http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/4e7d331e/gallery/template-gallery/index.html
----------------------------------------------------------------------
diff --git a/gallery/template-gallery/index.html 
b/gallery/template-gallery/index.html
new file mode 100644
index 0000000..c4c9520
--- /dev/null
+++ b/gallery/template-gallery/index.html
@@ -0,0 +1,6 @@
+<!DOCTYPE html><html><head><title>Engine Template Gallery</title><meta 
charset="utf-8"/><meta content="IE=edge,chrome=1" 
http-equiv="X-UA-Compatible"/><meta name="viewport" 
content="width=device-width, initial-scale=1.0"/><meta class="swiftype" 
name="title" data-type="string" content="Engine Template Gallery"/><link 
rel="canonical" 
href="https://predictionio.incubator.apache.org/gallery/template-gallery/"/><link
 href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link 
href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link 
href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800"
 rel="stylesheet"/><link 
href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" 
rel="stylesheet"/><link href="/stylesheets/application-eccfc6cb.css" 
rel="stylesheet" type="text/css"/><script 
src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><script
 src="//cdn.mathja
 x.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script 
src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: 
true });}catch(e){}</script></head><body><div id="global"><header><div 
class="container" id="header-wrapper"><div class="row"><div 
class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a 
href="#"></a><a href="http://predictionio.incubator.apache.org/";><img 
alt="PredictionIO" id="logo" 
src="/images/logos/logo-ee2b9bb3.png"/></a><span>™</span></div><div 
id="menu-wrapper"><div id="pill-wrapper"><a class="pill left" 
href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" 
href="//github.com/apache/incubator-predictionio/">OPEN 
SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md 
hidden-lg" 
src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div 
id="search-bar-row-wrapper"><div class="container-fluid" 
id="search-bar-row"><div class="row"><div class="col-md-9 co
 l-sm-11 col-xs-11"><div class="hidden-md hidden-lg" 
id="mobile-page-heading-wrapper"><p>PredictionIO 
Docs</p><h4>Browse</h4></div><h4 class="hidden-sm hidden-xs">PredictionIO 
Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 hidden-md hidden-lg"><img 
id="left-menu-indicator" 
src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 
col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form 
class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" 
src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img 
src="/images/icons/search-glass-704bd4ff.png"/><input type="text" 
id="st-search-input" class="st-search-input" placeholder="Search 
Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" 
src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div 
class="mobile-left-menu-toggler hidden-md 
hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div 
class="row"><div id="left-menu-wr
 apper" class="col-md-3"><nav id="nav-main"><ul><li class="level-1"><a 
class="expandible" href="/"><span>Apache PredictionIO™ (incubating) 
Documentation</span></a><ul><li class="level-2"><a class="final" 
href="/"><span>Welcome to Apache PredictionIO 
(incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Started</span></a><ul><li class="level-2"><a 
class="final" href="/start/"><span>A Quick Intro</span></a></li><li 
class="level-2"><a class="final" href="/install/"><span>Installing Apache 
PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" 
href="/start/download/"><span>Downloading an Engine Template</span></a></li><li 
class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your 
First Engine</span></a></li><li class="level-2"><a class="final" 
href="/start/customize/"><span>Customizing the 
Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Integrating with Your
  App</span></a><ul><li class="level-2"><a class="final" 
href="/appintegration/"><span>App Integration Overview</span></a></li><li 
class="level-2"><a class="expandible" href="/sdk/"><span>List of 
SDKs</span></a><ul><li class="level-3"><a class="final" 
href="/sdk/java/"><span>Java & Android SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/php/"><span>PHP 
SDK</span></a></li><li class="level-3"><a class="final" 
href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a 
class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li 
class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered 
SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li 
class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web 
Service</span></a></li><li class="level-2"><a class="final" 
href="/batchpredict/"><span>Batch Predictions</span></a></li><li class="level-
 2"><a class="final" href="/deploy/monitoring/"><span>Monitoring 
Engine</span></a></li><li class="level-2"><a class="final" 
href="/deploy/engineparams/"><span>Setting Engine Parameters</span></a></li><li 
class="level-2"><a class="final" href="/deploy/enginevariants/"><span>Deploying 
Multiple Engine Variants</span></a></li><li class="level-2"><a class="final" 
href="/deploy/plugin/"><span>Engine Server Plugin</span></a></li></ul></li><li 
class="level-1"><a class="expandible" href="#"><span>Customizing an 
Engine</span></a><ul><li class="level-2"><a class="final" 
href="/customize/"><span>Learning DASE</span></a></li><li class="level-2"><a 
class="final" href="/customize/dase/"><span>Implement DASE</span></a></li><li 
class="level-2"><a class="final" 
href="/customize/troubleshooting/"><span>Troubleshooting Engine 
Development</span></a></li><li class="level-2"><a class="final" 
href="/api/current/#package"><span>Engine Scala 
APIs</span></a></li></ul></li><li class="level-1"><a class="expandib
 le" href="#"><span>Collecting and Analyzing Data</span></a><ul><li 
class="level-2"><a class="final" href="/datacollection/"><span>Event Server 
Overview</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventapi/"><span>Collecting Data with 
REST/SDKs</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/webhooks/"><span>Unifying Multichannel Data with 
Webhooks</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/channel/"><span>Channel</span></a></li><li 
class="level-2"><a class="final" 
href="/datacollection/batchimport/"><span>Importing Data in 
Batch</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/analytics/"><span>Using Analytics 
Tools</span></a></li><li class="level-2"><a class="final" 
href="/datacollection/plugin/"><span>Event Server 
Plugin</span></a></li></ul></li><li class="level-1
 "><a class="expandible" href="#"><span>Choosing an 
Algorithm(s)</span></a><ul><li class="level-2"><a class="final" 
href="/algorithm/"><span>Built-in Algorithm Libraries</span></a></li><li 
class="level-2"><a class="final" href="/algorithm/switch/"><span>Switching to 
Another Algorithm</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/multiple/"><span>Combining Multiple 
Algorithms</span></a></li><li class="level-2"><a class="final" 
href="/algorithm/custom/"><span>Adding Your Own 
Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a 
class="final" href="/evaluation/"><span>Overview</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li 
class="level-2"><a class="final" 
href="/evaluation/evaluationdashboard/"><span>Evaluation 
Dashboard</span></a></li><li class="level-2"><a class="final" href="/eva
 luation/metricchoose/"><span>Choosing Evaluation Metrics</span></a></li><li 
class="level-2"><a class="final" href="/evaluation/metricbuild/"><span>Building 
Evaluation Metrics</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>System Architecture</span></a><ul><li 
class="level-2"><a class="final" href="/system/"><span>Architecture 
Overview</span></a></li><li class="level-2"><a class="final" 
