SINGA-294 Add USE_OPENCL

Project: http://git-wip-us.apache.org/repos/asf/incubator-singa/repo
Commit: http://git-wip-us.apache.org/repos/asf/incubator-singa/commit/ceea70c8
Tree: http://git-wip-us.apache.org/repos/asf/incubator-singa/tree/ceea70c8
Diff: http://git-wip-us.apache.org/repos/asf/incubator-singa/diff/ceea70c8

Branch: refs/heads/master
Commit: ceea70c823950cd7fcface70a4c75d38450ac008
Parents: 30ad60d
Author: Moaz Reyad <[email protected]>
Authored: Sun May 6 20:16:08 2018 +0800
Committer: Moaz Reyad <[email protected]>
Committed: Sun May 6 20:45:30 2018 +0800

----------------------------------------------------------------------
 src/core/device/opencl_func.h | 6 +++++-
 tool/opencl/clsrc_to_str.py   | 4 +++-
 2 files changed, 8 insertions(+), 2 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/incubator-singa/blob/ceea70c8/src/core/device/opencl_func.h
----------------------------------------------------------------------
diff --git a/src/core/device/opencl_func.h b/src/core/device/opencl_func.h
index 97ef2ec..a0ca3e9 100644
--- a/src/core/device/opencl_func.h
+++ b/src/core/device/opencl_func.h
@@ -17,10 +17,14 @@
  * See the License for the specific language governing permissions and
  * limitations under the License.
  */
+#ifdef USE_OPENCL
+
 #include <string>
 
 namespace singa {
  namespace opencl {
 const std::string im2col_str = "// This file is modified from the file located 
at\n// 
https://github.com/BVLC/caffe/blob/opencl/src/caffe/greentea/cl_kernels/im2col.cl\n//
 and is covered under the BSD 2-Clause License, as indicated in the LICENSE\n// 
file at the root of this repository.\n\n__kernel void im2col(const int n, 
__global const float* data_im,\n                     const int data_im_off,\n   
                  const int height, const int width,\n                     
const int kernel_h, const int kernel_w,\n                     const int pad_h, 
const int pad_w,\n                     const int stride_h, const int 
stride_w,\n                     const int dilation_h, const int dilation_w,\n   
                  const int height_col, const int width_col,\n                  
   __global float* data_col, const int data_col_off) {\n\n  for (int index = 
get_global_id(0); index < n;\n      index += get_global_size(0)) {\n    const 
int h_index = index / width_col;\n    const int h_col 
 = h_index % height_col;\n    const int w_col = index % width_col;\n    const 
int c_im = h_index / height_col;\n    const int c_col = c_im * kernel_h * 
kernel_w;\n    const int h_offset = h_col * stride_h - pad_h;\n    const int 
w_offset = w_col * stride_w - pad_w;\n    \n    __global float* data_col_ptr = 
data_col + data_col_off;\n    data_col_ptr += (c_col * height_col + h_col) * 
width_col + w_col;\n    __global const float* data_im_ptr = data_im + 
data_im_off;\n    data_im_ptr += (c_im * height + h_offset) * width + 
w_offset;\n    \n    for (int i = 0; i < kernel_h; ++i) {\n      for (int j = 
0; j < kernel_w; ++j) {\n        int h_im = h_offset + i * dilation_h;\n        
int w_im = w_offset + j * dilation_w;\n        *data_col_ptr =\n            
(h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) ?\n                
data_im_ptr[i * dilation_h * width + j * dilation_w] : 0;\n        data_col_ptr 
+= height_col * width_col;\n      }\n    }\n  }\n}\n\n__kernel void 
col2im(const i
 nt n, __global const float* data_col,\n                     const int 
data_col_off, const int channels,\n                     const int height, const 
int width,\n                     const int kernel_h, const int kernel_w,\n      
               const int pad_h, const int pad_w,\n                     const 
int stride_h, const int stride_w,\n                     const int dilation_h, 
const int dilation_w,\n                     const int height_col, const int 
width_col,\n                     __global float* data_im, const int 
data_im_off) {\n\n  for (int index = get_global_id(0); index < n; index += 
get_global_size(0)) {\n    float val = 0;\n    const int w_im = index % width + 
