Added: incubator/singa/site/trunk/content/markdown/docs/jp/programming-guide.md URL: http://svn.apache.org/viewvc/incubator/singa/site/trunk/content/markdown/docs/jp/programming-guide.md?rev=1724348&view=auto ============================================================================== --- incubator/singa/site/trunk/content/markdown/docs/jp/programming-guide.md (added) +++ incubator/singa/site/trunk/content/markdown/docs/jp/programming-guide.md Wed Jan 13 03:46:19 2016 @@ -0,0 +1,95 @@ +# Programming Guide + +--- + +To submit a training job, users must provide the configuration of the +four components shown in Figure 1: + + * a [NeuralNet](neural-net.html) describing the neural net structure with the detailed layer setting and their connections; + * a [TrainOneBatch](train-one-batch.html) algorithm which is tailored for different model categories; + * an [Updater](updater.html) defining the protocol for updating parameters at the server side; + * a [Cluster Topology](distributed-training.html) specifying the distributed architecture of workers and servers. + +The *Basic user guide* section describes how to submit a training job using +built-in components; while the *Advanced user guide* section presents details +on writing user's own main function to register components implemented by +themselves. In addition, the training data must be prepared, which has the same +[process](data.html) for both advanced users and basic users. + +<img src="../images/overview.png" align="center" width="400px"/> +<span><strong>Figure 1 - SINGA overview.</strong></span> + + + +## Basic user guide + +Users can use the default main function provided SINGA to submit the training +job. For this case, a job configuration file written as a google protocol +buffer message for the [JobProto](../api/classsinga_1_1JobProto.html) must be provided in the command line, + + ./bin/singa-run.sh -conf <path to job conf> [-resume] + +`-resume` is for continuing the training from last +[checkpoint](checkpoint.html). +The [MLP](mlp.html) and [CNN](cnn.html) +examples use built-in components. Please read the corresponding pages for their +job configuration files. The subsequent pages will illustrate the details on +each component of the configuration. + +## Advanced user guide + +If a user's model contains some user-defined components, e.g., +[Updater](updater.html), he has to write a main function to +register these components. It is similar to Hadoop's main function. Generally, +the main function should + + * initialize SINGA, e.g., setup logging. + + * register user-defined components. + + * create and pass the job configuration to SINGA driver + + +An example main function is like + + #include "singa.h" + #include "user.h" // header for user code + + int main(int argc, char** argv) { + singa::Driver driver; + driver.Init(argc, argv); + bool resume; + // parse resume option from argv. + + // register user defined layers + driver.RegisterLayer<FooLayer>(kFooLayer); + // register user defined updater + driver.RegisterUpdater<FooUpdater>(kFooUpdater); + ... + auto jobConf = driver.job_conf(); + // update jobConf + + driver.Train(resume, jobConf); + return 0; + } + +The Driver class' `Init` method will load a job configuration file provided by +users as a command line argument (`-conf <job conf>`). It contains at least the +cluster topology and returns the `jobConf` for users to update or fill in +configurations of neural net, updater, etc. If users define subclasses of +Layer, Updater, Worker and Param, they should register them through the driver. +Finally, the job configuration is submitted to the driver which starts the +training. + +We will provide helper functions to make the configuration easier in the +future, like [keras](https://github.com/fchollet/keras). + +Users need to compile and link their code (e.g., layer implementations and the main +file) with SINGA library (*.libs/libsinga.so*) to generate an +executable file, e.g., with name *mysinga*. To launch the program, users just pass the +path of the *mysinga* and base job configuration to *./bin/singa-run.sh*. + + ./bin/singa-run.sh -conf <path to job conf> -exec <path to mysinga> [other arguments] + +The [RNN application](rnn.html) provides a full example of +implementing the main function for training a specific RNN model.
Added: incubator/singa/site/trunk/content/markdown/docs/jp/quick-start.md URL: http://svn.apache.org/viewvc/incubator/singa/site/trunk/content/markdown/docs/jp/quick-start.md?rev=1724348&view=auto ============================================================================== --- incubator/singa/site/trunk/content/markdown/docs/jp/quick-start.md (added) +++ incubator/singa/site/trunk/content/markdown/docs/jp/quick-start.md Wed Jan 13 03:46:19 2016 @@ -0,0 +1,177 @@ +# ã¯ã¤ã㯠ã¹ã¿ã¼ã + +--- + +## SINGA ã»ããã¢ãã + +SINGAã®ã¤ã³ã¹ãã¼ã«ã«ã¤ãã¦ã¯[ãã¡ã](installation.html)ãã覧ãã ããã + +### Zookeeper ã®å®è¡ + +SINGAã®ãã¬ã¼ãã³ã°ã¯ã[zookeeper](https://zookeeper.apache.org/) ãå©ç¨ãã¾ããã¾ã㯠zookeeper ãµã¼ãã¹ãéå§ããã¦ãããã¨ã確èªãã¦ãã ããã + +æºåããã thirdparty ã®ã¹ã¯ãªããã使ã£ã¦ zookeeper ãã¤ã³ã¹ãã¼ã«ããå ´åãæ¬¡ã®ã¹ã¯ãªãããå®è¡ãã¦ãã ããã + + #goto top level folder + cd SINGA_ROOT + ./bin/zk-service.sh start + +(`./bin/zk-service.sh stop` // zookeeper ã®åæ¢). + +ããã©ã«ãã®ãã¼ãã使ç¨ããã« zookeeper ãã¹ã¿ã¼ããããæã¯ã`conf/singa.conf`ãç·¨éãã¦ãã ããã + + zookeeper_host: "localhost:YOUR_PORT" + +## ã¹ã¿ã³ãã¢ãã¼ã³ã¢ã¼ãã§ã®å®è¡ + +ã¹ã¿ã³ãã¢ãã¼ã³ã¢ã¼ãã§SINGAãå®è¡ããã¨ã¯ã[Mesos](http://mesos.apache.org/) ã [YARN](http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html) ã®ãããªã¯ã©ã¹ã¿ã¼ããã¼ã¸ã£ã¼å©ç¨ããªãå ´åã®ãã¨ãè¨ãã¾ãã + +### Single ãã¼ãã§ã®ãã¬ã¼ãã³ã° + +ï¼ã¤ã®ããã»ã¹ããã¼ã³ãããã¾ãã +ä¾ã¨ãã¦ã +[CIFAR-10](http://www.cs.toronto.edu/~kriz/cifar.html) ãã¼ã¿ã»ãããå©ç¨ã㦠+[CNN ã¢ãã«](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) ããã¬ã¼ãã³ã°ããã¾ãã +ãã¤ãã¼ãã©ã¡ã¼ã¿ã¼ã¯ã[cuda-convnet](https://code.google.com/p/cuda-convnet/) ã«åºã¥ãã¦è¨å®ããã¦ããã¾ãã +詳細ã¯ã[CNN ãµã³ãã«](cnn.html) ã®ãã¼ã¸ãã覧ãã ããã + + +#### ãã¼ã¿ã¨ãã¸ã§ãè¨å® + +ãã¼ã¿ã»ããã®ãã¦ã³ãã¼ãã¨ãTriaing ã Test ã®ããã®ãã¼ã¿ã·ã£ã¼ãã®çæã¯æ¬¡ã®ããã«è¡ãã¾ãã + + cd examples/cifar10/ + cp Makefile.example Makefile + make download + make create + +Training 㨠Test ãã¼ã¿ã»ããã¯ããããã *cifar10-train-shard* +㨠*cifar10-test-shard* ãã©ã«ãã¼ã«ä½ããã¾ããããã¹ã¦ã®ç»åã®ç¹å¾´å¹³åãè¨è¿°ãã *image_mean.bin* ãã¡ã¤ã«ã使ããã¾ãã + +CNN ã¢ãã«ã®ãã¬ã¼ãã³ã°ã«å¿ è¦ãªã½ã¼ã¹ã³ã¼ãã¯ãã¹ã¦SINGAã«çµã¿è¾¼ã¾ãã¦ãã¾ããã³ã¼ãã追å ããå¿ è¦ã¯ããã¾ããã +ã¸ã§ãè¨å®ãã¡ã¤ã« (*job.conf*) ãæå®ãã¦ãã¹ã¯ãªãã(*../../bin/singa-run.sh*) ãå®è¡ãã¾ãã +SINGAã®ã³ã¼ãã夿´ãã¾ãã¯è¿½å ããæã¯ã[ããã°ã©ãã³ã°ã¬ã¤ã](programming-guide.html)ãã覧ãã ããã + +#### 並ååãªãã®ãã¬ã¼ãã³ã° + +Cluster Topology ã®ããã©ã«ãå¤ã¯ãï¼ã¤ã® worker ã¨ãï¼ã¤ã® server ã¨ãªã£ã¦ãã¾ãã +ãã¼ã¿ã¨ãã¥ã¼ã©ã«ãããã®ä¸¦ååã¯ããã¾ããã + +ãã¬ã¼ãã³ã°ãéå§ããã«ã¯æ¬¡ã®ã¹ã¯ãªãããå®è¡ãã¾ãã + + # goto top level folder + cd ../../ + ./bin/singa-run.sh -conf examples/cifar10/job.conf + + +ç¾å¨ãèµ·åä¸ã®ã¸ã§ãã®ãªã¹ãã表示ããã«ã¯ + + ./bin/singa-console.sh list + + JOB ID |NUM PROCS + ----------|----------- + 24 |1 + +ã¸ã§ãã®å¼·å¶çµäºãããã«ã¯ + + ./bin/singa-console.sh kill JOB_ID + + +ãã°ã¨ã¸ã§ãã®æ å ±ã¯ */tmp/singa-log* ãã©ã«ãã¼ã«ä¿åããã¾ãã +*conf/singa.conf* ãã¡ã¤ã«ã® `log-dir`ã§å¤æ´å¯è½ã§ãã + + +#### éåæã並åãã¬ã¼ãã³ã° + + # job.conf + ... + cluster { + nworker_groups: 2 + nworkers_per_procs: 2 + workspace: "examples/cifar10/" + } + +è¤æ°ã® worker ã°ã«ã¼ãããã¼ã³ããããã¨ã«ãã£ã¦ã +In SINGA, [éåæãã¬ã¼ãã³ã°](architecture.html) ãå®è¡ãããã¨ãåºæ¥ã¾ãã +ä¾ãã°ã*job.conf* ãä¸è¨ã®ããã«å¤æ´ãã¾ãã +ããã©ã«ãã§ã¯ãï¼ã¤ã® worker ã°ã«ã¼ããï¼ã¤ã® worker ãæã¤ããè¨å®ããã¦ãã¾ãã +ä¸è¨ã®è¨å®ã§ã¯ãï¼ã¤ã®ããã»ã¹ã«ï¼ã¤ã® worker ãè¨å®ããã¦ããã®ã§ãï¼ã¤ã® worker ã°ã«ã¼ããåãããã»ã¹ã¨ãã¦å®è¡ããã¾ãã +çµæãã¤ã³ã¡ã¢ãª [Downpour](frameworks.html) ãã¬ã¼ãã³ã°ãã¬ã¼ã ã¯ã¼ã¯ã¨ãã¦ãå®è¡ããã¾ãã + +ã¦ã¼ã¶ã¼ã¯ããã¼ã¿ã®åæ£ãæ°ã«ããå¿ è¦ã¯ããã¾ããã +ã©ã³ãã ãªãã»ããã«å¾ããå worker ã°ã«ã¼ãã«ããã¼ã¿ãæ¯ãåãããã¾ãã +å worker ã¯ç°ãªããã¼ã¿ãã¼ãã£ã·ã§ã³ãæ å½ãã¾ãã + + # job.conf + ... + neuralnet { + layer { + ... + sharddata_conf { + random_skip: 5000 + } + } + ... + } + +ã¹ã¯ãªããå®è¡: + + ./bin/singa-run.sh -conf examples/cifar10/job.conf + +#### åæã並åãã¬ã¼ãã³ã° + + # job.conf + ... + cluster { + nworkers_per_group: 2 + nworkers_per_procs: 2 + workspace: "examples/cifar10/" + } + +ï¼ã¤ã®workerã°ã«ã¼ãã¨ãã¦è¤æ°ã®workerããã¼ã³ããããã¨ã§ [åæãã¬ã¼ãã³ã°](architecture.html)ãå®è¡ãããã¨ãåºæ¥ã¾ãã +ä¾ãã°ã*job.conf* ãã¡ã¤ã«ãä¸è¨ã®ããã«å¤æ´ãã¾ãã +ä¸è¨ã®è¨å®ã§ã¯ãï¼ã¤ã® worker ã°ã«ã¼ãã«ï¼ã¤ã® worker