href="/system/anotherdatastore/"><span>Using Another Data 
Store</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>PredictionIO Official Templates</span></a><ul><li 
class="level-2"><a class="final" 
href="/templates/"><span>Intro</span></a></li><li class="level-2"><a 
class="expandible" href="#"><span>Recommendation</span></a><ul><li 
class="level-3"><a class="final" 
href="/templates/recommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/dase/"><span>DASE</span></a>
 </li><li class="level-3"><a class="final" 
href="/templates/recommendation/evaluation/"><span>Evaluation 
Explained</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/recommendation/reading-custom-events/"><span>Read Custom 
Events</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-data-prep/"><span>Customize Data 
Preparator</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/customize-serving/"><span>Customize 
Serving</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/training-with-implicit-preference/"><span>Train 
with Implicit Preference</span></a></li><li class="level-3"><a class="final" 
href="/templates/recommendation/blacklist-items/"><span>Filter Recommended 
Items by Blacklist in Query</span></a></li><li class="level-3"><a class="final" 
href="/templat
 es/recommendation/batch-evaluator/"><span>Batch Persistable 
Evaluator</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>E-Commerce Recommendation</span></a><ul><li class="level-3"><a 
class="final" href="/templates/ecommercerecommendation/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/how-to/"><span>How-To</span></a></li><li
 class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/train-with-rate-event/"><span>Train 
with Rate Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/ecommercerecommendation/adjust-score/"><span>Adjust 
Score</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><span>Similar Product</span></a><ul><li class="level-3"><a 
class="final" href="/templates/similarproduct/quickstart/"><spa
 n>Quick Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/similarproduct/multi-events-multi-algos/"><span>Multiple 
Events and Multiple Algorithms</span></a></li><li class="level-3"><a 
class="final" 
href="/templates/similarproduct/return-item-properties/"><span>Returns Item 
Properties</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/train-with-rate-event/"><span>Train with Rate 
Event</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/rid-user-set-event/"><span>Get Rid of Events 
for Users</span></a></li><li class="level-3"><a class="final" 
href="/templates/similarproduct/recommended-user/"><span>Recommend 
Users</span></a></li></ul></li><li class="level-2"><a class="expandible" 
href="#"><sp
 an>Classification</span></a><ul><li class="level-3"><a class="final" 
href="/templates/classification/quickstart/"><span>Quick 
Start</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/dase/"><span>DASE</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/how-to/"><span>How-To</span></a></li><li 
class="level-3"><a class="final" 
href="/templates/classification/add-algorithm/"><span>Use Alternative 
Algorithm</span></a></li><li class="level-3"><a class="final" 
href="/templates/classification/reading-custom-properties/"><span>Read Custom 
Properties</span></a></li></ul></li></ul></li><li class="level-1"><a 
class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li 
class="level-2"><a class="final active" 
href="/gallery/template-gallery/"><span>Browse</span></a></li><li 
class="level-2"><a class="final" 
href="/community/submit-template/"><span>Submit your Engine as a 
Template</span></a></li></ul></li><li class="l
 evel-1"><a class="expandible" href="#"><span>Demo Tutorials</span></a><ul><li 
class="level-2"><a class="final" href="/demo/tapster/"><span>Comics 
Recommendation Demo</span></a></li><li class="level-2"><a class="final" 
href="/demo/community/"><span>Community Contributed Demo</span></a></li><li 
class="level-2"><a class="final" href="/demo/textclassification/"><span>Text 
Classification Engine Tutorial</span></a></li></ul></li><li class="level-1"><a 
class="expandible" href="/community/"><span>Getting Involved</span></a><ul><li 
class="level-2"><a class="final" 
href="/community/contribute-code/"><span>Contribute Code</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-documentation/"><span>Contribute 
Documentation</span></a></li><li class="level-2"><a class="final" 
href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li 
class="level-2"><a class="final" 
href="/community/contribute-webhook/"><span>Contribute a 
Webhook</span></a></li><li class=
 "level-2"><a class="final" href="/community/projects/"><span>Community 
Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" 
href="#"><span>Getting Help</span></a><ul><li class="level-2"><a class="final" 
href="/resources/faq/"><span>FAQs</span></a></li><li class="level-2"><a 
class="final" href="/support/"><span>Support</span></a></li></ul></li><li 
class="level-1"><a class="expandible" 
href="#"><span>Resources</span></a><ul><li class="level-2"><a class="final" 
href="/cli/"><span>Command-line Interface</span></a></li><li class="level-2"><a 
class="final" href="/resources/release/"><span>Release 
Cadence</span></a></li><li class="level-2"><a class="final" 
href="/resources/intellij/"><span>Developing Engines with IntelliJ 
IDEA</span></a></li><li class="level-2"><a class="final" 
href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li 
class="level-2"><a class="final" 
href="/resources/glossary/"><span>Glossary</span></a></li></ul></li><li 
class="level-1
 "><a class="expandible" href="#"><span>Apache Software 
Foundation</span></a><ul><li class="level-2"><a class="final" 
href="https://www.apache.org/";><span>Apache Homepage</span></a></li><li 
class="level-2"><a class="final" 
href="https://www.apache.org/licenses/";><span>License</span></a></li><li 
class="level-2"><a class="final" 
href="https://www.apache.org/foundation/sponsorship.html";><span>Sponsorship</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/foundation/thanks.html";><span>Thanks</span></a></li><li
 class="level-2"><a class="final" 
href="https://www.apache.org/security/";><span>Security</span></a></li></ul></li></ul></nav></div><div
 class="col-md-9 col-sm-12"><div class="content-header hidden-md 
hidden-lg"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a 
href="#">Engine Template Gallery</a><span 
class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div><
 /div><div id="table-of-content-wrapper"><a id="edit-page-link" 
href="https://github.com/apache/incubator-predictionio/tree/livedoc/docs/manual/source/gallery/template-gallery.html.md";><img
 src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div 
class="content-header hidden-sm hidden-xs"><div id="breadcrumbs" 
class="hidden-sm hidden xs"><ul><li><a href="#">Engine Template 
Gallery</a><span class="spacer">&gt;</span></li><li><span 
class="last">Browse</span></li></ul></div><div id="page-title"><h1>Engine 
Template Gallery</h1></div></div><div class="content"><p>Pick a tab for the 
type of template you are looking for. Some still need to be ported (a simple 
process) to Apache PIO and these are marked. Also see each Template description 
for special support instructions.</p><div class="tabs"> <ul class="control"> 
<li data-lang=""><a 
href="#tab-160401e5-9415-4191-b4cd-3b975bb471ae">Recommenders</a></li> <li 
data-lang=""><a href="#tab-5695ab4b-01c2-4684-829c-17faff7fca38">Cl
 assification</a></li> <li data-lang=""><a 
href="#tab-5f8adae8-1eb7-42d8-8f84-e5b7d1e7e9eb">Regression</a></li> <li 
data-lang=""><a href="#tab-9aa2ec1e-d1e5-44aa-882d-d0ec19ef4e50">NLP</a></li> 
<li data-lang=""><a 
href="#tab-ff6d593c-d377-4701-a840-2951668fa40e">Clustering</a></li> <li 
data-lang=""><a 
href="#tab-10456f85-ca50-4d0d-afc7-8bbf4cb285d9">Similarity</a></li> <li 