pad_w;\n    const int h_im = (index / width) % height + pad_h;\n    const int 
c_im = index / (width * height);\n    int kernel_extent_w = (kernel_w - 1) * 
dilation_w + 1;\n    int kernel_extent_h = (kernel_h - 1) * dilation_h + 1;\n   
 // compute the start and end of the output\n    const int w_col_start =\n    
     (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1;\n  
  const int w_col_end = min(w_im / stride_w + 1, width_col);\n    const int 
h_col_start =\n        (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) 
/ stride_h + 1;\n    const int h_col_end = min(h_im / stride_h + 1, 
height_col);\n    \n    // TODO: use LCM of stride and dilation to avoid 
unnecessary loops\n    for (int h_col = h_col_start; h_col < h_col_end; h_col 
+= 1) {\n      for (int w_col = w_col_start; w_col < w_col_end; w_col += 1) {\n 
       int h_k = (h_im - h_col * stride_h);\n        int w_k = (w_im - w_col * 
stride_w);\n        if (h_k % dilation_h == 0 && w_k % dilation_w == 0) {\n     
     h_k /= dilation_h;\n          w_k /= dilation_w;\n          int 
data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) *\n                
                height_col + h_col) * width_col + w_col;\n          val += 
data_col[data_col_off + data_col_index];\n        }\n      }\n    }\n    
data_im[
 data_im_off + index] = val;\n  }\n}\n";const std::string pooling_str = "// 
This file is modified from the file located at\n// 
https://github.com/BVLC/caffe/blob/opencl/src/caffe/greentea/cl_kernels/pooling.cl\n//
 and is covered under the BSD 2-Clause License, as indicated in the LICENSE\n// 
file at the root of this repository.\n\n__kernel void max_pool_forward(\n    
const int nthreads, __global const float* bottom, const int channels, \n    
const int height, const int width,\n    const int pooled_h, const int 
pooled_w,\n    const int kernel_h, const int kernel_w,\n    const int stride_h, 
const int stride_w,\n    const int pad_h, const int pad_w,\n    __global float* 
top, __global float* mask) {\n\n//  printf(\"%d \", get_global_size(0));\n  for 
(int i = get_global_id(0); i < nthreads; i += get_global_size(0)) {\n    const 
int pw = i % pooled_w;\n    const int ph = (i / pooled_w) % pooled_h;\n    
const int c = (i / pooled_w / pooled_h) % channels;\n    const int n = i / 
pooled_w / po
 oled_h / channels;\n    \n    int hstart = ph * stride_h - pad_h;\n    int 
wstart = pw * stride_w - pad_w;\n    const int hend = min(hstart + kernel_h, 
height);\n    const int wend = min(wstart + kernel_w, width);\n    hstart = 
max(hstart, (int)0);\n    wstart = max(wstart, (int)0);\n    \n    float maxval 
= -FLT_MAX;\n    int maxidx = -1;\n    __global const float* bottom_slice = 
bottom + (n * channels + c) * height * width;\n    for (int h = hstart; h < 
hend; ++h) {\n      for (int w = wstart; w < wend; ++w) {\n        const int 
index = h * width + w;\n        if (bottom_slice[index] > maxval) {\n          
maxidx = index;\n          maxval = bottom_slice[maxidx];\n        }\n      }\n 
   }\n    top[i] = maxval;\n    mask[i] = (float)maxidx;\n  }\n}\n\n__kernel 
void ave_pool_forward(\n    const int nthreads, __global const float* const 
bottom, const int channels, \n    const int height, const int width,\n    const 
int pooled_h, const int pooled_w,\n    const int kernel_h, const int
  kernel_w,\n    const int stride_h, const int stride_w, \n    const int pad_h, 
const int pad_w, __global float* top) {\n    \n  for (int i = get_global_id(0); 
i < nthreads; i += get_global_size(0)) {\n    const int pw = i % pooled_w;\n    
const int ph = (i / pooled_w) % pooled_h;\n    const int c = (i / pooled_w / 
pooled_h) % channels;\n    const int n = i / pooled_w / pooled_h / channels;\n  
  int hstart = ph * stride_h - pad_h;\n    int wstart = pw * stride_w - 
pad_w;\n    int hend = min(hstart + kernel_h, height + pad_h);\n    int wend = 
min(wstart + kernel_w, width + pad_w);\n    const int pool_size = (hend - 
hstart) * (wend - wstart);\n    hstart = max(hstart, (int)0);\n    wstart = 
