing List</a></li><li><a 
href="//stackoverflow.com/questions/tagged/predictionio" 
target="blank">Stackoverflow</a></li></ul></div></div><div class="col-md-6 
footer-link-column"><div 
class="footer-link-column-row"><h4>Contribute</h4><ul><li><a 
href="//predictionio.incubator.apach
 e.org/community/contribute-code/" target="blank">Contribute</a></li><li><a 
href="//github.com/apache/incubator-predictionio" target="blank">Source 
Code</a></li><li><a href="//issues.apache.org/jira/browse/PIO" 
target="blank">Bug Tracker</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to Development Mailing 
List</a></li></ul></div></div></div><div class="row"><div class="col-md-12 
footer-link-column"><p>Apache PredictionIO, PredictionIO, Apache, the Apache 
feather logo, and the Apache PredictionIO project logo are either registered 
trademarks or trademarks of The Apache Software Foundation in the United States 
and other countries.</p><p>All other marks mentioned may be trademarks or 
registered trademarks of their respective owners.</p></div></div><div 
class="row"><div class="col-md-12 footer-link-column"><a class="pull-right" 
href="http://incubator.apache.org/projects/predictionio.html";><img alt="Apache 
Incubator" src="/images/log
 os/apache_incubator-6954bd16.png"/></a><span>Apache PredictionIO is an effort 
undergoing incubation at The Apache Software Foundation (ASF), sponsored by the 
Apache Incubator. Incubation is required of all newly accepted projects until a 
further review indicates that the infrastructure, communications, and decision 
making process have stabilized in a manner consistent with other successful ASF 
projects. While incubation status is not necessarily a reflection of the 
completeness or stability of the code, it does indicate that the project has 
yet to be fully endorsed by the ASF.</span></div></div></div><div 
id="footer-bottom"><div class="container"><div class="row"><div 
class="col-md-12"><div id="footer-logo-wrapper"><img alt="PredictionIO" 
src="/images/logos/logo-white-d1e9c6e6.png"/><span>™</span></div><div 
id="social-icons-wrapper"><a class="github-button" 
href="https://github.com/apache/incubator-predictionio"; data-style="mega" 
data-count-href="/apache/incubator-predictionio/sta
 rgazers" 
data-count-api="/repos/apache/incubator-predictionio#stargazers_count" 
data-count-aria-label="# stargazers on GitHub" aria-label="Star 
apache/incubator-predictionio on GitHub">Star</a> <a class="github-button" 
href="https://github.com/apache/incubator-predictionio/fork"; 
data-icon="octicon-git-branch" data-style="mega" 
data-count-href="/apache/incubator-predictionio/network" 
data-count-api="/repos/apache/incubator-predictionio#forks_count" 
data-count-aria-label="# forks on GitHub" aria-label="Fork 
apache/incubator-predictionio on GitHub">Fork</a> <script id="github-bjs" 
async="" defer="" src="https://buttons.github.io/buttons.js";></script><a 
href="https://twitter.com/predictionio"; target="blank"><img alt="PredictionIO 
on Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a 
href="https://www.facebook.com/predictionio"; target="blank"><img 
alt="PredictionIO on Facebook" src="/images/icons/facebook-5c57939c.png"/></a> 
</div></div></div></div></div></footer></div><script>(f
 unction(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+(w[n].q=w[n].q||[]).push(arguments);};s=d.createElement(t);
+e=d.getElementsByTagName(t)[0];s.async=1;s.src=u;e.parentNode.insertBefore(s,e);
+})(window,document,'script','//s.swiftypecdn.com/install/v1/st.js','_st');
+
+_st('install','HaUfpXXV87xoB_zzCQ45');</script><script 
src="/javascripts/application-a6acb1f5.js"></script></body></html>
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/1b72b303/templates/classification/add-algorithm/index.html.gz
----------------------------------------------------------------------
diff --git a/templates/classification/add-algorithm/index.html.gz 
b/templates/classification/add-algorithm/index.html.gz
new file mode 100644
index 0000000..c9c5c93
Binary files /dev/null and 
b/templates/classification/add-algorithm/index.html.gz differ

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/1b72b303/templates/classification/dase/index.html
----------------------------------------------------------------------
diff --git a/templates/classification/dase/index.html 
b/templates/classification/dase/index.html
new file mode 100644
index 0000000..88634a7
--- /dev/null
+++ b/templates/classification/dase/index.html
@@ -0,0 +1,218 @@
+<!DOCTYPE html><html><head><title>DASE Components Explained 
(Classification)</title><meta charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="DASE Components Explained 
(Classification)"/><link rel="canonical" 
href="https://predictionio.incubator.apache.org/templates/classification/dase/"/><link
 href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-eccfc6cb.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv
 .min.js"></script><script 
src="//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script
 src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.incubator.apache.org/";><img 
alt="PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a><span>™</span></div><div 
id="menu-wrapper"><div id="pill-wrapper"><a class="pill left" 
href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/incubator-predictionio/">OPEN 
SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md 
hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" id="search-bar-ro
 w"><div class="row"><div class="col-md-9 col-sm-11 col-xs-11"><div 
class="hidden-md hidden-lg" id="mobile-page-heading-wrapper"><p>PredictionIO 
Docs</p><h4>DASE Components Explained (Classification)</h4></div><h4 
class="hidden-sm hidden-xs">PredictionIO Docs</h4></div><div class="col-md-3 