data-lang=""><a href="#tab-3d90e67c-7a0a-40f0-8b55-15a655ef7cc8">Other</a></li> 
</ul> <div data-tab="Recommenders" 
id="tab-160401e5-9415-4191-b4cd-3b975bb471ae"> <h3><a 
href="https://github.com/actionml/universal-recommender";>The Universal 
Recommender</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=actionml&amp;repo=universal-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Use for: </p> <ul class="tab-list"> <li 
class="tab-list-element">Personalized recommendations—user-based</li> <li 
class="tab-list-element">Similar it
 ems—item-based</li> <li class="tab-list-element">Viewed this bought 
that—item-based cross-action</li> <li class="tab-list-element">Popular Items 
and User-defined ranking</li> <li class="tab-list-element">Item-set 
recommendations for complimentarty purchases or shopping 
carts—item-set-based</li> <li class="tab-list-element">Hybrid collaborative 
filtering and content based recommendations—limited content-based</li> <li 
class-tab-list-element>Business rules</li> </ul> <p>The name "Universal" refers 
to the use of this template in virtually any case that calls for 
recommendations - ecommerce, news, videos, virtually anywhere user behavioral 
data is known. This recommender uses the new <a 
href="http://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html";>Cross-Occurrence
 (CCO) algorithm</a> to auto-correlate different user actions (clickstream 
data), profile data, contextual information (location, device), and some 
content types to make better recommendations. It also 
 implements flexible filters and boosts for implementing business rules.</p> 
<p>Support: <a href="https://groups.google.com/forum/#!forum/actionml-user";>The 
Universal Recommender user group</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.10.0-incubating</td> <td>already compatible</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/apache/incubator-predictionio-template-recommender";>Recommendation</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> An engine template is an almost-complete 
implementation of an engine. PredictionIO's Recommendation Engine Template has 
integrated Apache Spark MLlib's 
 Collaborative Filtering algorithm by default. You can customize it easily to 
fit your specific needs. </p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-ecom-recommender";>E-Commerce
 Recommendation</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-ecom-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template provides personalized 
recommendation for e-commerce applications with the following fe
 atures by default: </p> <ul class="tab-list"> <li 
class="tab-list-element">Exclude out-of-stock items</li> <li 
class="tab-list-element">Provide recommendation to new users who sign up after 
the model is trained</li> <li class="tab-list-element">Recommend unseen items 
only (configurable)</li> <li class="tab-list-element">Recommend popular items 
if no information about the user is available (added in template version 
v0.4.0)</li> </ul> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-similar-product";>Similar
 Product</a></h3> <iframe src="https://gh
 
btns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-similar-product&amp;type=star&amp;count=true"
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template recommends products that are 
"similar" to the input product(s). Similarity is not defined by user or item 
attributes but by users' previous actions. By default, it uses 'view' action 
such that product A and B are considered similar if most users who view A also 
view B. The template can be customized to support other action types such as 
buy, rate, like..etc </p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</
 td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-java-ecom-recommender";>E-Commerce
 Recommendation (Java)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-java-ecom-recommender&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template provides personalized 
recommendation for e-commerce applications with the following features by 
default: </p> <ul class="tab-list"> <li class="tab-list-element">Exclude 
out-of-stock items</li> <li class="tab-list-element">Provide recommendation to 
new users who sign up after the model is trained</li> <li 
class="tab-list-element">Recommend unseen items only (configurable)</li> <li 
class="tab-list-element">Recommend popular items if no information about the 
user is available</li> </ul> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache Predicti
 onIO mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Java</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.3</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-productranking";>Product
 Ranking</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-productranking&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template sorts a list of products for a 
user based on his/her preference. This is ideal for personalizing the display 
order of product page, catalog, or menu items if you have large number of 
options. It creates engagement and early conversion by placing products that a 
user prefers on the top. </p> <p>Support: </p> <b
 r> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>stable</td> <td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-complementarypurchase";>Complementary
 Purchase</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-complementarypurchase&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template recommends the complementary 
items which most user frequently buy at the same time with one or more items in 
the query. </p> <p>Support: </p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td>
  <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/vaibhavist/template-scala-parallel-recommendation";>Music
 Recommendations</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=vaibhavist&amp;repo=template-scala-parallel-recommendation&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is very similar to music recommendations 
template. It is integrated with all the events a music application can have 
such as song played, liked, downloaded, purchased, etc. </p> <p>Support: <a 
href="https://github.com/vaibhavist/template-scala-parallel-recommendation/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha
 </td> <td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/vngrs/template-scala-parallel-viewedthenbought";>Viewed 
This Bought That</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=vngrs&amp;repo=template-scala-parallel-viewedthenbought&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This Engine uses co-occurence algorithm to match 
viewed items to bought items. Using this engine you may predict which item the 
user will buy, given the item(s) browsed. </p> <p>Support: <a 
href="https://github.com/vngrs/template-scala-parallel-viewedthenbought/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <b
 r> <h3><a href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Template uses FP Growth algorithm allowing to mine 
for frequent patterns. Template returns subsequent items together with 
confidence score. Sometimes used as a shopping cart recommender but has other 
uses. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-fpm/issues";>Github issues</a></p> 
<br> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating";>Sim
 ilar Product with Rating</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=ramaboo&amp;repo=template-scala-parallel-similarproduct-with-rating&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Similar product template with rating support! Used 
for the MovieLens Demo. </p> <p>Support: <a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=star&amp;count=true";
 frameborder
 ="0" align="middle" scrolling="0" width="170px" height="20px"></iframe> <p> 
Template uses FP Growth algorithm allowing to mine for frequent patterns. 