max(wstart, (int)0);\n    hend = min(hend, height);\n    wend = min(wend, 
width);\n    float aveval = 0;\n    __global const float* bottom_slice = bottom 
+ (n * channels + c) * height * width;\n    for (int h = hstart; h < hend; ++h) 
{\n      for (int w = wstart; w < wend; ++w) {\n        aveval += 
 bottom_slice[h * width + w];\n      }\n    }\n    top[i] = aveval / 
pool_size;\n  }\n}\n\n__kernel void sto_pool_forward_train(\n    const int 
nthreads, __global const float* bottom,\n    const int channels, const int 
height, const int width,\n    const int pooled_h, const int pooled_w, const int 
kernel_h,\n    const int kernel_w, const int stride_h, const int stride_w,\n    
__global float* rand_idx, __global float* top) {\n    \n  for (int i = 
get_global_id(0); i < nthreads; i += get_global_size(0)) {\n    const int pw = 
i % pooled_w;\n    const int ph = (i / pooled_w) % pooled_h;\n    const int c = 
(i / pooled_w / pooled_h) % channels;\n    const int n = i / pooled_w / 
pooled_h / channels;\n    \n    const int hstart = ph * stride_h;\n    const 
int hend = min(hstart + kernel_h, height);\n    const int wstart = pw * 
stride_w;\n    const int wend = min(wstart + kernel_w, width);\n    float 
cumsum = 0.;\n    __global const float* bottom_slice = bottom + (n * channels + 
c) * height * 
 width;\n    // First pass: get sum\n    for (int h = hstart; h < hend; ++h) 
{\n      for (int w = wstart; w < wend; ++w) {\n        cumsum += 
bottom_slice[h * width + w];\n      }\n    }\n    const float thres = 
rand_idx[i] * cumsum;\n    // Second pass: get value, and set i.\n    cumsum = 
0;\n    for (int h = hstart; h < hend; ++h) {\n      for (int w = wstart; w < 
wend; ++w) {\n        cumsum += bottom_slice[h * width + w];\n        if 
(cumsum >= thres) {\n          rand_idx[i] = ((n * channels + c) * height + h) 
* width + w;\n          top[i] = bottom_slice[h * width + w];\n          h = 
hend;\n          w = wend;\n        }\n      }\n    }\n  }\n}\n\n__kernel void 
sto_pool_forward_test(\n    const int nthreads, __global const float* const 
bottom, const int channels, \n    const int height, const int width,\n    const 
int pooled_h, const int pooled_w, \n    const int kernel_h, const int kernel_w, 
\n    const int stride_h, const int stride_w,\n    __global float* top) {\n    
\n  f
 or (int i = get_global_id(0); i < nthreads; i += get_global_size(0)) {\n    
const int pw = i % pooled_w;\n    const int ph = (i / pooled_w) % pooled_h;\n   
 const int c = (i / pooled_w / pooled_h) % channels;\n    const int n = i / 
pooled_w / pooled_h / channels;\n    \n    const int hstart = ph * stride_h;\n  
  const int hend = min(hstart + kernel_h, height);\n    const int wstart = pw * 
stride_w;\n    const int wend = min(wstart + kernel_w, width);\n    // We set 
cumsum to be 0 to avoid divide-by-zero problems\n    float cumsum = FLT_MIN;\n  
  float cumvalues = 0.;\n    __global const float* bottom_slice = bottom + (n * 
channels + c) * height * width;\n    // First pass: get sum\n    for (int h = 
hstart; h < hend; ++h) {\n      for (int w = wstart; w < wend; ++w) {\n        
cumsum += bottom_slice[h * width + w];\n        cumvalues += bottom_slice[h * 
width + w] * bottom_slice[h * width + w];\n      }\n    }\n    top[i] = 
cumvalues / cumsum;\n  }\n}\n\n__kernel void max_pool_backwa
 rd(const int nthreads,\n                                __global const float* 
top_diff,\n                                __global const float* mask,\n        
                        const int channels,\n                                
const int height, const int width,\n                                const int 
pooled_h, const int pooled_w,\n                                const int 
kernel_h, const int kernel_w,\n                                const int 
stride_h, const int stride_w,\n                                const int pad_h, 
const int pad_w,\n                                __global float* bottom_diff) 
{\n  for (int i = get_global_id(0); i < nthreads; i += get_global_size(0)) {\n  