ãè¨å®ããã¾ããã +worker éã¯ã°ã«ã¼ãå ã§åæãã¾ãã +ããã¯ãã¤ã³ã¡ã¢ãª [sandblaster](frameworks.html) ã¨ãã¦å®è¡ããã¾ãã +ã¢ãã«ã¯ï¼ã¤ã®workerã«åå²ããã¾ããåã¬ã¤ã¤ã¼ãï¼ã¤ã®workerã«æ¯ãåãããã¾ãã +æ¯ãåããããã¬ã¤ã¤ã¼ã¯ãªãªã¸ãã«ã®ã¬ã¤ã¤ã¼ã¨æ©è½ã¯åãã§ãããç¹å¾´ã¤ã³ã¹ã¿ã³ã¹ã®æ°ã `B/g` ã«ãªãã¾ãã +ããã§ã`B`ã¯ãããããã®ã¤ã³ã¹ã¿ã³ã¹ã®æ°ã§ã`g`ã¯ã°ã«ã¼ãå ã® worker ã®æ°ã§ãã +[å¥ã®ã¹ãã¼ã ](neural-net.html) ãå©ç¨ããã¬ã¤ã¤ã¼ï¼ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ï¼ãã¼ãã£ã·ã§ã³æ¹æ³ãããã¾ãã + +ä»ã®è¨å®ã¯ãã¹ã¦ã並ååãªããã®å ´åã¨åãã§ãã + + ./bin/singa-run.sh -conf examples/cifar10/job.conf + +### ã¯ã©ã¹ã¿ä¸ã§ã®ãã¬ã¼ãã³ã° + +ã¯ã©ã¹ã¿ã¼è¨å®ã夿´ãã¦ãä¸è¨ãã¬ã¼ãã³ã°ãã¬ã¼ã ã¯ã¼ã¯ã®æ¡å¼µãè¡ãã¾ãã + + nworker_per_procs: 1 + +ãã¹ã¦ã®ããã»ã¹ã¯ï¼ã¤ã®workerã¹ã¬ãããçæãã¾ãã +çµæãworker éã¯ç°ãªãããã»ã¹ï¼ãã¼ãï¼å ã§çæããã¾ãã +ã¯ã©ã¹ã¿ã¼å ã®ãã¼ããç¹å®ããã«ã¯ã*SINGA_ROOT/conf/* ã® *hostfile* ã®è¨å®ãå¿ è¦ã§ãã + +e.g., + + logbase-a01 + logbase-a02 + +zookeeper location ãè¨å®ããå¿ è¦ãããã¾ãã + +e.g., + + #conf/singa.conf + zookeeper_host: "logbase-a01" + +ã¹ã¯ãªããã®å®è¡ã¯ãSingle ãã¼ã ãã¬ã¼ãã³ã°ãã¨åãã§ãã + + ./bin/singa-run.sh -conf examples/cifar10/job.conf + +## Mesosãã§ã®å®è¡ + +*working*... + +## 次㸠+ +SINGAã®ã³ã¼ã夿´ã追å ã«é¢ãã詳細ã¯ã[ããã°ã©ãã³ã°ã¬ã¤ã](programming-guide.html) ãã覧ãã ããã Added: incubator/singa/site/trunk/content/markdown/docs/jp/rbm.md URL: http://svn.apache.org/viewvc/incubator/singa/site/trunk/content/markdown/docs/jp/rbm.md?rev=1724348&view=auto ============================================================================== --- incubator/singa/site/trunk/content/markdown/docs/jp/rbm.md (added) +++ incubator/singa/site/trunk/content/markdown/docs/jp/rbm.md Wed Jan 13 03:46:19 2016 @@ -0,0 +1,365 @@ +# RBM Example + +--- + +This example uses SINGA to train 4 RBM models and one auto-encoder model over the +[MNIST dataset](http://yann.lecun.com/exdb/mnist/). The auto-encoder model is trained +to reduce the dimensionality of the MNIST image feature. The RBM models are trained +to initialize parameters of the auto-encoder model. This example application is +from [Hinton's science paper](http://www.cs.toronto.edu/~hinton/science.pdf). + +## Running instructions + +Running scripts are provided in *SINGA_ROOT/examples/rbm* folder. + +The MNIST dataset has 70,000 handwritten digit images. The +[data preparation](data.html) page +has details on converting this dataset into SINGA recognizable format. Users can +simply run the following commands to download and convert the dataset. + + # at SINGA_ROOT/examples/mnist/ + $ cp Makefile.example Makefile + $ make download + $ make create + +The training is separated into two phases, namely pre-training and fine-tuning. +The pre-training phase trains 4 RBMs in sequence, + + # at SINGA_ROOT/ + $ ./bin/singa-run.sh -conf examples/rbm/rbm1.conf + $ ./bin/singa-run.sh -conf examples/rbm/rbm2.conf + $ ./bin/singa-run.sh -conf examples/rbm/rbm3.conf + $ ./bin/singa-run.sh -conf examples/rbm/rbm4.conf + +The fine-tuning phase trains the auto-encoder by, + + $ ./bin/singa-run.sh -conf examples/rbm/autoencoder.conf + + +## Training details + +### RBM1 + +<img src="../images/example-rbm1.png" align="center" width="200px"/> +<span><strong>Figure 1 - RBM1.</strong></span> + +The neural net structure for training RBM1 is shown in Figure 1. +The data layer and parser layer provides features for training RBM1. +The visible layer (connected with parser layer) of RBM1 accepts the image feature +(784 dimension). The hidden layer is set to have 1000 neurons (units). +These two layers are configured as, + + layer{ + name: "RBMVis" + type: kRBMVis + srclayers:"mnist" + srclayers:"RBMHid" + rbm_conf{ + hdim: 1000 + } + param{ + name: "w1" + init{ + type: kGaussian + mean: 0.0 + std: 0.1 + } + } + param{ + name: "b11" + init{ + type: kConstant + value: 0.0 + } + } + } + + layer{ + name: "RBMHid" + type: kRBMHid + srclayers:"RBMVis" + rbm_conf{ + hdim: 1000 + } + param{ + name: "w1_" + share_from: "w1" + } + param{ + name: "b12" + init{ + type: kConstant + value: 0.0 + } + } + } + + + +For RBM, the weight matrix is shared by the visible and hidden layers. For instance, +`w1` is shared by `vis` and `hid` layers shown in Figure 1. In SINGA, we can configure +the `share_from` field to enable [parameter sharing](param.html) +as shown above for the param `w1` and `w1_`. + +[Contrastive Divergence](train-one-batch.html#contrastive-divergence) +is configured as the algorithm for [TrainOneBatch](train-one-batch.html). +Following Hinton's paper, we configure the [updating protocol](updater.html) +as follows, + + # Updater Configuration + updater{ + type: kSGD + momentum: 0.2 + weight_decay: 0.0002 + learning_rate{ + base_lr: 0.1 + type: kFixed + } + } + +Since the parameters of RBM0 will be used to initialize the auto-encoder, we should +configure the `workspace` field to specify a path for the checkpoint folder. +For example, if we configure it as, + + cluster { + workspace: "examples/rbm/rbm1/" + } + +Then SINGA will [checkpoint the parameters](checkpoint.html) into *examples/rbm/rbm1/*. + +### RBM1 +<img src="../images/example-rbm2.png" align="center" width="200px"/> +<span><strong>Figure 2 - RBM2.</strong></span> + +Figure 2 shows the net structure of training RBM2. +The visible units of RBM2 accept the output from the Sigmoid1 layer. The Inner1 layer +is a `InnerProductLayer` whose parameters are set to the `w1` and `b12` learned +from RBM1. +The neural net configuration is (with layers for data layer and parser layer omitted). + + layer{ + name: "Inner1" + type: kInnerProduct + srclayers:"mnist" + innerproduct_conf{ + num_output: 1000 + } + param{ name: "w1" } + param{ name: "b12"} + } + + layer{ + name: "Sigmoid1" + type: kSigmoid + srclayers:"Inner1" + } + + layer{ + name: "RBMVis" + type: kRBMVis + srclayers:"Sigmoid1" + srclayers:"RBMHid" + rbm_conf{ + hdim: 500 + } + param{ + name: "w2" + ... + } + param{ + name: "b21" + ... + } + } + + layer{ + name: "RBMHid" + type: kRBMHid + srclayers:"RBMVis" + rbm_conf{ + hdim: 500 + } + param{ + name: "w2_" + share_from: "w2" + } + param{ + name: "b22" + ... + } + } + +To load w0 and b02 from RBM0's checkpoint file, we configure the `checkpoint_path` as, + + checkpoint_path: "examples/rbm/rbm1/checkpoint/step6000-worker0" + cluster{ + workspace: "examples/rbm/rbm2" + } + +The workspace is changed for checkpointing `w2`, `b21` and `b22` into +*examples/rbm/rbm2/*. + +### RBM3 + +<img src="../images/example-rbm3.png" align="center" width="200px"/> +<span><strong>Figure 3 - RBM3.</strong></span> + +Figure 3 shows the net structure of training RBM3. In this model, a layer with +250 units is added as the hidden layer of RBM3. The visible units of RBM3 +accepts output from Sigmoid2 layer. Parameters of Inner1 and Innner2 are set to +`w1,b12,w2,b22` which can be load from the checkpoint file of RBM2, +i.e., "examples/rbm/rbm2/". + +### RBM4 + + +<img src="../images/example-rbm4.png" align="center" width="200px"/> +<span><strong>Figure 4 - RBM4.</strong></span> + +Figure 4 shows the net structure of training RBM4. It is similar to Figure 3, +but according to [Hinton's science paper](http://www.cs.toronto.edu/~hinton/science.pdf), the hidden units of the +top RBM (RBM4) have stochastic real-valued states drawn from a unit variance +Gaussian whose mean is determined by the input from the RBM's logistic visible +units. So we add a `gaussian` field in the RBMHid layer to control the +sampling distribution (Gaussian or Bernoulli). In addition, this +RBM has a much smaller learning rate (0.001). The neural net configuration for +the RBM4 and the updating protocol is (with layers for data layer and parser +layer omitted), + + # Updater Configuration + updater{ + type: kSGD + momentum: 0.9 + weight_decay: 0.0002 + learning_rate{ + base_lr: 0.001 + type: kFixed + } + } + + layer{ + name: "RBMVis" + type: kRBMVis + srclayers:"Sigmoid3" + srclayers:"RBMHid" + rbm_conf{ + hdim: 30 + } + param{ + name: "w4" + ... + } + param{ + name: "b41" + ... + } + } + + layer{ + name: "RBMHid" + type: kRBMHid + srclayers:"RBMVis" + rbm_conf{ + hdim: 30 + gaussian: true + } + param{ + name: "w4_" + share_from: "w4" + } + param{ + name: "b42" + ... + } + } + +### Auto-encoder +In the fine-tuning stage, the 4 RBMs are "unfolded" to form encoder and decoder +networks that are initialized using the parameters from the previous 4 RBMs. + +<img src="../images/example-autoencoder.png" align="center" width="500px"/> +<span><strong>Figure 5 - Auto-Encoders.