Template returns subsequent items together with confidence score. </p> 
<p>Support: <a href="https://github.com/goliasz/pio-template-fpm/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> 
</tr> </table> <br> </div> <div data-tab="Classification" 
id="tab-5695ab4b-01c2-4684-829c-17faff7fca38"> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-attribute-based-classifier";>Classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-attribute-based-classifier&amp;type=star&amp;count=true";
 frameborder="0" a
 lign="middle" scrolling="0" width="170px" height="20px"></iframe> <p> An 
engine template is an almost-complete implementation of an engine. 
PredictionIO's Classification Engine Template has integrated Apache Spark 
MLlib's Naive Bayes algorithm by default. </p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing lists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>already compatible</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/haricharan123/PredictionIo-lingpipe-MultiLabelClassification";>Classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=haricharan123&amp;repo=PredictionIo-lingpipe-MultiLabelClassification&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="1
 70px" height="20px"></iframe> <p> This engine template is an almost-complete 
implementation of an engine meant to used with PredictionIO. This Multi-label 
Classification Engine Template has integrated LingPipe 
(http://alias-i.com/lingpipe/) algorithm by default. </p> <p>Support: </p> <br> 
<table> <tr> <th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> 
<th>PIO min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Java</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.9.5</td> <td>already compatible</td> </tr> </table> <br> <h3><a 
href="https://github.com/PredictionIO/template-scala-parallel-leadscoring";>Lead 
Scoring</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=PredictionIO&amp;repo=template-scala-parallel-leadscoring&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template predicts the probability of an 
user will convert (conversion e
 vent by user) in the current session. </p> <p>Support: </p> <br> <table> <tr> 
<th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> <th>PIO min 
version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-text-classifier";>Text
 Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-text-classifier&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Use this engine for general text classification 
purposes. Uses OpenNLP library for text vectorization, includes 
t.f.-i.d.f.-based feature transformation and reduction, and uses Spark MLLib's 
Multinomial Naive Bayes implementation for classification. </p> <p>Support: <a 
href="https://gith
 ub.com/apache/incubator-predictionio-template-text-classifier/issues">Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/andrewwuan/PredictionIO-Churn-Prediction-H2O-Sparkling-Water";>Churn
 Prediction - H2O Sparkling Water</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=andrewwuan&amp;repo=PredictionIO-Churn-Prediction-H2O-Sparkling-Water&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is an engine template with Sparkling Water 
integration. The goal is to use Deep Learning algorithm to predict the churn 
rate for a phone carrier's customers. </p> <p>Support: <a 
href="https://github.com/andrewwuan/Predic
 tionIO-Churn-Prediction-H2O-Sparkling-Water/issues">Github issues</a></p> <br> 
<table> <tr> <th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> 
<th>PIO min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/detrevid/predictionio-template-classification-dl4j";>Classification
 Deeplearning4j</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=detrevid&amp;repo=predictionio-template-classification-dl4j&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A classification engine template that uses 
Deeplearning4j library. </p> <p>Support: <a 
href="https://github.com/detrevid/predictionio-template-classification-dl4j/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</
 th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs";>Probabilistic
 Classifier (Logistic Regression w/ LBFGS)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=EmergentOrder&amp;repo=template-scala-probabilistic-classifier-batch-lbfgs&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A PredictionIO engine template using logistic 
regression (trained with limited-memory BFGS ) with raw (probabilistic) 
outputs. </p> <p>Support: <a 
href="https://github.com/EmergentOrder/template-scala-probabilistic-classifier-batch-lbfgs/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min versio
 n</th> <th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>MIT License</td> <td>alpha</td> <td>0.9.2</td> <td>requires 
conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/chrischris292/template-classification-opennlp";>Document
 Classification with OpenNLP</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=chrischris292&amp;repo=template-classification-opennlp&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Document Classification template with OpenNLP 
GISModel. </p> <p>Support: <a 
href="https://github.com/chrischris292/template-classification-opennlp/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> </
 tr> </table> <br> <h3><a 
href="https://github.com/harry5z/template-circuit-classification-sparkling-water";>Circuit
 End Use Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=harry5z&amp;repo=template-circuit-classification-sparkling-water&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A classification engine template that uses machine 
learning models trained with sample circuit energy consumption data and end 
usage to predict the end use of a circuit by its energy consumption history. 