  // find out the local i\n    // find out the local offset\n    const int w = 
i % width;\n    const int h = (i / width) % height;\n    const int c = (i / 
width / height) % channels;\n    const int n = i / width / height / channels;\n 
   \n    const int phstart =\n        (h + pad_h < kernel_h) ? 0
  : (h + pad_h - kernel_h) / stride_h + 1;\n    const int phend = min((h + 
pad_h) / stride_h + 1, pooled_h);\n    const int pwstart =\n        (w + pad_w 
< kernel_w) ? 0 : (w + pad_w - kernel_w) / stride_w + 1;\n    const int pwend = 
min((w + pad_w) / stride_w + 1, pooled_w);\n    float gradient = 0.0f;\n    
const int offset = (n * channels + c) * pooled_h * pooled_w;\n    __global 
const float* top_diff_slice = top_diff + offset;\n    __global const float* 
mask_slice = mask + offset;\n    for (int ph = phstart; ph < phend; ++ph) {\n   
   for (int pw = pwstart; pw < pwend; ++pw) {\n        if (mask_slice[ph * 
pooled_w + pw] == (float)(h * width + w)) {\n          gradient += 
top_diff_slice[ph * pooled_w + pw];\n        }\n      }\n    }\n    
bottom_diff[i] = gradient;\n  }\n}\n\n__kernel void ave_pool_backward(const int 
nthreads,\n                                __global const float* top_diff,\n    
                            const int channels,\n                               
 const 
 int height, const int width,\n                                const int 
pooled_h, const int pooled_w,\n                                const int 
kernel_h, const int kernel_w,\n                                const int 
stride_h, const int stride_w,\n                                const int pad_h, 
const int pad_w,\n                                __global float* bottom_diff) 
{\n  for (int i = get_global_id(0); i < nthreads; i += get_global_size(0)) {\n  
  // find out the local i\n    // find out the local offset\n    const int w = 
i % width + pad_w;\n    const int h = (i / width) % height + pad_h;\n    const 
int c = (i / width / height) % channels;\n    const int n = i / width / height 
/ channels;\n    \n    const int phstart = (h < kernel_h) ? 0 : (h - kernel_h) 
/ stride_h + 1;\n    const int phend = min(h / stride_h + 1, pooled_h);\n    
const int pwstart = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;\n    
const int pwend = min(w / stride_w + 1, pooled_w);\n    float gradient
  = 0.0;\n    __global const float* const top_diff_slice = top_diff + (n * 
channels + c) * pooled_h * pooled_w;\n    for (int ph = phstart; ph < phend; 
++ph) {\n      for (int pw = pwstart; pw < pwend; ++pw) {\n        // figure 
out the pooling size\n        int hstart = ph * stride_h - pad_h;\n        int 
wstart = pw * stride_w - pad_w;\n        int hend = min(hstart + kernel_h, 
height + pad_h);\n        int wend = min(wstart + kernel_w, width + pad_w);\n   
     int pool_size = (hend - hstart) * (wend - wstart);\n        gradient += 
top_diff_slice[ph * pooled_w + pw] / pool_size;\n      }\n    }\n    
bottom_diff[i] = gradient;\n  }\n}\n\n__kernel void sto_pool_backward(\n    
const int nthreads, __global const float* rand_idx,\n    __global const float* 
const top_diff, const int channels,\n    const int height, const int width,\n   
 const int pooled_h, const int pooled_w,\n    const int kernel_h, const int 
kernel_w,\n    const int stride_h, const int stride_w,\n    __global float* bo
 ttom_diff) {\n\n  for (int i = get_global_id(0); i < nthreads; i += 
get_global_size(0)) {\n    // find out the local i\n    // find out the local 
offset\n    const int w = i % width;\n    const int h = (i / width) % height;\n 
   const int c = (i / width / height) % channels;\n    const int n = i / width 
/ height / channels;\n    \n    const int phstart = (h < kernel_h) ? 0 : (h - 
kernel_h) / stride_h + 1;\n    const int phend = min(h / stride_h + 1, 
pooled_h);\n    const int pwstart = (w < kernel_w) ? 0 : (w - kernel_w) / 
stride_w + 1;\n    const int pwend = min(w / stride_w + 1, pooled_w);\n    
float gradient = 0.0;\n    __global const float* rand_idx_slice = rand_idx + (n 
* channels + c) * pooled_h * pooled_w;\n    __global const float* 