col-sm-1 col-xs-1 hidden-md hidden-lg"><img id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md hidden-lg"></div></div></div></di
 v><div id="page" class="container-fluid"><div class="row"><div 
id="left-menu-wrapper" class="col-md-3"><nav id="nav-main"><ul><li 
class="level-1"><a class="expandible" href="/"><span>Apache PredictionIO™ 
(incubating) Documentation</span></a><ul><li class="level-2"><a class="final" 
href="/"><span>Welcome to Apache PredictionIO 
(incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Started</span></a><ul><li class="level-2"><a 
class="final" href="/start/"><span>A Quick Intro</span></a></li><li 
class="level-2"><a class="final" href="/install/"><span>Installing Apache 
PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" 
href="/start/download/"><span>Downloading an Engine Template</span></a></li><li 
class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your 
First Engine</span></a></li><li class="level-2"><a class="final" 
href="/start/customize/"><span>Customizing the Engine</span></a></li></ul></li
 ><li class="level-1"><a class="expandible" href="#"><span>Integrating with 
 >Your App</span></a><ul><li class="level-2"><a class="final" 
 >href="/appintegration/"><span>App Integration Overview</span></a></li><li 
 >class="level-2"><a class="expandible" href="/sdk/"><span>List of 
 >SDKs</span></a><ul><li class="level-3"><a class="final" 
 >href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
 >class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
 >SDK</span></a></li><li class="level-3"><a class="final" 
 >href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
 >class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
 >class="level-3"><a class="final" href="/sdk/community/"><span>Community 
 >Powered SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
 >class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
 >class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
 >Service</span></a></li><li class="level-2"><a class="final"
  href="/batchpredict/"><span>Batch Predictions</span></a></li><li 
class="level-2"><a class="final" href="/deploy/monitoring/"><span>Monitoring 
Engine</span></a></li><li class="level-2"><a class="final" 
href="/deploy/engineparams/"><span>Setting Engine Parameters</span></a></li><li 
class="level-2"><a class="final" href="/deploy/enginevariants/"><span>Deploying 
Multiple Engine Variants</span></a></li><li class="level-2"><a class="final" 
href="/deploy/plugin/"><span>Engine Server Plugin</span></a></li></ul></li><li 
class="level-1"><a class="expandible" href="#"><span>Customizing an 
Engine</span></a><ul><li class="level-2"><a class="final" 
href="/customize/"><span>Learning DASE</span></a></li><li class="level-2"><a 
class="final" href="/customize/dase/"><span>Implement DASE</span></a></li><li 
class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>En
 gine Scala APIs</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Collecting and Analyzing 
Data</span></a><ul><li class="level-2"><a class="final" 
href="/datacollection/"><span>Event Server Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/eventapi/"><span>Collecting Data with 
REST/SDKs</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
Webhooks</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/channel/"><span>Channel</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/batchimport/"><span>Importing Data in 
Batch</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/analytics/"><span>Using Analytics 
Tools</span></a></li><li class="level-2"><a class="final" href="/datacollection
 /plugin/"><span>Event Server Plugin</span></a></li></ul></li><li 
class="level-1"><a class="expandible" href="#"><span>Choosing an 
Algorithm(s)</span></a><ul><li class="level-2"><a class="final" 
href="/algorithm/"><span>Built-in Algorithm Libraries</span></a></li><li 
class="level-2"><a class="final" href="/algorithm/switch/"><span>Switching to 
Another Algorithm</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/multiple/"><span>Combining Multiple 
Algorithms</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/custom/"><span>Adding Your Own 
Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
class="final" href="/evaluation/"><span>Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/evaluationdashboard/"><span>Eval
 uation Dashboard</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricchoose/"><span>Choosing Evaluation 
Metrics</span></a></li><li class="level-2"><a class="final" 
href="/evaluation/metricbuild/"><span>Building Evaluation 
Metrics</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>System Architecture</span></a><ul><li class="level-2"><a 
class="final" href="/system/"><span>Architecture Overview</span></a></li><li 
class="level-2"><a class="final" href="/system/anotherdatastore/"><span>Using 
Another Data Store</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>PredictionIO Official 
Templates</span></a><ul><li class="level-2"><a class="final" 
href="/templates/"><span>Intro</span></a></li><li class="level-2"><a 
class="expandible" href="#"><span>Recommendation</span></a><ul><li 
class="level-3"><a class="final" 
href="/templates/recommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3
 "><a class="final" 
href="/templates/recommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/recommendation/evaluation/"><span>Evaluation 
Explained</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/recommendation/reading-custom-events/"><span>Read Custom 
Events</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-data-prep/"><span>Customize Data 
Preparator</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-serving/"><span>Customize 
Serving</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/training-with-implicit-preference/"><span>Train 