</p> <p>Support: <a 
href="https://github.com/harry5z/template-circuit-classification-sparkling-water/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.1</td> <td>requires conversion</td> </
 tr> </table> <br> <h3><a 
href="https://github.com/ailurus1991/GBRT_Template_PredictionIO";>GBRT_Classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=ailurus1991&amp;repo=GBRT_Template_PredictionIO&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> The Gradient-Boosted Regression Trees(GBRT) for 
classification. </p> <p>Support: <a 
href="https://github.com/ailurus1991/GBRT_Template_PredictionIO/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/mohanaprasad1994/PredictionIO-MLlib-Decision-Trees-Template";>MLlib-Decision-Trees-Template</a></h3>
 <iframe src="https://ghbtns.com/github-btn.html?user
 
=mohanaprasad1994&amp;repo=PredictionIO-MLlib-Decision-Trees-Template&amp;type=star&amp;count=true"
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> An engine template is an almost-complete 
implementation of an engine. This is a classification engine template which has 
integrated Apache Spark MLlib's Decision tree algorithm by default. </p> 
<p>Support: <a 
href="https://github.com/mohanaprasad1994/PredictionIO-MLlib-Decision-Trees-Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/jimmyywu/predictionio-template-classification-dl4j-multilayer-network";>Classification
 with MultiLayerNetwork</a></h3> <iframe src="https://ghbtns.com/github
 
-btn.html?user=jimmyywu&amp;repo=predictionio-template-classification-dl4j-multilayer-network&amp;type=star&amp;count=true"
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine template integrates the 
MultiLayerNetwork implementation from the Deeplearning4j library into 
PredictionIO. In this template, we use PredictionIO to classify the 
widely-known IRIS flower dataset by constructing a deep-belief net. </p> 
<p>Support: <a 
href="https://github.com/jimmyywu/predictionio-template-classification-dl4j-multilayer-network/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/thomasste/template-scala-parallel-dl4j-rntn";>Deeplearning4j
 RNTN</a><
 /h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=template-scala-parallel-dl4j-rntn&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Recursive Neural Tensor Network algorithm is 
supervised learning algorithm used to predict sentiment of sentences. This 
template is based on deeplearning4j RNTN example: 
https://github.com/SkymindIO/deeplearning4j-nlp-examples/tree/master/src/main/java/org/deeplearning4j/rottentomatoes/rntn.
 It's goal is to show how to integrate deeplearning4j library with 
PredictionIO. </p> <p>Support: <a 
href="https://github.com/thomasste/template-scala-parallel-dl4j-rntn/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td>
  </tr> </table> <br> <h3><a 
href="https://github.com/singsanj/classifier-kafka-streaming-template";>classifier-kafka-streaming-template</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=singsanj&amp;repo=classifier-kafka-streaming-template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> The template will provide a simple integration of 
DASE with kafka using spark streaming capabilites in order to play around with 
real time notification, messages .. </p> <p>Support: <a 
href="https://github.com/singsanj/classifier-kafka-streaming-template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a href="https://github.com/peoplehum/BagOfWor
 ds_SentimentAnalysis_Template">Sentiment Analysis - Bag of Words 
Model</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=BagOfWords_SentimentAnalysis_Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This sentiment analysis template uses a bag of 
words model. Given text, the engine will return sentiment as 1.0 (positive) or 
0.0 (negative) along with scores indicating how +ve or -ve it is. </p> 
<p>Support: <a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> </div> <div data-tab="Regression" 
id="tab-5f8adae8-1eb7-42d8-8f84
 -e5b7d1e7e9eb"> <h3><a 
href="https://github.com/goliasz/pio-template-sr";>Survival Regression</a></h3> 
<iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-sr&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Survival regression template is based on brand new 
Spark 1.6 AFT (accelerated failure time) survival analysis algorithm. There are 
interesting applications of survival analysis like: </p> <ul class="tab-list"> 
<li class="tab-list-element">Business Planning : Profiling customers who has a 
higher survival rate and make strategy accordingly.</li> <li 
class="tab-list-element">Lifetime Value Prediction : Engage with customers 
according to their lifetime value</li> <li class="tab-list-element">Active 
customers : Predict when the customer will be active for the next time and take 
interventions accordingly. * Campaign evaluation : Monitor effect of campaign 
on the survival rate of customers.
 </li> </ul> Source: 
http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/ 
<p>Support: <a 
href="http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/";>Blog
 post</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.9.5</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/BensonQiu/predictionio-template-recommendation-sparklingwater";>Sparkling
 Water-Deep Learning Energy Forecasting</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=BensonQiu&amp;repo=predictionio-template-recommendation-sparklingwater&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This Engine Template demonstrates an energy 
forecasting engine. It integrates Deep Learning from the
  Sparkling Water library to perform energy analysis. We can query the circuit 
and time, and return predicted energy usage. </p> <p>Support: <a 
href="https://github.com/BensonQiu/predictionio-template-recommendation-sparklingwater/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/detrevid/predictionio-load-forecasting";>Electric Load 
Forecasting</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=detrevid&amp;repo=predictionio-load-forecasting&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is a PredictionIO engine for electric load 
forecasting. The engine is using linear regression with stochastic
  gradient descent from Spark MLlib. </p> <p>Support: <a 
href="https://github.com/detrevid/predictionio-load-forecasting/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/RAditi/PredictionIO-MLLib-LinReg-Template";>MLLib-LinearRegression</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=RAditi&amp;repo=PredictionIO-MLLib-LinReg-Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template uses the linear regression with 
stochastic gradient descent algorithm from MLLib to make predictions on 
real-valued data based on features (explanatory variables) </p> <p>Support: <a 
href="https://github.co
 m/RAditi/PredictionIO-MLLib-LinReg-Template/issues">Github issues</a></p> <br> 
<table> <tr> <th>Type</th> <th>Language</th> <th>License</th> <th>Status</th> 
<th>PIO min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.1</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/mgcdanny/pio-linear-regression-bfgs";>Linear Regression 
BFGS</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=mgcdanny&amp;repo=pio-linear-regression-bfgs&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Modeling the relationship between a dependent 
variable, y, and one or more explanatory variables, denoted X. </p> <p>Support: 
</p> <br> <table> <tr> <th>Type</th> <th>Language</th> <th>License</th> 
<th>Status</th> <th>PIO min version</th> <th>Apache PIO Convesion Required</th> 
</tr> <tr> <td>Parallel</td> <t
 d>Scala</td> <td>Apache Licence 2.0</td> <td>beta</td> <td>0.10.0</td> 
<td></td> </tr> </table> <br> </div> <div data-tab="NLP" 
id="tab-9aa2ec1e-d1e5-44aa-882d-d0ec19ef4e50"> <h3><a 
href="https://github.com/goliasz/pio-template-text-similarity";>Cstablo-template-text-similarity-classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-text-similarity&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Text similarity engine based on Word2Vec algorithm. 