top_diff_slice = top_diff + (n * channels + c) * pooled_h * pooled_w;\n    for 
(int ph = phstart; ph < phend; ++ph) {\n      for (int pw = pwstart; pw < 
pwend; ++pw) {\n        gradient += top_diff_slice[ph * pooled_w + pw]\n        
    * (i == (in
 t) (rand_idx_slice[ph * pooled_w + pw])?1.0:0.0);\n      }\n    }\n    
bottom_diff[i] = gradient;\n  }\n}\n\n";const std::string distribution_str = 
"// This code is adapted from 
https://github.com/amd/OpenCL-caffe/blob/stable/src/caffe/ocl/random.cl\n\n//Note:
 random generator has two parts\n//first part: the open sourced threefy random 
generator kernel from DE Shaw Research\n//second part. we wrap the kernel up to 
generate uniform, bernoulli and gaussion distribution generators.\n\n//begin: 
the open sourced random generator from DE Shaw 
Research\n//https://www.deshawresearch.com/resources_random123.html\ntypedef 
uint uint32_t;\n\nstruct r123array4x32 {\n  uint32_t v[4];\n};\n\nenum 
r123_enum_threefry32x4 {\n  R_32x4_0_0 = 10,\n  R_32x4_0_1 = 26,\n  R_32x4_1_0 
= 11,\n  R_32x4_1_1 = 21,\n  R_32x4_2_0 = 13,\n  R_32x4_2_1 = 27,\n  R_32x4_3_0 
= 23,\n  R_32x4_3_1 = 5,\n  R_32x4_4_0 = 6,\n  R_32x4_4_1 = 20,\n  R_32x4_5_0 = 
17,\n  R_32x4_5_1 = 11,\n  R_32x4_6_0 = 25,\n  R_32x4_6_1 = 10,\n 
  R_32x4_7_0 = 18,\n  R_32x4_7_1 = 20\n};\n\ninline uint32_t RotL_32(uint32_t 
x, unsigned int N) {\n  return (x << (N & 31)) | (x >> ((32 - N) & 
31));\n}\n\ntypedef struct r123array4x32 threefry4x32_ctr_t;\ntypedef struct 
r123array4x32 threefry4x32_key_t;\ntypedef struct r123array4x32 
threefry4x32_ukey_t;\n\ninline threefry4x32_ctr_t threefry4x32_R(unsigned int 
Nrounds, threefry4x32_ctr_t in, threefry4x32_key_t k) {\n  threefry4x32_ctr_t 
X;\n  uint32_t ks[4 + 1];\n  int i;\n  ks[4] = 0x1BD11BDA;\n\n  {\n    ks[0] = 
k.v[0];\n    X.v[0] = in.v[0];\n    ks[4] ^= k.v[0];\n\n    ks[1] = k.v[1];\n   
 X.v[1] = in.v[1];\n    ks[4] ^= k.v[1];\n\n    ks[2] = k.v[2];\n    X.v[2] = 
in.v[2];\n    ks[4] ^= k.v[2];\n\n    ks[3] = k.v[3];\n    X.v[3] = in.v[3];\n  
  ks[4] ^= k.v[3];\n  }\n\n  X.v[0] += ks[0];\n  X.v[1] += ks[1];\n  X.v[2] += 
ks[2];\n  X.v[3] += ks[3];\n\n  if (Nrounds > 0) {\n    X.v[0] += X.v[1];\n    
X.v[1] = RotL_32(X.v[1], R_32x4_0_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += 
X.v[3
 ];\n    X.v[3] = RotL_32(X.v[3], R_32x4_0_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  
if (Nrounds > 1) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], 
R_32x4_1_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_1_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 2) 
{\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_2_0);\n    X.v[1] 
^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_2_1);\n  
  X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 3) {\n    X.v[0] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_3_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += 
X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_3_1);\n    X.v[1] ^= X.v[2];\n  
}\n\n  if (Nrounds > 3) {\n    X.v[0] += ks[1];\n    X.v[1] += ks[2];\n    
X.v[2] += ks[3];\n    X.v[3] += ks[4];\n    X.v[4 - 1] += 1;\n  }\n\n  if 
(Nrounds > 4) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_4_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3
 ], R_32x4_4_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 5) {\n    
X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_5_0);\n    X.v[3] ^= 
X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_5_1);\n    
X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 6) {\n    X.v[0] += X.v[1];\n    
X.v[1] = RotL_32(X.v[1], R_32x4_6_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += 
X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_6_1);\n    X.v[3] ^= X.v[2];\n  
}\n\n  if (Nrounds > 7) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], 
R_32x4_7_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_7_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 7) 
{\n    X.v[0] += ks[2];\n    X.v[1] += ks[3];\n    X.v[2] += ks[4];\n    X.v[3] 