with Implicit Preference</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/blacklist-items/"><span>Filter Recommended 
Items by Blackl
 ist in Query</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/batch-evaluator/"><span>Batch Persistable 
Evaluator</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>E-Commerce Recommendation</span></a><ul><li class="level-3"><a 
class="final" href="/templates/ecommercerecommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/how-to/"><span>How-To</span></a></li><li
 class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/train-with-rate-event/"><span>Train 
with Rate Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/adjust-score/"><span>Adjust 
Score</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Similar Product</span></a><ul><li cla
 ss="level-3"><a class="final" 
href="/templates/similarproduct/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/multi-events-multi-algos/"><span>Multiple 
Events and Multiple Algorithms</span></a></li><li class="level-3"><a 
class="final" 
href="/templates/similarproduct/return-item-properties/"><span>Returns Item 
Properties</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/train-with-rate-event/"><span>Train with Rate 
Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/rid-user-set-event/"><span>Get Rid of Events 
for Users</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/recommended-user/"><span>Recommend Users<
 /span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Classification</span></a><ul><li class="level-3"><a 
class="final" href="/templates/classification/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final active" 
href="/templates/classification/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/add-algorithm/"><span>Use Alternative 
Algorithm</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/reading-custom-properties/"><span>Read Custom 
Properties</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li 
class="level-2"><a class="final" 
href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" href="/community/submit-template
 /"><span>Submit your Engine as a Template</span></a></li></ul></li><li 
class="level-1"><a class="expandible" href="#"><span>Demo 
Tutorials</span></a><ul><li class="level-2"><a class="final" 
href="/demo/tapster/"><span>Comics Recommendation Demo</span></a></li><li 
class="level-2"><a class="final" href="/demo/community/"><span>Community 
Contributed Demo</span></a></li><li class="level-2"><a class="final" 
href="/demo/textclassification/"><span>Text Classification Engine 
Tutorial</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="/community/"><span>Getting Involved</span></a><ul><li class="level-2"><a 
class="final" href="/community/contribute-code/"><span>Contribute 
Code</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" href="/comm
 unity/contribute-webhook/"><span>Contribute a Webhook</span></a></li><li 
class="level-2"><a class="final" href="/community/projects/"><span>Community 
Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Help</span></a><ul><li class="level-2"><a class="final" 
href="/resources/faq/"><span>FAQs</span></a></li><li class="level-2"><a 
class="final" href="/support/"><span>Support</span></a></li></ul></li><li 
class="level-1"><a class="expandible" 
href="#"><span>Resources</span></a><ul><li class="level-2"><a class="final" 
href="/cli/"><span>Command-line Interface</span></a></li><li class="level-2"><a 
class="final" href="/resources/release/"><span>Release 
Cadence</span></a></li><li class="level-2"><a class="final" 
href="/resources/intellij/"><span>Developing Engines with IntelliJ 
IDEA</span></a></li><li class="level-2"><a class="final" 
href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li 
class="level-2"><a class="final" href="/
 resources/glossary/"><span>Glossary</span></a></li></ul></li><li 
class="level-1"><a class="expandible" href="#"><span>Apache Software 
Foundation</span></a><ul><li class="level-2"><a class="final" 
href="https://www.apache.org/";><span>Apache Homepage</span></a></li><li 
class="level-2"><a class="final" 
href="https://www.apache.org/licenses/";><span>License</span></a></li><li 
class="level-2"><a class="final" 
href="https://www.apache.org/foundation/sponsorship.html";><span>Sponsorship</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/foundation/thanks.html";><span>Thanks</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/security/";><span>Security</span></a></li></ul></li></ul></nav></div><div
 class="col-md-9 col-sm-12"><div class="content-header hidden-md 
hidden-lg"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a 
href="#">PredictionIO Official Templates</a><span 
class="spacer">&gt;</span></li><li><a href="#">Classific
 ation</a><span class="spacer">&gt;</span></li><li><span 
class="last">DASE</span></li></ul></div><div id="page-title"><h1>DASE 
Components Explained (Classification)</h1></div></div><div 
id="table-of-content-wrapper"><h5>On this page</h5><aside 
id="table-of-contents"><ul> <li> <a href="#the-engine-design">The Engine 
Design</a> </li> <li> <a href="#data">Data</a> </li> <li> <a 
href="#algorithm">Algorithm</a> </li> <li> <a href="#serving">Serving</a> </li> 
</ul> </aside><hr/><a id="edit-page-link" 
href="https://github.com/apache/incubator-predictionio/tree/livedoc/docs/manual/source/templates/classification/dase.html.md.erb";><img
 src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div 
class="content-header hidden-sm hidden-xs"><div id="breadcrumbs" 
class="hidden-sm hidden xs"><ul><li><a href="#">PredictionIO Official 
Templates</a><span class="spacer">&gt;</span></li><li><a 
href="#">Classification</a><span class="spacer">&gt;</span></li><li><span 
class="last">DASE</spa