Builds vectors of full documents in training phase. Finds similar documents in 
query phase. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-text-similarity/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>
 alpha</td> <td>0.9.5</td> <td>requires conversion</td> </tr> </table> <br> 
<h3><a 
href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia";>Topic
 Labelling with Wikipedia</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=template-Labelling-Topics-with-wikipedia&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template will label topics (e.g. topic 
generated through LDA topic modeling) with relevant category by referring to 
Wikipedia as a knowledge base. </p> <p>Support: <a 
href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> 
 </tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-text-classifier";>Text
 Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-text-classifier&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Use this engine for general text classification 
purposes. Uses OpenNLP library for text vectorization, includes 
t.f.-i.d.f.-based feature transformation and reduction, and uses Spark MLLib's 
Multinomial Naive Bayes implementation for classification. </p> <p>Support: <a 
href="https://github.com/apache/incubator-predictionio-template-text-classifier/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</t
 d> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/thomasste/template-scala-parallel-dl4j-rntn";>Deeplearning4j
 RNTN</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=template-scala-parallel-dl4j-rntn&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Recursive Neural Tensor Network algorithm is 
supervised learning algorithm used to predict sentiment of sentences. This 
template is based on deeplearning4j RNTN example: 
https://github.com/SkymindIO/deeplearning4j-nlp-examples/tree/master/src/main/java/org/deeplearning4j/rottentomatoes/rntn.
 It's goal is to show how to integrate deeplearning4j library with 
PredictionIO. </p> <p>Support: <a 
href="https://github.com/thomasste/template-scala-parallel-dl4j-rntn/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO C
 onvesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template";>Sentiment
 Analysis - Bag of Words Model</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=BagOfWords_SentimentAnalysis_Template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This sentiment analysis template uses a bag of 
words model. Given text, the engine will return sentiment as 1.0 (positive) or 
0.0 (negative) along with scores indicating how +ve or -ve it is. </p> 
<p>Support: <a 
href="https://github.com/peoplehum/BagOfWords_SentimentAnalysis_Template/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr
 > <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
 > <td>stable</td> <td>0.10.0-incubating</td> <td>already compatible</td> </tr> 
 > </table> <br> <h3><a 
 > href="https://github.com/infoquestsolutions/OpenNLP-SentimentAnalysis-Template";>OpenNLP
 >  Sentiment Analysis Template</a></h3> <iframe 
 > src="https://ghbtns.com/github-btn.html?user=infoquestsolutions&amp;repo=OpenNLP-SentimentAnalysis-Template&amp;type=star&amp;count=true";
 >  frameborder="0" align="middle" scrolling="0" width="170px" 
 > height="20px"></iframe> <p> Given a sentence, this engine will return a 
 > score between 0 and 4. This is the sentiment of the sentence. The lower the 
 > number the more negative the sentence is. It uses the OpenNLP library. </p> 
 > <p>Support: <a 
 > href="https://github.com/infoquestsolutions/OpenNLP-SentimentAnalysis-Template/issues";>Github
 >  issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
 > <th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
 > Convesion Required</th> </tr> 
 <tr> <td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> 
<td>beta</td> <td>0.10.0-incubating</td> <td>already compatible</td> </tr> 
</table> <br> <h3><a 
href="https://github.com/pawel-n/template-scala-cml-sentiment";>Sentiment 
analysis</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=pawel-n&amp;repo=template-scala-cml-sentiment&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template implements various algorithms for 
sentiment analysis, most based on recursive neural networks (RNN) and recursive 
neural tensor networks (RNTN)[1]. It uses an experimental library called 
Composable Machine Learning (CML) and the Stanford Parser. The example data set 
is the Stanford Sentiment Treebank. </p> <p>Support: <a 
href="https://github.com/pawel-n/template-scala-cml-sentiment/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min vers
 ion</th> <th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/pawel-n/template-scala-parallel-word2vec";>Word2Vec</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=pawel-n&amp;repo=template-scala-parallel-word2vec&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template integrates the Word2Vec 
implementation from deeplearning4j with PredictionIO. The Word2Vec algorithm 
takes a corpus of text and computes a vector representation for each word. 