+= ks[0];\n    X.v[4 - 1] += 2;\n  }\n\n  if (Nrounds > 8) {\n    X.v[0] += 
X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_0_0);\n    X.v[1] ^= X.v[0];\n    
X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_0_1);\n    X.v[3] ^=
  X.v[2];\n  }\n\n  if (Nrounds > 9) {\n    X.v[0] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_1_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    
X.v[1] = RotL_32(X.v[1], R_32x4_1_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if 
(Nrounds > 10) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_2_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_2_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 11) 
{\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_3_0);\n    X.v[3] 
^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_3_1);\n  
  X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 11) {\n    X.v[0] += ks[3];\n    
X.v[1] += ks[4];\n    X.v[2] += ks[0];\n    X.v[3] += ks[1];\n    X.v[4 - 1] += 
3;\n  }\n\n  if (Nrounds > 12) {\n    X.v[0] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_4_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_4_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nro
 unds > 13) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], 
R_32x4_5_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_5_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 14) 
{\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_6_0);\n    X.v[1] 
^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_6_1);\n  
  X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 15) {\n    X.v[0] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_7_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += 
X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_7_1);\n    X.v[1] ^= X.v[2];\n  
}\n\n  if (Nrounds > 15) {\n    X.v[0] += ks[4];\n    X.v[1] += ks[0];\n    
X.v[2] += ks[1];\n    X.v[3] += ks[2];\n    X.v[4 - 1] += 4;\n  }\n\n  if 
(Nrounds > 16) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_0_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_0_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 17) 
{\n    X.v[0] 
 += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_1_0);\n    X.v[3] ^= X.v[0];\n 
   X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_1_1);\n    X.v[1] ^= 
X.v[2];\n  }\n\n  if (Nrounds > 18) {\n    X.v[0] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_2_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_2_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if 
(Nrounds > 19) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], 
R_32x4_3_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_3_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 19) 
{\n    X.v[0] += ks[0];\n    X.v[1] += ks[1];\n    X.v[2] += ks[2];\n    X.v[3] 
+= ks[3];\n    X.v[4 - 1] += 5;\n  }\n\n  if (Nrounds > 20) {\n    X.v[0] += 
X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_4_0);\n    X.v[1] ^= X.v[0];\n    
X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_4_1);\n    X.v[3] ^= 
X.v[2];\n  }\n\n  if (Nrounds > 21) {\n    X.v[0] += X.v[3];\n    X.v[3] = 
 RotL_32(X.v[3], R_32x4_5_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n   
 X.v[1] = RotL_32(X.v[1], R_32x4_5_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if 
(Nrounds > 22) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_6_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_6_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 23) 
{\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_7_0);\n    X.v[3] 
^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_7_1);\n  
  X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 23) {\n    X.v[0] += ks[1];\n    
X.v[1] += ks[2];\n    X.v[2] += ks[3];\n    X.v[3] += ks[4];\n    X.v[4 - 1] += 
6;\n  }\n\n  if (Nrounds > 24) {\n    X.v[0] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_0_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_0_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if 