</strong></span> + + +Figure 5 shows the neural net structure for training the auto-encoder. +[Back propagation (kBP)] (train-one-batch.html) is +configured as the algorithm for `TrainOneBatch`. We use the same cluster +configuration as RBM models. For updater, we use [AdaGrad](updater.html#adagradupdater) algorithm with +fixed learning rate. + + ### Updater Configuration + updater{ + type: kAdaGrad + learning_rate{ + base_lr: 0.01 + type: kFixed + } + } + + + +According to [Hinton's science paper](http://www.cs.toronto.edu/~hinton/science.pdf), +we configure a EuclideanLoss layer to compute the reconstruction error. The neural net +configuration is (with some of the middle layers omitted), + + layer{ name: "data" } + layer{ name:"mnist" } + layer{ + name: "Inner1" + param{ name: "w1" } + param{ name: "b12" } + } + layer{ name: "Sigmoid1" } + ... + layer{ + name: "Inner8" + innerproduct_conf{ + num_output: 784 + transpose: true + } + param{ + name: "w8" + share_from: "w1" + } + param{ name: "b11" } + } + layer{ name: "Sigmoid8" } + + # Euclidean Loss Layer Configuration + layer{ + name: "loss" + type:kEuclideanLoss + srclayers:"Sigmoid8" + srclayers:"mnist" + } + +To load pre-trained parameters from the 4 RBMs' checkpoint file we configure `checkpoint_path` as + + ### Checkpoint Configuration + checkpoint_path: "examples/rbm/checkpoint/rbm1/checkpoint/step6000-worker0" + checkpoint_path: "examples/rbm/checkpoint/rbm2/checkpoint/step6000-worker0" + checkpoint_path: "examples/rbm/checkpoint/rbm3/checkpoint/step6000-worker0" + checkpoint_path: "examples/rbm/checkpoint/rbm4/checkpoint/step6000-worker0" + + +## Visualization Results + +<div> +<img src="../images/rbm-weight.PNG" align="center" width="300px"/> + +<img src="../images/rbm-feature.PNG" align="center" width="300px"/> +<br/> +<span><strong>Figure 6 - Bottom RBM weight matrix.</strong></span> + + + + + +<span><strong>Figure 7 - Top layer features.</strong></span> +</div> + +Figure 6 visualizes sample columns of the weight matrix of RBM1, We can see the +Gabor-like filters are learned. Figure 7 depicts the features extracted from +the top-layer of the auto-encoder, wherein one point represents one image. +Different colors represent different digits. We can see that most images are +well clustered according to the ground truth. Added: incubator/singa/site/trunk/content/markdown/docs/jp/rnn.md URL: http://svn.apache.org/viewvc/incubator/singa/site/trunk/content/markdown/docs/jp/rnn.md?rev=1724348&view=auto ============================================================================== --- incubator/singa/site/trunk/content/markdown/docs/jp/rnn.md (added) +++ incubator/singa/site/trunk/content/markdown/docs/jp/rnn.md Wed Jan 13 03:46:19 2016 @@ -0,0 +1,420 @@ +# Recurrent Neural Networks for Language Modelling + +--- + +Recurrent Neural Networks (RNN) are widely used for modelling sequential data, +such as music and sentences. In this example, we use SINGA to train a +[RNN model](http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf) +proposed by Tomas Mikolov for [language modeling](https://en.wikipedia.org/wiki/Language_model). +The training objective (loss) is +to minimize the [perplexity per word](https://en.wikipedia.org/wiki/Perplexity), which +is equivalent to maximize the probability of predicting the next word given the current word in +a sentence. + +Different to the [CNN](cnn.html), [MLP](mlp.html) +and [RBM](rbm.html) examples which use built-in +layers(layer) and records(data), +none of the layers in this example are built-in. Hence users would learn to +implement their own layers and data records through this example. + +## Running instructions + +In *SINGA_ROOT/examples/rnnlm/*, scripts are provided to run the training job. +First, the data is prepared by + + $ cp Makefile.example Makefile + $ make download + $ make create + +Second, to compile the source code under *examples/rnnlm/*, run + + $ make rnnlm + +An executable file *rnnlm.bin* will be generated. + +Third, the training is started by passing *rnnlm.bin* and the job configuration +to *singa-run.sh*, + + # at SINGA_ROOT/ + # export LD_LIBRARY_PATH=.libs:$LD_LIBRARY_PATH + $ ./bin/singa-run.sh -exec examples/rnnlm/rnnlm.bin -conf examples/rnnlm/job.conf + +## Implementations + +<img src="../images/rnnlm.png" align="center" width="400px"/> +<span><strong>Figure 1 - Net structure of the RNN model.</strong></span> + +The neural net structure is shown Figure 1. Word records are loaded by +`DataLayer`. For every iteration, at most `max_window` word records are +processed. If a sentence ending character is read, the `DataLayer` stops +loading immediately. `EmbeddingLayer` looks up a word embedding matrix to extract +feature vectors for words loaded by the `DataLayer`. These features are transformed by the +`HiddenLayer` which propagates the features from left to right. The +output feature for word at position k is influenced by words from position 0 to +k-1. Finally, `LossLayer` computes the cross-entropy loss (see below) +by predicting the next word of each word. +The cross-entropy loss is computed as + +`$$L(w_t)=-log P(w_{t+1}|w_t)$$` + +Given `$w_t$` the above equation would compute over all words in the vocabulary, +which is time consuming. +[RNNLM Toolkit](https://f25ea9ccb7d3346ce6891573d543960492b92c30.googledrive.com/host/0ByxdPXuxLPS5RFM5dVNvWVhTd0U/rnnlm-0.4b.tgz) +accelerates the computation as + +`$$P(w_{t+1}|w_t) = P(C_{w_{t+1}}|w_t) * P(w_{t+1}|C_{w_{t+1}})$$` + +Words from the vocabulary are partitioned into a user-defined number of classes. +The first term on the left side predicts the class of the next word, and +then predicts the next word given its class. Both the number of classes and +the words from one class are much smaller than the vocabulary size. The probabilities +can be calculated much faster. + +The perplexity per word is computed by, + +`$$PPL = 10^{- avg_t log_{10} P(w_{t+1}|w_t)}$$` + +### Data preparation + +We use a small dataset provided by the [RNNLM Toolkit](https://f25ea9ccb7d3346ce6891573d543960492b92c30.googledrive.com/host/0ByxdPXuxLPS5RFM5dVNvWVhTd0U/rnnlm-0.4b.tgz). +It has 10,000 training sentences, with 71350 words in total and 3720 unique words. +The subsequent steps follow the instructions in +[Data Preparation](data.html) to convert the +raw data into records and insert them into data stores. + +#### Download source data + + # in SINGA_ROOT/examples/rnnlm/ + cp Makefile.example Makefile + make download + +#### Define record format + +We define the word record as follows, + + # in SINGA_ROOT/examples/rnnlm/rnnlm.proto + message WordRecord { + optional string word = 1; + optional int32 word_index = 2; + optional int32 class_index = 3; + optional int32 class_start = 4; + optional int32 class_end = 5; + } + +It includes the word string and its index in the vocabulary. +Words in the vocabulary are sorted based on their frequency in the training dataset. +The sorted list is cut into 100 sublists such that each sublist has 1/100 total +word frequency. Each sublist is called a class. +Hence each word has a `class_index` ([0,100)). The `class_start` is the index +of the first word in the same class as `word`. The `class_end` is the index of +the first word in the next class. + +#### Create data stores + +We use code from RNNLM Toolkit to read words, and sort them into classes. +The main function in *create_store.cc* first creates word classes based on the training +dataset. Second it calls the following function to create data store for the +training, validation and test dataset. + + int create_data(const char *input_file, const char *output_file); + +`input` is the path to training/validation/testing text file from the RNNLM Toolkit, `output` is output store file. +This function starts with + + singa::io::KVFile store; + store.Open(output, signa::io::kCreate); + +Then it reads the words one by one. For each word it creates a `WordRecord` instance, +and inserts it into the store, + + int wcnt = 0; // word count + WordRecord wordRecord; + while(1) { + readWord(wordstr, fin); + if (feof(fin)) break; + ...