This is an automated email from the ASF dual-hosted git repository.

jiayu pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/sedona-db.git


The following commit(s) were added to refs/heads/main by this push:
     new aa4f80a  docs: add sedonadb programming guide (#64)
aa4f80a is described below

commit aa4f80a5732e0799e8637930304e86ad2d7c46bb
Author: Matthew Powers <[email protected]>
AuthorDate: Fri Sep 12 14:17:17 2025 -0400

    docs: add sedonadb programming guide (#64)
---
 docs/programming-guide.ipynb | 387 +++++++++++++++++++++++++++++++++++++++++++
 mkdocs.yml                   |   1 +
 2 files changed, 388 insertions(+)

diff --git a/docs/programming-guide.ipynb b/docs/programming-guide.ipynb
new file mode 100644
index 0000000..392fdbd
--- /dev/null
+++ b/docs/programming-guide.ipynb
@@ -0,0 +1,387 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "1932983e-1cd2-41d0-a5eb-0537b3ac3feb",
+   "metadata": {},
+   "source": [
+    "# SedonaDB Guide\n",
+    "\n",
+    "This page explains how to process vector data with SedonaDB.\n",
+    "\n",
+    "You will learn how to create SedonaDB DataFrames, run spatial queries, 
and perform I/O operations with various types of files.\n",
+    "\n",
+    "Let’s start by establishing a SedonaDB connection.\n",
+    "\n",
+    "## Establish SedonaDB connection\n",
+    "\n",
+    "Here’s how to create the SedonaDB connection:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "53c3b7a8-c42a-407a-a454-6ee1e943fbcc",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import sedonadb\n",
+    "\n",
+    "sd = sedonadb.connect()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7aeaa60f-2325-418c-8e72-4344bd4a75fe",
+   "metadata": {},
+   "source": [
+    "Now let’s see how to create SedonaDB DataFrames.\n",
+    "\n",
+    "## Create SedonaDB DataFrame\n",
+    "\n",
+    "**Manually creating SedonaDB DataFrame**\n",
+    "\n",
+    "Here’s how to manually create a SedonaDB DataFrame:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "b3377767-d747-407c-92c0-8786c1998131",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df = sd.sql(\"\"\"\n",
+    "SELECT * FROM (VALUES\n",
+    "    ('one', ST_GeomFromWkt('POINT(1 2)')),\n",
+    "    ('two', ST_GeomFromWkt('POLYGON((-74.0 40.7, -74.0 40.8, -73.9 40.8, 
-73.9 40.7, -74.0 40.7))')),\n",
+    "    ('three', ST_GeomFromWkt('LINESTRING(-74.0060 40.7128, -73.9352 
40.7306, -73.8561 40.8484)')))\n",
+    "AS t(val, point)\"\"\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "0f9e1319-2e7a-4d98-9df0-47a9a73cfff3",
+   "metadata": {},
+   "source": [
+    "Check the type of the DataFrame."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "e8be30ab-4818-4db8-bae2-83e973ad1b77",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "sedonadb.dataframe.DataFrame"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "type(df)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8225ed1f-45a4-4915-a582-8ae191ec53ed",
+   "metadata": {},
+   "source": [
+    "**Create SedonaDB DataFrame from files in S3**\n",
+    "\n",
+    "For most production applications, you will create SedonaDB DataFrames by 
reading data from a file.  Let’s see how to read GeoParquet files in AWS S3 
into a SedonaDB DataFrame."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "151df287-4b2d-433e-9769-c3378df03b1b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "sd.read_parquet(\n",
+    "    
\"s3://overturemaps-us-west-2/release/2025-08-20.0/theme=divisions/type=division_area/\",\n",
+    "    options={\"aws.skip_signature\": True, \"aws.region\": 
\"us-west-2\"},\n",
+    ").to_view(\"division_area\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "858fcc66-816d-4c71-8875-82b74169eccd",
+   "metadata": {},
+   "source": [
+    "Let’s now run some spatial queries.\n",
+    "\n",
+    "**Read from GeoPandas DataFrame**\n",
+    "\n",
+    "This section shows how to convert a GeoPandas DataFrame into a SedonaDB 
DataFrame.\n",
+    "\n",