 n></li></ul></div><div id="page-title"><h1>DASE Components Explained 
(Classification)</h1></div></div><div class="content"> <p>PredictionIO&#39;s 
DASE architecture brings the separation-of-concerns design principle to 
predictive engine development. DASE stands for the following components of an 
engine:</p> <ul> <li><strong>D</strong>ata - includes Data Source and Data 
Preparator</li> <li><strong>A</strong>lgorithm(s)</li> 
<li><strong>S</strong>erving</li> <li><strong>E</strong>valuator</li> </ul> 
<p><p>Let&#39;s look at the code and see how you can customize the engine you 
built from the Classification Engine Template.</p><div class="alert-message 
note"><p>Evaluator will not be covered in this tutorial. Please visit <a 
href="/evaluation/paramtuning/">evaluation explained</a> for using 
evaluation.</p></div></p><h2 id='the-engine-design' class='header-anchors'>The 
Engine Design</h2><p>As you can see from the Quick Start, 
<em>MyClassification</em> takes a JSON prediction query, e.g. <c
 ode>{ &quot;attr0&quot;:4, &quot;attr1&quot;:3, &quot;attr2&quot;:8 }</code>, 
and return a JSON predicted result.</p><div class="alert-message 
warning"><p>for version &lt; v0.3.1, it is array of features values: <code>{ 
&quot;features&quot;: [4, 3, 8] }</code></p></div><p>In 
MyClassification/src/main/scala/<strong><em>Engine.scala</em></strong>, the 
<code>Query</code> case class defines the format of <strong>query</strong>, 
such as <code>{ &quot;attr0&quot;:4, &quot;attr1&quot;:3, &quot;attr2&quot;:8 
}</code>:</p><div class="highlight scala"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
+2
+3
+4
+5
+6</pre></td><td class="code"><pre><span class="k">case</span> <span 
class="k">class</span> <span class="nc">Query</span><span class="o">(</span>
+  <span class="n">attr0</span> <span class="k">:</span> <span 
class="kt">Double</span><span class="o">,</span>
+  <span class="n">attr1</span> <span class="k">:</span> <span 
class="kt">Double</span><span class="o">,</span>
+  <span class="n">attr2</span> <span class="k">:</span> <span 
class="kt">Double</span>
+<span class="o">)</span>
+
+</pre></td></tr></tbody></table> </div> <p>The <code>PredictedResult</code> 
case class defines the format of <strong>predicted result</strong>, such as 
<code>{&quot;label&quot;:2.0}</code>:</p><div class="highlight scala"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="k">case</span> <span 
class="k">class</span> <span class="nc">PredictedResult</span><span 
class="o">(</span>
+  <span class="k">val</span> <span class="n">label</span><span 
class="k">:</span> <span class="kt">Double</span>
+<span class="o">)</span>
+</pre></td></tr></tbody></table> </div> <p>Finally, 
<code>ClassificationEngine</code> is the Engine Factory that defines the 
components this engine will use: Data Source, Data Preparator, Algorithm(s) and 
Serving components.</p><div class="highlight scala"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9</pre></td><td class="code"><pre><span class="k">object</span> <span 
class="nc">ClassificationEngine</span> <span class="k">extends</span> <span 
class="nc">IEngineFactory</span> <span class="o">{</span>
+  <span class="k">def</span> <span class="n">apply</span><span 
class="o">()</span> <span class="k">=</span> <span class="o">{</span>
+    <span class="k">new</span> <span class="nc">Engine</span><span 
class="o">(</span>
+      <span class="n">classOf</span><span class="o">[</span><span 
class="kt">DataSource</span><span class="o">],</span>
+      <span class="n">classOf</span><span class="o">[</span><span 
class="kt">Preparator</span><span class="o">],</span>
+      <span class="nc">Map</span><span class="o">(</span><span 
class="s">"naive"</span> <span class="o">-&gt;</span> <span 
class="n">classOf</span><span class="o">[</span><span 
class="kt">NaiveBayesAlgorithm</span><span class="o">]),</span>
+      <span class="n">classOf</span><span class="o">[</span><span 
class="kt">Serving</span><span class="o">])</span>
+  <span class="o">}</span>
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <h3 id='spark-mllib' 
class='header-anchors'>Spark MLlib</h3><p>Spark&#39;s MLlib NaiveBayes 
algorithm takes training data of RDD type, i.e. <code>RDD[LabeledPoint]</code> 
and train a model, which is a <code>NaiveBayesModel</code> 
object.</p><p>PredictionIO&#39;s MLlib Classification engine template, which 
<em>MyClassification</em> bases on, integrates this algorithm under the DASE 
architecture. We will take a closer look at the DASE code below.</p> 
<blockquote> <p><a 
href="https://spark.apache.org/docs/latest/mllib-naive-bayes.html";>Check this 
out</a> to learn more about MLlib&#39;s NaiveBayes algorithm.</p></blockquote> 
<h2 id='data' class='header-anchors'>Data</h2><p>In the DASE architecture, data 
is prepared by 2 components sequentially: <em>Data Source</em> and <em>Data 
Preparator</em>. <em>Data Source</em> and <em>Data Preparator</em> takes data 
from the data store and prepares <code>RDD[LabeledPoint]</code> for the 
NaiveBayes algorithm.<
 /p><h3 id='data-source' class='header-anchors'>Data Source</h3><p>In 
MyClassification/src/main/scala/<strong><em>DataSource.scala</em></strong>, the 
<code>readTraining</code> method of the class <code>DataSource</code> reads, 
and selects, data from datastore of EventServer and it returns 
<code>TrainingData</code>.</p><div class="highlight scala"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38</pre></td><td class="code"><pre><span class="k">case</span> <span 
class="k">class</span> <span class="nc">DataSourceParams</span><span 
class="o">(</span><span class="n">appName</span><span class="k">:</span> <span 
class="kt">String</span><span class="o">)</span> <span class="k">extends</span> 
<span class="nc">Params</span>
+