These representations can be subsequently used in many natural language 
processing applications. </p> <p>Support: <a 
href="https://github.com/pawel-n/template-scala-parallel-word2vec/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> 
 <th>PIO min version</th> <th>Apache PIO Convesion Required</th> </tr> <tr> 
<td>Parallel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> 
<td>0.9.0</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/thomasste/template-scala-spark-dl4j-word2vec";>Spark 
Deeplearning4j Word2Vec</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=template-scala-spark-dl4j-word2vec&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template shows how to integrate Deeplearnign4j 
spark api with PredictionIO on example of app which uses Word2Vec algorithm to 
predict nearest words. </p> <p>Support: <a 
href="https://github.com/thomasste/template-scala-spark-dl4j-word2vec/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Paral
 lel</td> <td>Scala</td> <td>Apache Licence 2.0</td> <td>stable</td> 
<td>0.9.2</td> <td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/whhone/template-sentiment-analysis";>Sentiment Analysis 
Template</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=whhone&amp;repo=template-sentiment-analysis&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Given a sentence, return a score between 0 and 4, 
indicating the sentence's sentiment. 0 being very negative, 4 being very 
positive, 2 being neutral. The engine uses the stanford CoreNLP library and the 
Scala binding `gangeli/CoreNLP-Scala` for parsing. </p> <p>Support: <a 
href="https://github.com/whhone/template-sentiment-analysis/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Sc
 ala</td> <td>None</td> <td>stable</td> <td>0.9.0</td> <td>requires 
conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/thomasste/template-scala-rnn";>Recursive Neural 
Networks (Sentiment Analysis)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=thomasste&amp;repo=template-scala-rnn&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Predicting sentiment of phrases with use of 
Recursive Neural Network algorithm and OpenNLP parser. </p> <p>Support: <a 
href="https://github.com/thomasste/template-scala-rnn/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/Ling-Ling/CoreNLP-Text-Classificat
 ion">CoreNLP Text Classification</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=Ling-Ling&amp;repo=CoreNLP-Text-Classification&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This engine uses CoreNLP to do text analysis in 
order to classify the category a strings of text falls under. </p> <p>Support: 
<a 
href="https://github.com/Ling-Ling/CoreNLP-Text-Classification/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires conversion</td> </tr> 
</table> <br> </div> <div data-tab="Clustering" 
id="tab-ff6d593c-d377-4701-a840-2951668fa40e"> <h3><a 
href="https://github.com/sahiliitm/predictionio-MLlibKMeansClusteringTemplate";>MLlibKMeansClustering</a></h3>
 <iframe src="https://gh
 
btns.com/github-btn.html?user=sahiliitm&amp;repo=predictionio-MLlibKMeansClusteringTemplate&amp;type=star&amp;count=true"
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This is a template which demonstrates the use of 
K-Means clustering algorithm which can be deployed on a spark-cluster using 
prediction.io. </p> <p>Support: <a 
href="https://github.com/sahiliitm/predictionio-MLlibKMeansClusteringTemplate/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>-</td> <td>requires conversion</td> </tr> 
</table> <br> <h3><a 
href="https://github.com/EmergentOrder/template-scala-topic-model-LDA";>Topc 
Model (LDA)</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=EmergentOrder&amp;repo=template-scala-topic-model-LDA&amp;type=star&a
 mp;count=true" frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> A PredictionIO engine template using Latent 
Dirichlet Allocation to learn a topic model from raw text </p> <p>Support: <a 
href="https://github.com/EmergentOrder/template-scala-topic-model-LDA/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.4</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/singsanj/KMeans-parallel-template";>KMeans-Clustering-Template</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=singsanj&amp;repo=KMeans-parallel-template&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> forked from 
PredictionIO/template-scala-parallel-vanilla. I
 t implements the KMeans Algorithm. Can be extended to mainstream 
implementation with minor changes. </p> <p>Support: <a 
href="https://github.com/singsanj/KMeans-parallel-template/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia";>Topic
 Labelling with Wikipedia</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=peoplehum&amp;repo=template-Labelling-Topics-with-wikipedia&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template will label topics (e.g. topic 
generated through LDA topic modeling) with relevant category by referring to 
Wikipedia as a 
 knowledge base. </p> <p>Support: <a 
href="https://github.com/peoplehum/template-Labelling-Topics-with-wikipedia/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.10.0-incubating</td> <td>already 
compatible</td> </tr> </table> <br> </div> <div data-tab="Similarity" 
id="tab-10456f85-ca50-4d0d-afc7-8bbf4cb285d9"> <h3><a 
href="https://github.com/alexice/template-scala-parallel-svd-item-similarity";>Content
 Based SVD Item Similarity Engine</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=alexice&amp;repo=template-scala-parallel-svd-item-similarity&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Template to calculate similarity between items 
based on their attributes—sometimes called conten
 t-based similarity. Attributes can be either numeric or categorical in the 
last case it will be encoded using one-hot encoder. Algorithm uses SVD in order 
to reduce data dimensionality. Cosine similarity is now implemented but can be 
easily extended to other similarity measures. </p> <p>Support: <a 
href="https://groups.google.com/forum/#!forum/actionml-user";>The Universal 
Recommender user group</a></p> <br> <table> <tr> <th>Type</th> 
<th>Language</th> <th>License</th> <th>Status</th> <th>PIO min version</th> 
<th>Apache PIO Convesion Required</th> </tr> <tr> <td>Parallel</td> 
<td>Scala</td> <td>Apache Licence 2.0</td> <td>alpha</td> <td>0.9.2</td> 
<td>requires conversion</td> </tr> </table> <br> <h3><a 
href="https://github.com/goliasz/pio-template-text-similarity";>Cstablo-template-text-similarity-classification</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-text-similarity&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scroll
 ing="0" width="170px" height="20px"></iframe> <p> Text similarity engine based 
on Word2Vec algorithm. Builds vectors of full documents in training phase. 