// fill in the wordRecord; + string val; + wordRecord.SerializeToString(&val); + int length = snprintf(key, BUFFER_LEN, "%05d", wcnt++); + store.Write(string(key, length), val); + } + +Compilation and running commands are provided in the *Makefile.example*. +After executing + + make create + +*train_data.bin*, *test_data.bin* and *valid_data.bin* will be created. + + +### Layer implementation + +4 user-defined layers are implemented for this application. +Following the guide for implementing [new Layer subclasses](layer#implementing-a-new-layer-subclass), +we extend the [LayerProto](../api/classsinga_1_1LayerProto.html) +to include the configuration messages of user-defined layers as shown below +(3 out of the 7 layers have specific configurations), + + + import "job.proto"; // Layer message for SINGA is defined + + //For implementation of RNNLM application + extend singa.LayerProto { + optional EmbeddingProto embedding_conf = 101; + optional LossProto loss_conf = 102; + optional DataProto data_conf = 103; + } + +In the subsequent sections, we describe the implementation of each layer, +including its configuration message. + +#### RNNLayer + +This is the base layer of all other layers for this applications. It is defined +as follows, + + class RNNLayer : virtual public Layer { + public: + inline int window() { return window_; } + protected: + int window_; + }; + +For this application, two iterations may process different number of words. +Because sentences have different lengths. +The `DataLayer` decides the effective window size. All other layers call its source layers to get the +effective window size and resets `window_` in `ComputeFeature` function. + +#### DataLayer + +DataLayer is for loading Records. + + class DataLayer : public RNNLayer, singa::InputLayer { + public: + void Setup(const LayerProto& proto, const vector<Layer*>& srclayers) override; + void ComputeFeature(int flag, const vector<Layer*>& srclayers) override; + int max_window() const { + return max_window_; + } + private: + int max_window_; + singa::io::Store* store_; + }; + +The Setup function gets the user configured max window size. + + max_window_ = proto.GetExtension(input_conf).max_window(); + +The `ComputeFeature` function loads at most max_window records. It could also +stop when the sentence ending character is encountered. + + ...// shift the last record to the first + window_ = max_window_; + for (int i = 1; i <= max_window_; i++) { + // load record; break if it is the ending character + } + +The configuration of `DataLayer` is like + + name: "data" + user_type: "kData" + [data_conf] { + path: "examples/rnnlm/train_data.bin" + max_window: 10 + } + +#### EmbeddingLayer + +This layer gets records from `DataLayer`. For each record, the word index is +parsed and used to get the corresponding word feature vector from the embedding +matrix. + +The class is declared as follows, + + class EmbeddingLayer : public RNNLayer { + ... + const std::vector<Param*> GetParams() const override { + std::vector<Param*> params{embed_}; + return params; + } + private: + int word_dim_, vocab_size_; + Param* embed_; + } + +The `embed_` field is a matrix whose values are parameter to be learned. +The matrix size is `vocab_size_` x `word_dim_`. + +The Setup function reads configurations for `word_dim_` and `vocab_size_`. Then +it allocates feature Blob for `max_window` words and setups `embed_`. + + int max_window = srclayers[0]->data(this).shape()[0]; + word_dim_ = proto.GetExtension(embedding_conf).word_dim(); + data_.Reshape(vector<int>{max_window, word_dim_}); + ... + embed_->Setup(vector<int>{vocab_size_, word_dim_}); + +The `ComputeFeature` function simply copies the feature vector from the `embed_` +matrix into the feature Blob. + + # reset effective window size + window_ = datalayer->window(); + auto records = datalayer->records(); + ... + for (int t = 0; t < window_; t++) { + int idx <- word index + Copy(words[t], embed[idx]); + } + +The `ComputeGradient` function copies back the gradients to the `embed_` matrix. + +The configuration for `EmbeddingLayer` is like, + + user_type: "kEmbedding" + [embedding_conf] { + word_dim: 15 + vocab_size: 3720 + } + srclayers: "data" + param { + name: "w1" + init { + type: kUniform + low:-0.3 + high:0.3 + } + } + +#### HiddenLayer + +This layer unrolls the recurrent connections for at most max_window times. +The feature for position k is computed based on the feature from the embedding layer (position k) +and the feature at position k-1 of this layer. The formula is + +`$$f[k]=\sigma (f[t-1]*W+src[t])$$` + +where `$W$` is a matrix with `word_dim_` x `word_dim_` parameters. + +If you want to implement a recurrent neural network following our +design, this layer is of vital importance for you to refer to. + + class HiddenLayer : public RNNLayer { + ... + const std::vector<Param*> GetParams() const override { + std::vector<Param*> params{weight_}; + return params; + } + private: + Param* weight_; + }; + +The `Setup` function setups the weight matrix as + + weight_->Setup(std::vector<int>{word_dim, word_dim}); + +The `ComputeFeature` function gets the effective window size (`window_`) from its source layer +i.e., the embedding layer. Then it propagates the feature from position 0 to position +`window_` -1. The detailed descriptions for this process are illustrated as follows. + + void HiddenLayer::ComputeFeature() { + for(int t = 0; t < window_size; t++){ + if(t == 0) + Copy(data[t], src[t]); + else + data[t]=sigmoid(data[t-1]*W + src[t]); + } + } + +The `ComputeGradient` function computes the gradient of the loss w.r.t. W and the source layer. +Particularly, for each position k, since data[k] contributes to data[k+1] and the feature +at position k in its destination layer (the loss layer), grad[k] should contains the gradient +from two parts. The destination layer has already computed the gradient from the loss layer into +grad[k]; In the `ComputeGradient` function, we need to add the gradient from position k+1. + + void HiddenLayer::ComputeGradient(){ + ... + for (int k = window_ - 1; k >= 0; k--) { + if (k < window_ - 1) { + grad[k] += dot(grad[k + 1], weight.T()); // add gradient from position t+1. + } + grad[k] =... // compute gL/gy[t], y[t]=data[t-1]*W+src[t] + } + gweight = dot(data.Slice(0, window_-1).T(), grad.Slice(1, window_)); + Copy(gsrc, grad); + } + +After the loop, we get the gradient of the loss w.r.t y[k], which is used to +compute the gradient of W and the src[k]. + +#### LossLayer + +This layer computes the cross-entropy loss and the `$log_{10}P(w_{t+1}|w_t)$` (which +could be averaged over all words by users to get the PPL value). + +There are two configuration fields to be specified by users. + + message LossProto { + optional int32 nclass = 1; + optional int32 vocab_size = 2; + } + +There are two weight matrices to be learned + + class LossLayer : public RNNLayer { + ... + private: + Param* word_weight_, *class_weight_; + } + +The ComputeFeature function computes the two probabilities respectively. + +`$$P(C_{w_{t+1}}|w_t) = Softmax(w_t * class\_weight_)$$` +`$$P(w_{t+1}|C_{w_{t+1}}) = Softmax(w_t * word\_weight[class\_start:class\_end])$$` + +`$w_t$` is the feature from the hidden layer for the k-th word, its ground truth +next word is `$w_{t+1}$`. The first equation computes the probability distribution over all +classes for the next word. The second equation computes the +probability distribution over the words in the ground truth class for the next word. + +The ComputeGradient function computes the gradient of the source layer +(i.e., the hidden layer) and the two weight matrices. + +### Updater Configuration + +We employ kFixedStep type of the learning rate change method and the +configuration is as follows. We decay the learning rate once the performance does +not increase on the validation dataset. + + updater{ + type: kSGD + learning_rate { + type: kFixedStep + fixedstep_conf:{ + step:0 + step:48810 + step:56945 + step:65080 + step:73215 + step_lr:0.1 + step_lr:0.05 + step_lr:0.025 + step_lr:0.0125 + step_lr:0.00625 + } + } + } + +### TrainOneBatch() Function + +We use BP (BackPropagation) algorithm to train the RNN model here. The +corresponding configuration can be seen below. + + # In job.conf file + train_one_batch { + alg: kBackPropagation + } + +### Cluster Configuration + +The default cluster configuration can be used, i.e., single worker and single server +in a single process. Added: incubator/singa/site/trunk/content/markdown/docs/jp/test.md URL: http://svn.apache.org/viewvc/incubator/singa/site/trunk/content/markdown/docs/jp/test.md?rev=1724348&view=auto ============================================================================== --- incubator/singa/site/trunk/content/markdown/docs/jp/test.md (added) +++ incubator/singa/site/trunk/content/markdown/docs/jp/test.md Wed Jan 13 03:46:19 2016 @@ -0,0 +1,119 @@ +# Performance Test and Feature Extraction + +---- + +Once SINGA finishes the training of a model, it would checkpoint the model parameters +into disk files under the [checkpoint folder](checkpoint.html). Model parameters can also be dumped +into this folder periodically during training if the +[checkpoint configuration[(checkpoint.html) fields are set. With the checkpoint +files, we can load the model parameters to conduct performance test, feature extraction and prediction +against new data. + +To load the model parameters from checkpoint files, we need to add the paths of +checkpoint files in the job configuration file + + checkpoint_path: PATH_TO_CHECKPOINT_FILE1 + checkpoint_path: PATH_TO_CHECKPOINT_FILE2 + ... + +The new dataset is configured by specifying the ``test_step`` and the data input +layer, e.g. the following configuration is for a dataset with 100*100 instances. + + test_steps: 100 + net { + layer { + name: "input" + store_conf { + backend: "kvfile" + path: PATH_TO_TEST_KVFILE + batchsize: 100 + } + } + ... + } + +## Performance Test + +This application is to test the performance, e.g., accuracy, of the previously +trained model. Depending on the application, the test data may have ground truth +labels or not. For example, if the model is trained for image classification, +the test images must have ground truth labels to calculate the accuracy; if the +model is an auto-encoder, the performance could be measured by reconstruction error, which +does not require extra labels. For both cases, there would be a layer that calculates +the performance, e.g., the `SoftmaxLossLayer`. + +The job configuration file for the cifar10 example can be used directly for testing after +adding the checkpoint path. The running command is + + + $ ./bin/singa-run.sh -conf examples/cifar10/job.conf -test + +The performance would be output on the screen like, + + + Load from checkpoint file examples/cifar10/checkpoint/step50000-worker0 + accuracy = 0.728000, loss = 0.807645 + +## Feature extraction + +Since deep learning models are good at learning features, feature extraction for +is a major functionality of deep learning models, e.g., we can extract features +from the fully connected layers of [AlexNet](www.cs.toronto.edu/~fritz/absps/imagenet.pdf) as image features for image retrieval. +To extract the features from one layer, we simply add an output layer after that layer. +For instance, to extract the fully connected (with name `ip1`) layer of the cifar10 example model, +we replace the `SoftmaxLossLayer` with a `CSVOutputLayer` which extracts the features into a CSV file, + + layer { + name: "ip1" + } + layer { + name: "output" + type: kCSVOutput + srclayers: "ip1" + store_conf { + backend: "textfile" + path: OUTPUT_FILE_PATH + } + } + +The input layer and test steps, and the running command are the same as in *Performance Test* section. + +## Label Prediction + +If the output layer is connected to a layer that predicts labels of images, +the output layer would then write the prediction results into files. +SINGA provides two built-in layers for generating prediction results, namely, + +* SoftmaxLayer, generates probabilities of each candidate labels. +* ArgSortLayer, sorts labels according to probabilities in descending order and keep topk labels. + +By connecting the two layers with the previous layer and the output layer, we can +extract the predictions of each instance. For example, + + layer { + name: "feature" + ... + } + layer { + name: "softmax" + type: kSoftmax + srclayers: "feature" + } + layer { + name: "prediction" + type: kArgSort + srclayers: "softmax" + argsort_conf { + topk: 5 + } + } + layer { + name: "output" + type: kCSVOutput + srclayers: "prediction" + store_conf {} + } + +The top-5 labels of each instance will be written as one line of the output CSV file. +Currently, above layers cannot co-exist with the loss layers used for training. +Please comment out the loss layers for extracting prediction results. Added: incubator/singa/site/trunk/content/markdown/docs/jp/train-one-batch.md URL: http://svn.apache.org/viewvc/incubator/singa/site/trunk/content/markdown/docs/jp/train-one-batch.md?rev=1724348&view=auto ============================================================================== --- incubator/singa/site/trunk/content/markdown/docs/jp/train-one-batch.md (added) +++ incubator/singa/site/trunk/content/markdown/docs/jp/train-one-batch.md Wed Jan 13 03:46:19 2016 @@ -0,0 +1,179 @@ +# Train-One-Batch + +--- + +For each SGD iteration, every worker calls the `TrainOneBatch` function to +compute gradients of parameters associated with local layers (i.e., layers +dispatched to it). SINGA has implemented two algorithms for the +`TrainOneBatch` function. Users select the corresponding algorithm for +their model in the configuration. + +## Basic user guide + +### Back-propagation + +[BP algorithm](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) is used for +computing gradients of feed-forward models, e.g., [CNN](cnn.html) +and [MLP](mlp.html), and [RNN](rnn.html) models in SINGA. + + + # in job.conf + alg: kBP + +To use the BP algorithm for the `TrainOneBatch` function, users just simply +configure the `alg` field with `kBP`. If a neural net contains user-defined +layers, these layers must be implemented properly be to consistent with the +implementation of the BP algorithm in SINGA (see below). + + +### Contrastive Divergence + +[CD algorithm](http://www.cs.toronto.edu/~fritz/absps/nccd.pdf) is used for +computing gradients of energy models like RBM. + + # job.conf + alg: kCD + cd_conf { + cd_k: 2 + } + +To use the CD algorithm for the `TrainOneBatch` function, users just configure +the `alg` field to `kCD`. Uses can also configure the Gibbs sampling steps in +the CD algorthm through the `cd_k` field. By default, it is set to 1. + + + +## Advanced user guide + +### Implementation of BP + +The BP algorithm is implemented in SINGA following the below pseudo code, + + BPTrainOnebatch(step, net) { + // forward propagate + foreach layer in net.local_layers() { + if IsBridgeDstLayer(layer) + recv data from the src layer (i.e., BridgeSrcLayer) + foreach param in layer.params() + Collect(param) // recv response from servers for last update + + layer.ComputeFeature(kForward) + + if IsBridgeSrcLayer(layer) + send layer.data_ to dst layer + } + // backward propagate + foreach layer in reverse(net.local_layers) { + if IsBridgeSrcLayer(layer) + recv gradient from the dst layer (i.e., BridgeDstLayer) + recv response from servers for last update + + layer.ComputeGradient() + foreach param in layer.params() + Update(step, param) // send param.grad_ to servers + + if IsBridgeDstLayer(layer) + send layer.grad_ to src layer + } + } + + +It forwards features through all local layers (can be checked by layer +partition ID and worker ID) and backwards gradients in the reverse order. +[BridgeSrcLayer](layer.html#bridgesrclayer--bridgedstlayer) +(resp. `BridgeDstLayer`) will be blocked until the feature (resp. +gradient) from the source (resp. destination) layer comes. Parameter gradients +are sent to servers via `Update` function. Updated parameters are collected via +`Collect` function, which will be blocked until the parameter is updated. +[Param](param.html) objects have versions, which can be used to +check whether the `Param` objects have been updated or not. + +Since RNN models are unrolled into feed-forward models, users need to implement +the forward propagation in the recurrent layer's `ComputeFeature` function, +and implement the backward propagation in the recurrent layer's `ComputeGradient` +function. As a result, the whole `TrainOneBatch` runs +[back-propagation through time (BPTT)](https://en.wikipedia.org/wiki/Backpropagation_through_time) algorithm. + +### Implementation of CD + +The CD algorithm is implemented in SINGA following the below pseudo code, + + CDTrainOneBatch(step, net) { + # positive phase + foreach layer in net.local_layers() + if IsBridgeDstLayer(layer) + recv positive phase data from the src layer (i.e., BridgeSrcLayer) + foreach param in layer.params() + Collect(param) // recv response from servers for last update + layer.ComputeFeature(kPositive) + if IsBridgeSrcLayer(layer) + send positive phase data to dst layer + + # negative phase + foreach