+<span class="k">class</span> <span class="nc">DataSource</span><span 
class="o">(</span><span class="k">val</span> <span class="n">dsp</span><span 
class="k">:</span> <span class="kt">DataSourceParams</span><span 
class="o">)</span>
+  <span class="k">extends</span> <span class="nc">PDataSource</span><span 
class="o">[</span><span class="kt">TrainingData</span>, <span 
class="kt">EmptyEvaluationInfo</span>, <span class="kt">Query</span>, <span 
class="kt">EmptyActualResult</span><span class="o">]</span> <span 
class="o">{</span>
+
+  <span class="nd">@transient</span> <span class="k">lazy</span> <span 
class="k">val</span> <span class="n">logger</span> <span class="k">=</span> 
<span class="nc">Logger</span><span class="o">[</span><span 
class="kt">this.</span><span class="k">type</span><span class="o">]</span>
+
+  <span class="k">override</span>
+  <span class="k">def</span> <span class="n">readTraining</span><span 
class="o">(</span><span class="n">sc</span><span class="k">:</span> <span 
class="kt">SparkContext</span><span class="o">)</span><span class="k">:</span> 
<span class="kt">TrainingData</span> <span class="o">=</span> <span 
class="o">{</span>
+
+    <span class="k">val</span> <span class="n">labeledPoints</span><span 
class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span 
class="kt">LabeledPoint</span><span class="o">]</span> <span class="k">=</span> 
<span class="nc">PEventStore</span><span class="o">.</span><span 
class="n">aggregateProperties</span><span class="o">(</span>
+      <span class="n">appName</span> <span class="k">=</span> <span 
class="n">dsp</span><span class="o">.</span><span class="n">appName</span><span 
class="o">,</span>
+      <span class="n">entityType</span> <span class="k">=</span> <span 
class="s">"user"</span><span class="o">,</span>
+      <span class="c1">// only keep entities with these required properties 
defined
+</span>      <span class="n">required</span> <span class="k">=</span> <span 
class="nc">Some</span><span class="o">(</span><span class="nc">List</span><span 
class="o">(</span><span class="s">"plan"</span><span class="o">,</span> <span 
class="s">"attr0"</span><span class="o">,</span> <span 
class="s">"attr1"</span><span class="o">,</span> <span 
class="s">"attr2"</span><span class="o">)))(</span><span 
class="n">sc</span><span class="o">)</span>
+      <span class="c1">// aggregateProperties() returns RDD pair of
+</span>      <span class="c1">// entity ID and its aggregated properties
+</span>      <span class="o">.</span><span class="n">map</span> <span 
class="o">{</span> <span class="k">case</span> <span class="o">(</span><span 
class="n">entityId</span><span class="o">,</span> <span 
class="n">properties</span><span class="o">)</span> <span class="k">=&gt;</span>
+        <span class="k">try</span> <span class="o">{</span>
+          <span class="nc">LabeledPoint</span><span class="o">(</span><span 
class="n">properties</span><span class="o">.</span><span 
class="n">get</span><span class="o">[</span><span class="kt">Double</span><span 
class="o">](</span><span class="s">"plan"</span><span class="o">),</span>
+            <span class="nc">Vectors</span><span class="o">.</span><span 
class="n">dense</span><span class="o">(</span><span 
class="nc">Array</span><span class="o">(</span>
+              <span class="n">properties</span><span class="o">.</span><span 
class="n">get</span><span class="o">[</span><span class="kt">Double</span><span 
class="o">](</span><span class="s">"attr0"</span><span class="o">),</span>
+              <span class="n">properties</span><span class="o">.</span><span 
class="n">get</span><span class="o">[</span><span class="kt">Double</span><span 
class="o">](</span><span class="s">"attr1"</span><span class="o">),</span>
+              <span class="n">properties</span><span class="o">.</span><span 
class="n">get</span><span class="o">[</span><span class="kt">Double</span><span 
class="o">](</span><span class="s">"attr2"</span><span class="o">)</span>
+            <span class="o">))</span>
+          <span class="o">)</span>
+        <span class="o">}</span> <span class="k">catch</span> <span 
class="o">{</span>
+          <span class="k">case</span> <span class="n">e</span><span 
class="k">:</span> <span class="kt">Exception</span> <span 
class="o">=&gt;</span> <span class="o">{</span>
+            <span class="n">logger</span><span class="o">.</span><span 
class="n">error</span><span class="o">(</span><span class="n">s</span><span 
class="s">"Failed to get properties ${properties} of"</span> <span 
class="o">+</span>
+              <span class="n">s</span><span class="s">" ${entityId}. 
Exception: ${e}."</span><span class="o">)</span>
+            <span class="k">throw</span> <span class="n">e</span>
+          <span class="o">}</span>
+        <span class="o">}</span>
+      <span class="o">}.</span><span class="n">cache</span><span 
class="o">()</span>
+
+    <span class="k">new</span> <span class="nc">TrainingData</span><span 
class="o">(</span><span class="n">labeledPoints</span><span class="o">)</span>
+  <span class="o">}</span>
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <p><code>PEventStore</code> is an 
object which provides function to access data that is collected through the 
<em>Event Server</em>, and <code>PEventStore.aggregateProperties</code> 
aggregates the event records of the 4 properties (attr0, attr1, attr2 and plan) 
for each user.</p><p>PredictionIO automatically loads the parameters of 
<em>datasource</em> specified in 
MyEngine/<strong><em>engine.json</em></strong>, including <em>appName</em>, to 
<code>dsp</code>.</p><p>In <strong><em>engine.json</em></strong>:</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9</pre></td><td class="code"><pre><span class="o">{</span>
+  ...