+    "Start by reading a FlatGeoBuf file into a GeoPandas DataFrame:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "id": "b81549f2-0f58-49e4-9011-8de6578c2b0e",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import geopandas as gpd\n",
+    "\n",
+    "path = 
\"https://raw.githubusercontent.com/geoarrow/geoarrow-data/v0.2.0/natural-earth/files/natural-earth_cities.fgb\"\n";,
+    "gdf = gpd.read_file(path)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2265f94b-ccb3-4634-8c52-a8799c68c76a",
+   "metadata": {},
+   "source": [
+    "Now convert the GeoPandas DataFrame to a SedonaDB DataFrame and view 
three rows of content:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "0e4819db-bf58-42d7-8b5b-f272d0f19266",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "┌──────────────┬──────────────────────────────┐\n",
+      "│     name     ┆           geometry           │\n",
+      "│     utf8     ┆           geometry           │\n",
+      "╞══════════════╪══════════════════════════════╡\n",
+      "│ Vatican City ┆ POINT(12.4533865 41.9032822) │\n",
+      "├╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
+      "│ San Marino   ┆ POINT(12.4417702 43.9360958) │\n",
+      "├╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
+      "│ Vaduz        ┆ POINT(9.5166695 47.1337238)  │\n",
+      "└──────────────┴──────────────────────────────┘\n"
+     ]
+    }
+   ],
+   "source": [
+    "df = sd.create_data_frame(gdf)\n",
+    "df.show(3)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "6890bcc3-f3bd-4c47-bf86-2607bed5e480",
+   "metadata": {},
+   "source": [
+    "## Spatial queries\n",
+    "\n",
+    "Let’s see how to run spatial operations like filtering, joins, and 
clustering algorithms.\n",
+    "\n",
+    "***Spatial filtering***\n",
+    "\n",
+    "Let’s run a spatial filtering operation to fetch all the objects in the 
following polygon:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "8c8a4b48-8c4e-412e-900f-8c0f6f4ccc1d",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      
"┌──────────┬──────────┬────────────────────────────────────────────────────────────────────────────┐\n",
+      "│  country ┆  region  ┆                                  geometry       
                           │\n",
+      "│ utf8view ┆ utf8view ┆                                  geometry       
                           │\n",
+      
"╞══════════╪══════════╪════════════════════════════════════════════════════════════════════════════╡\n",
+      "│ CA       ┆ CA-NS    ┆ POLYGON((-66.0528452 43.4531336,-66.0883401 
43.3978188,-65.9647654 43.361… │\n",
+      
"├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
+      "│ CA       ┆ CA-NS    ┆ POLYGON((-66.0222822 43.5166842,-66.0252286 
43.5100071,-66.0528452 43.453… │\n",
+      
"├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
+      "│ CA       ┆ CA-NS    ┆ POLYGON((-65.7451389 43.5336263,-65.7450818 
43.5347004,-65.7449545 43.535… │\n",
+      
"└──────────┴──────────┴────────────────────────────────────────────────────────────────────────────┘\n"
+     ]
+    }
+   ],
+   "source": [
+    "nova_scotia_bbox_wkt = (\n",
+    "    \"POLYGON((-66.5 43.4, -66.5 47.1, -59.8 47.1, -59.8 43.4, -66.5 
43.4))\"\n",
+    ")\n",
+    "\n",
+    "ns = sd.sql(f\"\"\"\n",
+    "SELECT country, region, geometry\n",
+    "FROM division_area\n",
+    "WHERE ST_Intersects(geometry, 
ST_SetSRID(ST_GeomFromText('{nova_scotia_bbox_wkt}'), 4326))\n",
+    "\"\"\")\n",
+    "\n",
+    "ns.show(3)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "32076e01-d807-40ed-8457-9d8c4244e89f",
+   "metadata": {},
+   "source": [
+    "You can see it only includes the divisions in the Nova Scotia area.  Skip 
to the visualization section to see how this data can be graphed on a map.\n",
+    "\n",
+    "***K-nearest neighbors (KNN) joins***\n",
+    "\n",
+    "Create `restaurants` and `customers` tables so we can demonstrate the KNN 
join functionality."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "deaa36db-2fee-4ba2-ab79-1dc756cb1655",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df = sd.sql(\"\"\"\n",