Finds similar documents in query phase. </p> <p>Support: <a 
href="https://github.com/goliasz/pio-template-text-similarity/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating";>Similar
 Product with Rating</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=ramaboo&amp;repo=template-scala-parallel-similarproduct-with-rating&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Similar product template w
 ith rating support! Used for the MovieLens Demo. </p> <p>Support: <a 
href="https://github.com/ramaboo/template-scala-parallel-similarproduct-with-rating/issues";>Github
 issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>beta</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> </div> <div data-tab="Other" 
id="tab-3d90e67c-7a0a-40f0-8b55-15a655ef7cc8"> <h3><a 
href="https://github.com/goliasz/pio-template-fpm";>Frequent Pattern 
Mining</a></h3> <iframe 
src="https://ghbtns.com/github-btn.html?user=goliasz&amp;repo=pio-template-fpm&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Template uses FP Growth algorithm allowing to mine 
for frequent patterns. Template returns subsequent items together with 
confidence score. </p> <
 p>Support: <a href="https://github.com/goliasz/pio-template-fpm/issues";>Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>alpha</td> <td>0.9.5</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/anthill/template-decision-tree-feature-importance";>template-decision-tree-feature-importance</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=anthill&amp;repo=template-decision-tree-feature-importance&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> This template shows how to use spark' decision 
tree. It enables : - both categorical and continuous features - feature 
importance calculation - tree output in json - reading training data from a csv 
file </p> <p>Support: <a href="https://gith
 ub.com/anthill/template-decision-tree-feature-importance/issues">Github 
issues</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.0</td> <td>requires conversion</td> 
</tr> </table> <br> <h3><a 
href="https://github.com/apache/incubator-predictionio-template-skeleton";>Skeleton</a></h3>
 <iframe 
src="https://ghbtns.com/github-btn.html?user=apache&amp;repo=incubator-predictionio-template-skeleton&amp;type=star&amp;count=true";
 frameborder="0" align="middle" scrolling="0" width="170px" 
height="20px"></iframe> <p> Skeleton template is for developing new engine when 
you find other engine templates do not fit your needs. This template provides a 
skeleton to kick start new engine development. </p> <p>Support: <a 
href="http://predictionio.incubator.apache.org/support/";>Apache PredictionIO 
mailing l
 ists</a></p> <br> <table> <tr> <th>Type</th> <th>Language</th> 
<th>License</th> <th>Status</th> <th>PIO min version</th> <th>Apache PIO 
Convesion Required</th> </tr> <tr> <td>Parallel</td> <td>Scala</td> <td>Apache 
Licence 2.0</td> <td>stable</td> <td>0.9.2</td> <td>already compatible</td> 
</tr> </table> <br> </div> </div> </div></div></div></div><footer><div 
class="container"><div class="seperator"></div><div class="row"><div 
class="col-md-6 footer-link-column"><div 
class="footer-link-column-row"><h4>Community</h4><ul><li><a 
href="//predictionio.incubator.apache.org/install/" 
target="blank">Download</a></li><li><a 
href="//predictionio.incubator.apache.org/" target="blank">Docs</a></li><li><a 
href="//github.com/apache/incubator-predictionio" 
target="blank">GitHub</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to User Mailing List</a></li><li><a 
href="//stackoverflow.com/questions/tagged/predictionio" 
target="blank">Stackoverflo
 w</a></li></ul></div></div><div class="col-md-6 footer-link-column"><div 
class="footer-link-column-row"><h4>Contribute</h4><ul><li><a 
href="//predictionio.incubator.apache.org/community/contribute-code/" 
target="blank">Contribute</a></li><li><a 
href="//github.com/apache/incubator-predictionio" target="blank">Source 
Code</a></li><li><a href="//issues.apache.org/jira/browse/PIO" 
target="blank">Bug Tracker</a></li><li><a 
href="mailto:[email protected]"; 
target="blank">Subscribe to Development Mailing 
List</a></li></ul></div></div></div><div class="row"><div class="col-md-12 
footer-link-column"><p>Apache PredictionIO, PredictionIO, Apache, the Apache 
feather logo, and the Apache PredictionIO project logo are either registered 
trademarks or trademarks of The Apache Software Foundation in the United States 
and other countries.</p><p>All other marks mentioned may be trademarks or 
registered trademarks of their respective owners.</p></div></div><div 
class="row">
 <div class="col-md-12 footer-link-column"><a class="pull-right" 
href="http://incubator.apache.org/projects/predictionio.html";><img alt="Apache 
Incubator" src="/images/logos/apache_incubator-6954bd16.png"/></a><span>Apache 
PredictionIO is an effort undergoing incubation at The Apache Software 
Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of 
all newly accepted projects until a further review indicates that the 
infrastructure, communications, and decision making process have stabilized in 
a manner consistent with other successful ASF projects. While incubation status 
is not necessarily a reflection of the completeness or stability of the code, 
it does indicate that the project has yet to be fully endorsed by the 
ASF.</span></div></div></div><div id="footer-bottom"><div 
class="container"><div class="row"><div class="col-md-12"><div 
id="footer-logo-wrapper"><img alt="PredictionIO" 
src="/images/logos/logo-white-d1e9c6e6.png"/><span>™</span></div><div id="so
 cial-icons-wrapper"><a class="github-button" 
href="https://github.com/apache/incubator-predictionio"; data-style="mega" 
data-count-href="/apache/incubator-predictionio/stargazers" 
data-count-api="/repos/apache/incubator-predictionio#stargazers_count" 
data-count-aria-label="# stargazers on GitHub" aria-label="Star 
apache/incubator-predictionio on GitHub">Star</a> <a class="github-button" 
href="https://github.com/apache/incubator-predictionio/fork"; 
data-icon="octicon-git-branch" data-style="mega" 
data-count-href="/apache/incubator-predictionio/network" 
data-count-api="/repos/apache/incubator-predictionio#forks_count" 
data-count-aria-label="# forks on GitHub" aria-label="Fork 
apache/incubator-predictionio on GitHub">Fork</a> <script id="github-bjs" 
async="" defer="" src="https://buttons.github.io/buttons.js";></script><a 
href="https://twitter.com/predictionio"; target="blank"><img alt="PredictionIO 
on Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a 
href="https://www.facebook.co
 m/predictionio" target="blank"><img alt="PredictionIO on Facebook" 
src="/images/icons/facebook-5c57939c.png"/></a> 
</div></div></div></div></div></footer></div><script>(function(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+(w[n].q=w[n].q||[]).push(arguments);};s=d.createElement(t);
+e=d.getElementsByTagName(t)[0];s.async=1;s.src=u;e.parentNode.insertBefore(s,e);
+})(window,document,'script','//s.swiftypecdn.com/install/v1/st.js','_st');
+
+_st('install','HaUfpXXV87xoB_zzCQ45');</script><script 
src="/javascripts/application-a6acb1f5.js"></script></body></html>
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/4e7d331e/gallery/template-gallery/index.html.gz
----------------------------------------------------------------------
diff --git a/gallery/template-gallery/index.html.gz 
b/gallery/template-gallery/index.html.gz
new file mode 100644
index 0000000..4a5f2f2
Binary files /dev/null and b/gallery/template-gallery/index.html.gz differ

Reply via email to