+  <span class="s2">"datasource"</span>: <span class="o">{</span>
+    <span class="s2">"params"</span>: <span class="o">{</span>
+      <span class="s2">"appName"</span>: <span class="s2">"MyApp1"</span>
+    <span class="o">}</span>
+  <span class="o">}</span>,
+  ...
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <p>In this sample text data file, 
columns are delimited by comma (,). The first column are labels. The second 
column are features.</p><p>The class definition of <code>TrainingData</code> 
is:</p><div class="highlight scala"><table style="border-spacing: 
0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre 
class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="k">class</span> <span 
class="nc">TrainingData</span><span class="o">(</span>
+  <span class="k">val</span> <span class="n">labeledPoints</span><span 
class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span 
class="kt">LabeledPoint</span><span class="o">]</span>
+<span class="o">)</span> <span class="k">extends</span> <span 
class="nc">Serializable</span>
+</pre></td></tr></tbody></table> </div> <p>and PredictionIO passes the 
returned <code>TrainingData</code> object to <em>Data Preparator</em>.</p><h3 
id='data-preparator' class='header-anchors'>Data Preparator</h3><p>In 
MyClassification/src/main/scala/<strong><em>Preparator.scala</em></strong>, the 
<code>prepare</code> of class <code>Preparator</code> takes 
<code>TrainingData</code>. It then conducts any necessary feature selection and 
data processing tasks. At the end, it returns <code>PreparedData</code> which 
should contain the data <em>Algorithm</em> needs. For MLlib NaiveBayes, it is 
<code>RDD[LabeledPoint]</code>.</p><p>By default, <code>prepare</code> simply 
copies the unprocessed <code>TrainingData</code> data to 
<code>PreparedData</code>:</p><div class="highlight scala"><table 
style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: 
right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11</pre></td><td class="code"><pre><span class="k">class</span> <span 
class="nc">PreparedData</span><span class="o">(</span>
+  <span class="k">val</span> <span class="n">labeledPoints</span><span 
class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span 
class="kt">LabeledPoint</span><span class="o">]</span>
+<span class="o">)</span> <span class="k">extends</span> <span 
class="nc">Serializable</span>
+
+<span class="k">class</span> <span class="nc">Preparator</span>
+  <span class="k">extends</span> <span class="nc">PPreparator</span><span 
class="o">[</span><span class="kt">TrainingData</span>, <span 
class="kt">PreparedData</span><span class="o">]</span> <span class="o">{</span>
+
+  <span class="k">def</span> <span class="n">prepare</span><span 
class="o">(</span><span class="n">sc</span><span class="k">:</span> <span 
class="kt">SparkContext</span><span class="o">,</span> <span 
class="n">trainingData</span><span class="k">:</span> <span 
class="kt">TrainingData</span><span class="o">)</span><span class="k">:</span> 
<span class="kt">PreparedData</span> <span class="o">=</span> <span 
class="o">{</span>
+    <span class="k">new</span> <span class="nc">PreparedData</span><span 
class="o">(</span><span class="n">trainingData</span><span 
class="o">.</span><span class="n">labeledPoints</span><span class="o">)</span>
+  <span class="o">}</span>
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <p>PredictionIO passes the returned 
<code>PreparedData</code> object to Algorithm&#39;s <code>train</code> 
function.</p><h2 id='algorithm' class='header-anchors'>Algorithm</h2><p>In 
MyClassification/src/main/scala/<strong><em>NaiveBayesAlgorithm.scala</em></strong>,
 the two methods of the algorithm class are <code>train</code> and 
<code>predict</code>. <code>train</code> is responsible for training a 
predictive model. PredictionIO will store this model and <code>predict</code> 
is responsible for using this model to make prediction.</p><h3 id='train(...)' 
class='header-anchors'>train(...)</h3><p><code>train</code> is called when you 
run <strong>pio train</strong>. This is where MLlib NaiveBayes algorithm, i.e. 
<code>NaiveBayes.train</code>, is used to train a predictive model.</p><div 
class="highlight scala"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="k">def</span> <span 
class="n">train</span><span class="o">(</span><span class="n">sc</span><span 
class="k">:</span> <span class="kt">SparkContext</span><span class="o">,</span> 
<span class="n">data</span><span class="k">:</span> <span 
class="kt">PreparedData</span><span class="o">)</span><span class="k">:</span> 
<span class="kt">NaiveBayesModel</span> <span class="o">=</span> <span 
class="o">{</span>
+    <span class="nc">NaiveBayes</span><span class="o">.</span><span 
class="n">train</span><span class="o">(</span><span class="n">data</span><span 
class="o">.</span><span class="n">labeledPoints</span><span class="o">,</span> 
<span class="n">ap</span><span class="o">.</span><span 
class="n">lambda</span><span class="o">)</span>
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <p>In addition to 
<code>RDD[LabeledPoint]</code> (i.e. <code>data.labeledPoints</code>), 
<code>NaiveBayes.train</code> takes 1 parameter: <em>lambda</em>.</p><p>The 
values of this parameter is specified in <em>algorithms</em> of 
MyClassification/<strong><em>engine.json</em></strong>:</p><div 
class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12</pre></td><td class="code"><pre><span class="o">{</span>
+  ...