+    "SELECT name, ST_Point(lng, lat) AS location\n",
+    "FROM (VALUES \n",
+    "    (101, -74.0, 40.7, 'Pizza Palace'),\n",
+    "    (102, -73.99, 40.69, 'Burger Barn'),\n",
+    "    (103, -74.02, 40.72, 'Taco Town'),\n",
+    "    (104, -73.98, 40.75, 'Sushi Spot'),\n",
+    "    (105, -74.05, 40.68, 'Deli Direct')\n",
+    ") AS t(id, lng, lat, name)\n",
+    "\"\"\")\n",
+    "sd.sql(\"drop view if exists restaurants\")\n",
+    "df.to_view(\"restaurants\")\n",
+    "\n",
+    "df = sd.sql(\"\"\"\n",
+    "SELECT name, ST_Point(lng, lat) AS location\n",
+    "FROM (VALUES \n",
+    "    (1, -74.0, 40.7, 'Alice'),\n",
+    "    (2, -73.9, 40.8, 'Bob'),\n",
+    "    (3, -74.1, 40.6, 'Carol')\n",
+    ") AS t(id, lng, lat, name)\n",
+    "\"\"\")\n",
+    "sd.sql(\"drop view if exists customers\")\n",
+    "df.to_view(\"customers\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "e3bc4976-4245-432f-b265-7f6aa13f35b9",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "┌───────┬───────────────────┐\n",
+      "│  name ┆      location     │\n",
+      "│  utf8 ┆      geometry     │\n",
+      "╞═══════╪═══════════════════╡\n",
+      "│ Alice ┆ POINT(-74 40.7)   │\n",
+      "├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
+      "│ Bob   ┆ POINT(-73.9 40.8) │\n",
+      "├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
+      "│ Carol ┆ POINT(-74.1 40.6) │\n",
+      "└───────┴───────────────────┘\n"
+     ]
+    }
+   ],
+   "source": [
+    "df.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "9df227d6-0972-457a-87e3-5a89802c460f",
+   "metadata": {},
+   "source": [
+    "Perform a KNN join to identify the two restaurants that are nearest to 
each customer:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "05565e15-ee18-431c-8fd2-673291d8d0ee",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "┌──────────┬──────────────┐\n",
+      "│ customer ┆  restaurant  │\n",
+      "│   utf8   ┆     utf8     │\n",
+      "╞══════════╪══════════════╡\n",
+      "│ Alice    ┆ Burger Barn  │\n",
+      "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
+      "│ Alice    ┆ Pizza Palace │\n",
+      "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
+      "│ Bob      ┆ Pizza Palace │\n",
+      "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
+      "│ Bob      ┆ Sushi Spot   │\n",
+      "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
+      "│ Carol    ┆ Deli Direct  │\n",
+      "├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤\n",
+      "│ Carol    ┆ Pizza Palace │\n",
+      "└──────────┴──────────────┘\n"
+     ]
+    }
+   ],
+   "source": [
+    "sd.sql(\"\"\"\n",
+    "SELECT\n",
+    "    c.name AS customer,\n",
+    "    r.name AS restaurant\n",
+    "FROM customers c, restaurants r\n",
+    "WHERE ST_KNN(c.location, r.location, 2, false)\n",
+    "ORDER BY c.name, r.name;\n",
+    "\"\"\").show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2e93fe6a-b0a7-4ec0-952c-dde9edcacdc4",
+   "metadata": {},
+   "source": [
+    "Notice how each customer has two rows - one for each of the two closest 
restaurants.\n",
+    "\n",
+    "## Files\n",
+    "\n",
+    "You can read GeoParquet files with SedonaDB, see the following 
example:\n",
+    "\n",
+    "```python\n",
+    "df = sd.read_parquet(\"some_file.parquet\")\n",
+    "```\n",
+    "\n",
+    "Once you read the file, you can easily expose it as a view and query it 
with spatial SQL, as we demonstrated in the example above."
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.12.4"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/mkdocs.yml b/mkdocs.yml
index 7cc1cc8..f3b07e6 100644
--- a/mkdocs.yml
+++ b/mkdocs.yml
@@ -3,6 +3,7 @@ site_description: "Documentation for Apache SedonaDB"
 nav:
    - Home: index.md
    - SedonaDB Guides:
+     - SedonaDB Guide: programming-guide.ipynb
      - CLI Quickstart: quickstart-cli.md
      - Python Quickstart: quickstart-python.ipynb
      - Development: development.md

Reply via email to