gibbs in [0...layer_proto_.cd_k] + foreach layer in net.local_layers() + if IsBridgeDstLayer(layer) + recv negative phase data from the src layer (i.e., BridgeSrcLayer) + layer.ComputeFeature(kPositive) + if IsBridgeSrcLayer(layer) + send negative phase data to dst layer + + foreach layer in net.local_layers() + layer.ComputeGradient() + foreach param in layer.params + Update(param) + } + +Parameter gradients are computed after the positive phase and negative phase. + +### Implementing a new algorithm + +SINGA implements BP and CD by creating two subclasses of +the [Worker](../api/classsinga_1_1Worker.html) class: +[BPWorker](../api/classsinga_1_1BPWorker.html)'s `TrainOneBatch` function implements the BP +algorithm; [CDWorker](../api/classsinga_1_1CDWorker.html)'s `TrainOneBatch` function implements the CD +algorithm. To implement a new algorithm for the `TrainOneBatch` function, users +need to create a new subclass of the `Worker`, e.g., + + class FooWorker : public Worker { + void TrainOneBatch(int step, shared_ptr<NeuralNet> net, Metric* perf) override; + void TestOneBatch(int step, Phase phase, shared_ptr<NeuralNet> net, Metric* perf) override; + }; + +The `FooWorker` must implement the above two functions for training one +mini-batch and testing one mini-batch. The `perf` argument is for collecting +training or testing performance, e.g., the objective loss or accuracy. It is +passed to the `ComputeFeature` function of each layer. + +Users can define some fields for users to configure + + # in user.proto + message FooWorkerProto { + optional int32 b = 1; + } + + extend JobProto { + optional FooWorkerProto foo_conf = 101; + } + + # in job.proto + JobProto { + ... + extension 101..max; + } + +It is similar as [adding configuration fields for a new layer](layer.html#implementing-a-new-layer-subclass). + +To use `FooWorker`, users need to register it in the [main.cc](programming-guide.html) +and configure the `alg` and `foo_conf` fields, + + # in main.cc + const int kFoo = 3; // worker ID, must be different to that of CDWorker and BPWorker + driver.RegisterWorker<FooWorker>(kFoo); + + # in job.conf + ... + alg: 3 + [foo_conf] { + b = 4; + } Added: incubator/singa/site/trunk/content/markdown/docs/jp/updater.md URL: http://svn.apache.org/viewvc/incubator/singa/site/trunk/content/markdown/docs/jp/updater.md?rev=1724348&view=auto ============================================================================== --- incubator/singa/site/trunk/content/markdown/docs/jp/updater.md (added) +++ incubator/singa/site/trunk/content/markdown/docs/jp/updater.md Wed Jan 13 03:46:19 2016 @@ -0,0 +1,284 @@ +# Updater + +--- + +Every server in SINGA has an [Updater](../api/classsinga_1_1Updater.html) +instance that updates parameters based on gradients. +In this page, the *Basic user guide* describes the configuration of an updater. +The *Advanced user guide* present details on how to implement a new updater and a new +learning rate changing method. + +## Basic user guide + +There are many different parameter updating protocols (i.e., subclasses of +`Updater`). They share some configuration fields like + +* `type`, an integer for identifying an updater; +* `learning_rate`, configuration for the +[LRGenerator](../api/classsinga_1_1LRGenerator.html) which controls the learning rate. +* `weight_decay`, the co-efficient for [L2 * regularization](http://deeplearning.net/tutorial/gettingstarted.html#regularization). +* [momentum](http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/). + +If you are not familiar with the above terms, you can get their meanings in +[this page provided by Karpathy](http://cs231n.github.io/neural-networks-3/#update). + +### Configuration of built-in updater classes + +#### Updater +The base `Updater` implements the [vanilla SGD algorithm](http://cs231n.github.io/neural-networks-3/#sgd). +Its configuration type is `kSGD`. +Users need to configure at least the `learning_rate` field. +`momentum` and `weight_decay` are optional fields. + + updater{ + type: kSGD + momentum: float + weight_decay: float + learning_rate { + ... + } + } + +#### AdaGradUpdater + +It inherits the base `Updater` to implement the +[AdaGrad](http://www.magicbroom.info/Papers/DuchiHaSi10.pdf) algorithm. +Its type is `kAdaGrad`. +`AdaGradUpdater` is configured similar to `Updater` except +that `momentum` is not used. + +#### NesterovUpdater + +It inherits the base `Updater` to implements the +[Nesterov](http://arxiv.org/pdf/1212.0901v2.pdf) (section 3.5) updating protocol. +Its type is `kNesterov`. +`learning_rate` and `momentum` must be configured. `weight_decay` is an +optional configuration field. + +#### RMSPropUpdater + +It inherits the base `Updater` to implements the +[RMSProp algorithm](http://cs231n.github.io/neural-networks-3/#sgd) proposed by +[Hinton](http://www.cs.toronto.edu/%7Etijmen/csc321/slides/lecture_slides_lec6.pdf)(slide 29). +Its type is `kRMSProp`. + + updater { + type: kRMSProp + rmsprop_conf { + rho: float # [0,1] + } + } + + +### Configuration of learning rate + +The `learning_rate` field is configured as, + + learning_rate { + type: ChangeMethod + base_lr: float # base/initial learning rate + ... # fields to a specific changing method + } + +The common fields include `type` and `base_lr`. SINGA provides the following +`ChangeMethod`s. + +#### kFixed + +The `base_lr` is used for all steps. + +#### kLinear + +The updater should be configured like + + learning_rate { + base_lr: float + linear_conf { + freq: int + final_lr: float + } + } + +Linear interpolation is used to change the learning rate, + + lr = (1 - step / freq) * base_lr + (step / freq) * final_lr + +#### kExponential + +The udapter should be configured like + + learning_rate { + base_lr: float + exponential_conf { + freq: int + } + } + +The learning rate for `step` is + + lr = base_lr / 2^(step / freq) + +#### kInverseT + +The updater should be configured like + + learning_rate { + base_lr: float + inverset_conf { + final_lr: float + } + } + +The learning rate for `step` is + + lr = base_lr / (1 + step / final_lr) + +#### kInverse + +The updater should be configured like + + learning_rate { + base_lr: float + inverse_conf { + gamma: float + pow: float + } + } + + +The learning rate for `step` is + + lr = base_lr * (1 + gamma * setp)^(-pow) + + +#### kStep + +The updater should be configured like + + learning_rate { + base_lr : float + step_conf { + change_freq: int + gamma: float + } + } + + +The learning rate for `step` is + + lr = base_lr * gamma^ (step / change_freq) + +#### kFixedStep + +The updater should be configured like + + learning_rate { + fixedstep_conf { + step: int + step_lr: float + + step: int + step_lr: float + + ... + } + } + +Denote the i-th tuple as (step[i], step_lr[i]), then the learning rate for +`step` is, + + step_lr[k] + +where step[k] is the smallest number that is larger than `step`. + + +## Advanced user guide + +### Implementing a new Updater subclass + +The base Updater class has one virtual function, + + class Updater{ + public: + virtual void Update(int step, Param* param, float grad_scale = 1.0f) = 0; + + protected: + UpdaterProto proto_; + LRGenerator lr_gen_; + }; + +It updates the values of the `param` based on its gradients. The `step` +argument is for deciding the learning rate which may change through time +(step). `grad_scale` scales the original gradient values. This function is +called by servers once it receives all gradients for the same `Param` object. + +To implement a new Updater subclass, users must override the `Update` function. + + class FooUpdater : public Updater { + void Update(int step, Param* param, float grad_scale = 1.0f) override; + }; + +Configuration of this new updater can be declared similar to that of a new +layer, + + # in user.proto + FooUpdaterProto { + optional int32 c = 1; + } + + extend UpdaterProto { + optional FooUpdaterProto fooupdater_conf= 101; + } + +The new updater should be registered in the +[main function](programming-guide.html) + + driver.RegisterUpdater<FooUpdater>("FooUpdater"); + +Users can then configure the job as + + # in job.conf + updater { + user_type: "FooUpdater" # must use user_type with the same string identifier as the one used for registration + fooupdater_conf { + c : 20; + } + } + +### Implementing a new LRGenerator subclass + +The base `LRGenerator` is declared as, + + virtual float Get(int step); + +To implement a subclass, e.g., `FooLRGen`, users