+  <span class="s2">"algorithms"</span>: <span class="o">[</span>
+    <span class="o">{</span>
+      <span class="s2">"name"</span>: <span class="s2">"naive"</span>,
+      <span class="s2">"params"</span>: <span class="o">{</span>
+        <span class="s2">"lambda"</span>: 1.0
+      <span class="o">}</span>
+    <span class="o">}</span>
+  <span class="o">]</span>
+  ...
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <p>PredictionIO will automatically 
loads these values into the constructor <code>ap</code>, which has a 
corresponding case class <code>AlgorithmParams</code>:</p><div class="highlight 
scala"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" 
style="text-align: right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="k">case</span> <span 
class="k">class</span> <span class="nc">AlgorithmParams</span><span 
class="o">(</span>
+  <span class="n">lambda</span><span class="k">:</span> <span 
class="kt">Double</span>
+<span class="o">)</span> <span class="k">extends</span> <span 
class="nc">Params</span>
+</pre></td></tr></tbody></table> </div> <p><code>NaiveBayes.train</code> then 
returns a <code>NaiveBayesModel</code> model. PredictionIO will automatically 
store the returned model.</p><h3 id='predict(...)' 
class='header-anchors'>predict(...)</h3><p>The <code>predict</code> method is 
called when you send a JSON query to <a 
href="http://localhost:8000/queries.json";>http://localhost:8000/queries.json</a>.
 PredictionIO converts the query, such as <code>{ &quot;attr0&quot;:4, 
&quot;attr1&quot;:3, &quot;attr2&quot;:8 }</code> to the <code>Query</code> 
class you defined previously.</p><p>The predictive model 
<code>NaiveBayesModel</code> of MLlib NaiveBayes offers a function called 
<code>predict</code>. <code>predict</code> takes a dense vector of features. It 
predicts the label of the item represented by this feature vector.</p><div 
class="highlight scala"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6</pre></td><td class="code"><pre>  <span class="k">def</span> <span 
class="n">predict</span><span class="o">(</span><span 
class="n">model</span><span class="k">:</span> <span 
class="kt">NaiveBayesModel</span><span class="o">,</span> <span 
class="n">query</span><span class="k">:</span> <span 
class="kt">Query</span><span class="o">)</span><span class="k">:</span> <span 
class="kt">PredictedResult</span> <span class="o">=</span> <span 
class="o">{</span>
+    <span class="k">val</span> <span class="n">label</span> <span 
class="k">=</span> <span class="n">model</span><span class="o">.</span><span 
class="n">predict</span><span class="o">(</span><span 
class="nc">Vectors</span><span class="o">.</span><span 
class="n">dense</span><span class="o">(</span>
+        <span class="n">query</span><span class="o">.</span><span 
class="n">attr0</span><span class="o">,</span> <span 
class="n">query</span><span class="o">.</span><span class="n">attr1</span><span 
class="o">,</span> <span class="n">query</span><span class="o">.</span><span 
class="n">attr2</span>
+    <span class="o">))</span>
+    <span class="nc">PredictedResult</span><span class="o">(</span><span 
class="n">label</span><span class="o">)</span>
+  <span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <blockquote> <p>You have defined the 
class <code>PredictedResult</code> earlier in this page.</p></blockquote> 
<p>PredictionIO passes the returned <code>PredictedResult</code> object to 
<em>Serving</em>.</p><h2 id='serving' class='header-anchors'>Serving</h2><p>The 
<code>serve</code> method of class <code>Serving</code> processes predicted 
result. It is also responsible for combining multiple predicted results into 
one if you have more than one predictive model. <em>Serving</em> then returns 
the final predicted result. PredictionIO will convert it to a JSON response 
automatically.</p><p>In 
MyClassification/src/main/scala/<strong><em>Serving.scala</em></strong>,</p><div
 class="highlight scala"><table style="border-spacing: 0"><tbody><tr><td 
class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9</pre></td><td class="code"><pre><span class="k">class</span> <span 
class="nc">Serving</span>
+  <span class="k">extends</span> <span class="nc">LServing</span><span 
class="o">[</span><span class="kt">Query</span>, <span 
class="kt">PredictedResult</span><span class="o">]</span> <span 
class="o">{</span>
+
+  <span class="k">override</span>
+  <span class="k">def</span> <span class="n">serve</span><span 
class="o">(</span><span class="n">query</span><span class="k">:</span> <span 
class="kt">Query</span><span class="o">,</span>
+    <span class="n">predictedResults</span><span class="k">:</span> <span 
class="kt">Seq</span><span class="o">[</span><span 
class="kt">PredictedResult</span><span class="o">])</span><span 
class="k">:</span> <span class="kt">PredictedResult</span> <span 
class="o">=</span> <span class="o">{</span>
+    <span class="n">predictedResults</span><span class="o">.</span><span 
class="n">head</span>
+  <span class="o">}</span>
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <p>When you send a JSON query to <a 
href="http://localhost:8000/queries.json";>http://localhost:8000/queries.json</a>,
 <code>PredictedResult</code> from all models will be passed to 
<code>serve</code> as a sequence, i.e. <code>Seq[PredictedResult]</code>.</p> 
<blockquote> <p>An engine can train multiple models if you specify more than 
one Algorithm component in <code>object RecommendationEngine</code> inside 
<strong><em>Engine.scala</em></strong>. Since only one 
<code>NaiveBayesAlgorithm</code> is implemented by default, this 
<code>Seq</code> contains one element.</p></blockquote> <p>In this case, 
<code>serve</code> simply returns the predicted result of the first, and the 
only, algorithm, i.e. 
<code>predictedResults.head</code>.</p><p>Congratulations! You have just 
learned how to customize and build a production-ready engine. Have 
fun!</p></div></div></div></div><footer><div class="container"><div 
class="seperator"></div><div class="row"><div 
 class="col-md-6 footer-link-column"><div 
class="footer-link-column-row"><h4>Community</h4><ul><li><a 
href="//predictionio.incubator.apache.org/install/" 
target="blank">Download</a></li><li><a 
href="//predictionio.incubator.apache.org/" target="blank">Docs</a></li><li><a 
href="//github.com/apache/incubator-predictionio" 
target="blank">GitHub</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to User Mailing List</a></li><li><a 
href="//stackoverflow.com/questions/tagged/predictionio" 
target="blank">Stackoverflow</a></li></ul></div></div><div class="col-md-6 
footer-link-column"><div 
class="footer-link-column-row"><h4>Contribute</h4><ul><li><a 
href="//predictionio.incubator.apache.org/community/contribute-code/" 
target="blank">Contribute</a></li><li><a 
href="//github.com/apache/incubator-predictionio" target="blank">Source 
Code</a></li><li><a href="//issues.apache.org/jira/browse/PIO" 
target="blank">Bug Tracker</a></li><li><a href="mai
 lto:[email protected]" target="blank">Subscribe 
to Development Mailing List</a></li></ul></div></div></div><div 
class="row"><div class="col-md-12 footer-link-column"><p>Apache PredictionIO, 
PredictionIO, Apache, the Apache feather logo, and the Apache PredictionIO 
project logo are either registered trademarks or trademarks of The Apache 
Software Foundation in the United States and other countries.</p><p>All other 
marks mentioned may be trademarks or registered trademarks of their respective 
owners.</p></div></div><div class="row"><div class="col-md-12 
footer-link-column"><a class="pull-right" 
href="http://incubator.apache.org/projects/predictionio.html";><img alt="Apache 
Incubator" src="/images/logos/apache_incubator-6954bd16.png"/></a><span>Apache 
PredictionIO is an effort undergoing incubation at The Apache Software 
Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of 
all newly accepted projects until a further review indicate
 s that the infrastructure, communications, and decision making process have 
stabilized in a manner consistent with other successful ASF projects. While 
incubation status is not necessarily a reflection of the completeness or 
stability of the code, it does indicate that the project has yet to be fully 
endorsed by the ASF.</span></div></div></div><div id="footer-bottom"><div 
class="container"><div class="row"><div class="col-md-12"><div 
id="footer-logo-wrapper"><img alt="PredictionIO" 
src="/images/logos/logo-white-d1e9c6e6.png"/><span>™</span></div><div 
id="social-icons-wrapper"><a class="github-button" 
href="https://github.com/apache/incubator-predictionio"; data-style="mega" 
data-count-href="/apache/incubator-predictionio/stargazers" 
data-count-api="/repos/apache/incubator-predictionio#stargazers_count" 
data-count-aria-label="# stargazers on GitHub" aria-label="Star 
apache/incubator-predictionio on GitHub">Star</a> <a class="github-button" 
href="https://github.com/apache/incubator-
 predictionio/fork" data-icon="octicon-git-branch" data-style="mega" 
data-count-href="/apache/incubator-predictionio/network" 
data-count-api="/repos/apache/incubator-predictionio#forks_count" 
data-count-aria-label="# forks on GitHub" aria-label="Fork 
apache/incubator-predictionio on GitHub">Fork</a> <script id="github-bjs" 
async="" defer="" src="https://buttons.github.io/buttons.js";></script><a 
href="https://twitter.com/predictionio"; target="blank"><img alt="PredictionIO 
on Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a 
href="https://www.facebook.com/predictionio"; target="blank"><img 
alt="PredictionIO on Facebook" src="/images/icons/facebook-5c57939c.png"/></a> 
</div></div></div></div></div></footer></div><script>(function(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+(w[n].q=w[n].q||[]).push(arguments);};s=d.createElement(t);
+e=d.getElementsByTagName(t)[0];s.async=1;s.src=u;e.parentNode.insertBefore(s,e);
+})(window,document,'script','//s.swiftypecdn.com/install/v1/st.js','_st');
+
+_st('install','HaUfpXXV87xoB_zzCQ45');</script><script 
src="/javascripts/application-a6acb1f5.js"></script></body></html>
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/1b72b303/templates/classification/dase/index.html.gz
----------------------------------------------------------------------
diff --git a/templates/classification/dase/index.html.gz 
b/templates/classification/dase/index.html.gz
new file mode 100644
index 0000000..343da18
Binary files /dev/null and b/templates/classification/dase/index.html.gz differ

Reply via email to