should declare it like + + class FooLRGen : public LRGenerator { + public: + float Get(int step) override; + }; + +Configuration of `FooLRGen` can be defined using a protocol message, + + # in user.proto + message FooLRProto { + ... + } + + extend LRGenProto { + optional FooLRProto foolr_conf = 101; + } + +The configuration is then like, + + learning_rate { + user_type : "FooLR" # must use user_type with the same string identifier as the one used for registration + base_lr: float + foolr_conf { + ... + } + } + +Users have to register this subclass in the main function, + + driver.RegisterLRGenerator<FooLRGen, std::string>("FooLR") Added: incubator/singa/site/trunk/content/markdown/docs/kr/architecture.md URL: http://svn.apache.org/viewvc/incubator/singa/site/trunk/content/markdown/docs/kr/architecture.md?rev=1724348&view=auto ============================================================================== --- incubator/singa/site/trunk/content/markdown/docs/kr/architecture.md (added) +++ incubator/singa/site/trunk/content/markdown/docs/kr/architecture.md Wed Jan 13 03:46:19 2016 @@ -0,0 +1,41 @@ +# SINGA ìí¤í ì² + +--- + +## ë ¼ë¦¬ì ìí¤í ì² + +<img src = "../ images / logical.png"style = "width : 550px"/> +<p> <strong> Fig.1 - ìì¤í ìí¤í ì² </strong> </p> + +SINGAë ë¤ìí ë¶ì° [í¸ë ì´ë íë ììí¬](frameworks.html) (ë기 ëë ë¹ë기 í¸ë ì´ë)ì ì§ìíë ì ì°í 구조를 ê°ì§ê³ ììµëë¤. +Fig.1. ìì¤í ì 구조를 ë³´ì¬ì¤ëë¤. +í¹ì§ì¼ë¡ë ì¬ë¬ server 그룹과 worker 그룹ì ê°ì§ê³ ìë¤. + +* **Server 그룹** + +  Server 그룹ì ëª¨ë¸ ë§¤ê° ë³ìì ë³µì 본ì ê°ì§ê³ worker 그룹ì ìì²ì ë°ë¼ ë§¤ê° ë³ìì ì ë°ì´í¸ë¥¼ ë´ë¹í©ëë¤. ì¸ì í server 그룹ë¤ì ë§¤ê° ë³ì를 ì 기ì ì¼ë¡ ë기íí©ëë¤. ì¼ë°ì ì¼ë¡ íëì server 그룹ì ì¬ë¬ serverë¡ êµ¬ì±ë ê° serverë ëª¨ë¸ ë§¤ê° ë³ìì ë¶í ë ë¶ë¶ì ë´ë¹í©ëë¤. + +* **Worker 그룹** + +Â Â ê° worker 그룹ì íëì server 그룹과 íµì í©ëë¤. íëì worker 그룹ì ë§¤ê° ë³ìì 기ì¸ê¸° ê³ì°ì ë´ë¹í©ëë¤. ëí ë¶í ë ë°ì´í°ì ì¼ë¶ì ëí´ "ìì í"ëª¨ë¸ ë³µì 본ì í¸ë ì´ëí©ëë¤. 모ë worker 그룹ë¤ì í´ë¹ server 그룹ë¤ê³¼ ë¹ë기 ì ì¼ë¡ íµì í©ëë¤. ê·¸ë¬ë ê°ì worker 그룹ì workerë¤ì ë기íí©ëë¤. + +ëì¼ ê·¸ë£¹ ë´ìì workerë¤ì ë¶ì° í¸ë ì´ëì ë§ì ë¤ë¥¸ ë°©ë²ì´ ììµëë¤. + + * **ëª¨ë¸ ë³ë ¬í** ê° worker 그룹ì ë°°ì ë 모ë ë°ì´í°ì ëí´ ë§¤ê° ë³ìì ë¶ë¶ ì§í©ì ê³ì°í©ëë¤. + * **ë°ì´í° ë³ë ¬í** ê° workerë ë°°ë¶ ë ë°ì´í°ì ë¶ë¶ ì§í©ì ëí´ ëª¨ë ë§¤ê° ë³ì를 ê³ì°í©ëë¤. + * [**íì´ë¸ë¦¬ë ë³ë ¬í**](hybrid.html) ìì ë°©ë²ì ì¡°í©í íì´ë¸ë¦¬ë ë³ë ¬í를 ì§ìí©ëë¤. + + +## ìí리ë©í ì´ì + +SINGAìì serversì workersë ë¤ë¥¸ ì¤ë ëìì ìì§ì´ë ì¤í ì ëì ëë¤. + +In SINGA, servers and workers are execution units running in separate threads. +ê·¸ë¤ì [messages](communication.html)를 ì´ì©íì¬ íµì í©ëë¤. +ê° íë¡ì¸ì¤ë ë¡ì»¬ messages를 ìì§íê³ ê·¸ê²ì ì§ìíë ìì 기ì ì ì¡íë stubì¼ë¡ ë©ì¸ ì¤ë ë를 ì¤íí©ëë¤. + +ê° server 그룹과 worker 그룹ì "ì ì²´"ëª¨ë¸ ë³µì ì´ë¤ *ParamShard* ê°ì²´ë¥¼ ì ì§í©ëë¤. +ë§ì½ workersì servers ëì¼í íë¡ì¸ì¤ìì ë¬ë¦¬ëíë¤ë©´, +ê·¸ *ParamShard* (íí°ì )ì ë©ëª¨ë¦¬ ê³µê°ì ê³µì íëë¡ ì¤ì ë©ëë¤. +ì´ ê²½ì° ë¤ë¥¸ ì¤í ì ë ì¬ì´ë¥¼ ì¤ê°ë messagesë íµì ë¹ì©ì ì¤ì´ê¸° ìí´ ë°ì´í°ì í¬ì¸í° ë§ í¬í¨ë©ëë¤. +íë¡ì¸ì¤ ê° íµì ì ê²½ì°ìë ë¬ë¦¬ messsagesë ë§¤ê° ë³ìì ê°ì í¬í¨í©ëë¤. Added: incubator/singa/site/trunk/content/markdown/docs/kr/checkpoint.md URL: http://svn.apache.org/viewvc/incubator/singa/site/trunk/content/markdown/docs/kr/checkpoint.md?rev=1724348&view=auto ============================================================================== --- incubator/singa/site/trunk/content/markdown/docs/kr/checkpoint.md (added) +++ incubator/singa/site/trunk/content/markdown/docs/kr/checkpoint.md Wed Jan 13 03:46:19 2016 @@ -0,0 +1,70 @@ +# CheckPoint + +--- + +SINGA checkpoints model parameters onto disk periodically according to user +configured frequency. By checkpointing model parameters, we can + + 1. resume the training from the last checkpointing. For example, if + the program crashes before finishing all training steps, we can continue + the training using checkpoint files. + + 2. use them to initialize a similar model. For example, the + parameters from training a RBM model can be used to initialize + a [deep auto-encoder](rbm.html) model. + +## Configuration + +Checkpointing is controlled by two configuration fields: + +* `checkpoint_after`, start checkpointing after this number of training steps, +* `checkpoint_freq`, frequency of doing checkpointing. + +For example, + + # job.conf + checkpoint_after: 100 + checkpoint_frequency: 300 + ... + +Checkpointing files are located at *WORKSPACE/checkpoint/stepSTEP-workerWORKERID*. +*WORKSPACE* is configured in + + cluster { + workspace: + } + +For the above configuration, after training for 700 steps, there would be +two checkpointing files, + + step400-worker0 + step700-worker0 + +## Application - resuming training + +We can resume the training from the last checkpoint (i.e., step 700) by, + + ./bin/singa-run.sh -conf JOB_CONF -resume + +There is no change to the job configuration. + +## Application - model initialization + +We can also use the checkpointing file from step 400 to initialize +a new model by configuring the new job as, + + # job.conf + checkpoint : "WORKSPACE/checkpoint/step400-worker0" + ... + +If there are multiple checkpointing files for the same snapshot due to model +partitioning, all the checkpointing files should be added, + + # job.conf + checkpoint : "WORKSPACE/checkpoint/step400-worker0" + checkpoint : "WORKSPACE/checkpoint/step400-worker1" + ... + +The training command is the same as starting a new job, + + ./bin/singa-run.sh -conf JOB_CONF Added: incubator/singa/site/trunk/content/markdown/docs/kr/cnn.md URL: http://svn.apache.org/viewvc/incubator/singa/site/trunk/content/markdown/docs/kr/cnn.md?rev=1724348&view=auto ============================================================================== --- incubator/singa/site/trunk/content/markdown/docs/kr/cnn.md (added) +++ incubator/singa/site/trunk/content/markdown/docs/kr/cnn.md Wed Jan 13 03:46:19 2016 @@ -0,0 +1,217 @@ +# CNN Example + +--- + +Convolutional neural network (CNN) is a type of feed-forward artificial neural +network widely used for image and video classification. In this example, we will +use a deep CNN model to do image classification for the +[CIFAR10 dataset](http://www.cs.toronto.edu/~kriz/cifar.html). + + +## Running instructions + +Please refer to the [installation](installation.html) page for +instructions on building SINGA, and the [quick start](quick-start.html) +for instructions on starting zookeeper. + +We have provided scripts for preparing the training and test dataset in *examples/cifar10/*. + + # in examples/cifar10 + $ cp Makefile.example Makefile + $ make download + $ make create + + +We can start the training by + + ./bin/singa-run.sh -conf examples/cifar10/job.conf + +You should see output like + + Record job information to /tmp/singa-log/job-info/job-2-20150817-055601 + Executing : ./singa -conf /xxx/incubator-singa/examples/cifar10/job.conf -singa_conf /xxx/incubator-singa/conf/singa.conf -singa_job 2 + E0817 06:56:18.868259 33849 cluster.cc:51] proc #0 -> 192.168.5.128:49152 (pid = 33849) + E0817 06:56:18.928452 33871 server.cc:36] Server (group = 0, id = 0) start + E0817 06:56:18.928469 33872 worker.cc:134] Worker (group = 0, id = 0) start + E0817 06:57:13.657302 33849 trainer.cc:373] Test step-0, loss : 2.302588, accuracy : 0.077900 + E0817 06:57:17.626708 33849 trainer.cc:373] Train step-0, loss : 2.302578, accuracy : 0.062500 + E0817 06:57:24.142645 33849 trainer.cc:373] Train step-30, loss : 2.302404, accuracy : 0.131250 + E0817 06:57:30.813354 33849 trainer.cc:373] Train step-60, loss : 2.302248, accuracy : 0.156250 + E0817 06:57:37.556655 33849 trainer.cc:373] Train step-90, loss : 2.301849, accuracy : 0.175000 + E0817 06:57:44.971276 33849 trainer.cc:373] Train step-120, loss : 2.301077, accuracy : 0.137500 + E0817 06:57:51.801949 33849 trainer.cc:373] Train step-150, loss : 2.300410, accuracy : 0.135417 + E0817 06:57:58.682281 33849 trainer.cc:373] Train step-180, loss : 2.300067, accuracy : 0.127083 + E0817 06:58:05.578366 33849 trainer.cc:373] Train step-210, loss : 2.300143, accuracy : 0.154167 + E0817 06:58:12.518497 33849 trainer.cc:373] Train step-240, loss : 2.295912, accuracy : 0.185417 + +After training some steps (depends on the setting) or the job is +finished, SINGA will [checkpoint](checkpoint.html) the model parameters. + +## Details + +To train a model in SINGA, you need to prepare the datasets, +and a job configuration which specifies the neural net structure, training +algorithm (BP or CD), SGD update algorithm (e.g. Adagrad), +number of training/test steps, etc. + +### Data preparation + +Before using SINGA, you need to write a program to convert the dataset +into a format that SINGA can read. Please refer to the +[Data Preparation](data.html#example---cifar-dataset) to get details about +preparing this CIFAR10 dataset. + +### Neural net + +Figure 1 shows the net structure of the CNN model we used in this example, which is +set following [Alex](https://code.google.com/p/cuda-convnet/source/browse/trunk/example-layers/layers-18pct.cfg.) +The dashed circle represents one feature transformation stage, which generally +has four layers as shown in the figure. Sometimes the rectifier layer and normalization layer +are omitted or swapped in one stage. For this example, there are 3 such stages. + +Next we follow the guide in [neural net page](neural-net.html) +and [layer page](layer.html) to write the neural net configuration. + +<div style = "text-align: center"> +<img src = "../images/example-cnn.png" style = "width: 200px"> <br/> +<strong>Figure 1 - Net structure of the CNN example.</strong></img> +</div> + +* We configure an input layer to read the training/testing records from a disk file. + + layer{ + name: "data" + type: kRecordInput + store_conf { + backend: "kvfile" + path: "examples/cifar10/train_data.bin" + mean_file: "examples/cifar10/image_mean.bin" + batchsize: 64 + random_skip: 5000 + shape: 3 + shape: 32 + shape: 32 + } + exclude: kTest # exclude this layer for the testing net + } + layer{ + name: "data" + type: kRecordInput + store_conf { + backend: "kvfile" + path: "examples/cifar10/test_data.bin" + mean_file: "examples/cifar10/image_mean.bin" + batchsize: 100 + shape: 3 + shape: 32 + shape: 32 + } + exclude: kTrain # exclude this layer for the training net + } + + +* We configure layers for the feature transformation as follows +(all layers are built-in layers in SINGA; hyper-parameters of these layers are set according to +[Alex's setting](https://code.google.com/p/cuda-convnet/source/browse/trunk/example-layers/layers-18pct.cfg)). + + layer { + name: "conv1" + type: kConvolution + srclayers: "data" + convolution_conf {... } + ... + } + layer { + name: "pool1" + type: kPooling + srclayers: "conv1" + pooling_conf {... } + } + layer { + name: "relu1" + type: kReLU + srclayers:"pool1" + } + layer { + name: "norm1" + type: kLRN + lrn_conf {... } + srclayers:"relu1" + } + + The configurations for another 2 stages are omitted here. + +* There is an [inner product layer](layer.html#innerproductlayer) +after the 3 transformation stages, which is +configured with 10 output units, i.e., the number of total labels. The weight +matrix Param is configured with a large weight decay scale to reduce the over-fitting. + + layer { + name: "ip1" + type: kInnerProduct + srclayers:"pool3" + innerproduct_conf { + num_output: 10 + } + param { + name: "w4" + wd_scale:250 + ... + } + param { + name: "b4" + ... + } + } + +* The last layer is a [Softmax loss layer](layer.html#softmaxloss) + + layer{ + name: "loss" + type: kSoftmaxLoss + softmaxloss_conf{ topk:1 } + srclayers:"ip1" + srclayers: "data" + } + +### Updater + +The [normal SGD updater](updater.html#updater) is selected. +The learning rate is changed like going down stairs, and is configured using the +[kFixedStep](updater.html#kfixedstep) type. + + updater{ + type: kSGD + weight_decay:0.004 + learning_rate { + type: kFixedStep + fixedstep_conf:{ + step:0 # lr for step 0-60000 is 0.001 + step:60000 # lr for step 60000-65000 is 0.0001 + step:65000 # lr for step 650000- is 0.00001 + step_lr:0.001 + step_lr:0.0001 + step_lr:0.00001 + } + } + } + +### TrainOneBatch algorithm + +The CNN model is a feed forward model, thus should be configured to use the +[Back-propagation algorithm](train-one-batch.html#back-propagation). + + train_one_batch { + alg: kBP + } + +### Cluster setting + +The following configuration set a single worker and server for training. +[Training frameworks](frameworks.html) page introduces configurations of a couple of distributed +training frameworks. + + cluster { + nworker_groups: 1 + nserver_groups: 1 + } Added: incubator/singa/site/trunk/content/markdown/docs/kr/code-structure.md URL: http://svn.apache.org/viewvc/incubator/singa/site/trunk/content/markdown/docs/kr/code-structure.md?rev=1724348&view=auto ============================================================================== --- incubator/singa/site/trunk/content/markdown/docs/kr/code-structure.md (added) +++ incubator/singa/site/trunk/content/markdown/docs/kr/code-structure.md Wed Jan 13 03:46:19 2016 @@ -0,0 +1,76 @@ +# Code Structure + +--- + +<!-- + +### Worker Side + +#### Main Classes + +<img src="../images/code-structure/main.jpg" style="width: 550px"/> + +* **Worker**: start the solver to conduct training or resume from previous training snapshots. +* **Solver**: construct the neural network and run training algorithms over it. Validation and testing is also done by the solver along the training. +* **TableDelegate**: delegate for the parameter table physically stored in parameter servers. + it runs a thread to communicate with table servers for parameter transferring. +* **Net**: the neural network consists of multiple layers constructed from input configuration file. +* **Layer**: the core abstraction, read data (neurons) from connecting layers, and compute the data + of itself according to layer specific ComputeFeature functions. Data from the bottom layer is forwarded + layer by layer to the top. + +#### Data types + +<img src="../images/code-structure/layer.jpg" style="width: 700px"/> + +* **ComputeFeature**: read data (neurons) from in-coming layers, and compute the data + of itself according to layer type. This function can be overrided to implement different + types layers. +* **ComputeGradient**: read gradients (and data) from in-coming layers and compute + gradients of parameters and data w.r.t the learning objective (loss). + +We adpat the implementation for **PoolingLayer**, **Im2colLayer** and **LRNLayer** from [Caffe](http://caffe.berkeleyvision.org/). + + +<img src="../images/code-structure/darray.jpg" style="width: 400px"/> + +* **DArray**: provide the abstraction of distributed array on multiple nodes, + supporting array/matrix operations and element-wise operations. Users can use it as a local structure. +* **LArray**: the local part for the DArray. Each LArray is treated as an + independent array, and support all array-related operations. +* **MemSpace**: manage the memory used by DArray. Distributed memory are allocated + and managed by armci. Multiple DArray can share a same MemSpace, the memory + will be released when no DArray uses it anymore. +* **Partition**: maintain both global shape and local partition information. + used when two DArray are going to interact. +* **Shape**: basic class for representing the scope of a DArray/LArray +* **Range**: basic class for representing the scope of a Partition + +### Parameter Server + +#### Main classes + +<img src="../images/code-structure/uml.jpg" style="width: 750px"/> + +* **NetworkService**: provide access to the network (sending and receiving messages). It maintains a queue for received messages, implemented by NetworkQueue. +* **RequestDispatcher**: pick up next message (request) from the queue, and invoked a method (callback) to process them. +* **TableServer**: provide access to the data table (parameters). Register callbacks for different types of requests to RequestDispatcher. +* **GlobalTable**: implement the table. Data is partitioned into multiple Shard objects per table. User-defined consistency model supported by extending TableServerHandler for each table. + +#### Data types + +<img src="../images/code-structure/type.jpg" style="width: 400px"/> + +Table related messages are either of type **RequestBase** which contains different types of request, or of type **TableData** containing a key-value tuple. + +#### Control flow and thread model + +<img src="../images/code-structure/threads.jpg" alt="uml" style="width: 1000px"/> + +The figure above shows how a GET request sent from a worker is processed by the +table server. The control flow for other types of requests is similar. At +the server side, there are at least 3 threads running at any time: two by +NetworkService for sending and receiving message, and at least one by the +RequestDispatcher for dispatching requests. + +-->