(Nrounds > 25) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_1_
 0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_1_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 26) 
{\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_2_0);\n    X.v[1] 
^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_2_1);\n  
  X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 27) {\n    X.v[0] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_3_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += 
X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_3_1);\n    X.v[1] ^= X.v[2];\n  
}\n\n  if (Nrounds > 27) {\n    X.v[0] += ks[2];\n    X.v[1] += ks[3];\n    
X.v[2] += ks[4];\n    X.v[3] += ks[0];\n    X.v[4 - 1] += 7;\n  }\n\n  if 
(Nrounds > 28) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_4_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_4_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 29) 
{\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_5_0);\n    X.v[3] 
^= X.v[0]
 ;\n    X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_5_1);\n    
X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 30) {\n    X.v[0] += X.v[1];\n    
X.v[1] = RotL_32(X.v[1], R_32x4_6_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += 
X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_6_1);\n    X.v[3] ^= X.v[2];\n  
}\n\n  if (Nrounds > 31) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], 
R_32x4_7_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_7_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 31) 
{\n    X.v[0] += ks[3];\n    X.v[1] += ks[4];\n    X.v[2] += ks[0];\n    X.v[3] 
+= ks[1];\n    X.v[4 - 1] += 8;\n  }\n\n  if (Nrounds > 32) {\n    X.v[0] += 
X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_0_0);\n    X.v[1] ^= X.v[0];\n    
X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_0_1);\n    X.v[3] ^= 
X.v[2];\n  }\n\n  if (Nrounds > 33) {\n    X.v[0] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_1_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\
 n    X.v[1] = RotL_32(X.v[1], R_32x4_1_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if 
(Nrounds > 34) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_2_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_2_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 35) 
{\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_3_0);\n    X.v[3] 
^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_3_1);\n  
  X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 35) {\n    X.v[0] += ks[4];\n    
X.v[1] += ks[0];\n    X.v[2] += ks[1];\n    X.v[3] += ks[2];\n    X.v[4 - 1] += 
9;\n  }\n\n  if (Nrounds > 36) {\n    X.v[0] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_4_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_4_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if 
(Nrounds > 37) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], 
R_32x4_5_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = 
RotL_32(X.v
 [1], R_32x4_5_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 38) {\n    
X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_6_0);\n    X.v[1] ^= 
X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_6_1);\n    
X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 39) {\n    X.v[0] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_7_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += 
X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_7_1);\n    X.v[1] ^= X.v[2];\n  
}\n\n  if (Nrounds > 39) {\n    X.v[0] += ks[0];\n    X.v[1] += ks[1];\n    
X.v[2] += ks[2];\n    X.v[3] += ks[3];\n    X.v[4 - 1] += 10;\n  }\n\n  if 
(Nrounds > 40) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_0_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_0_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 41) 
{\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_1_0);\n    X.v[3] 
^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_1_1);\n  
  X
 .v[1] ^= X.v[2];\n  }\n  if (Nrounds > 42) {\n    X.v[0] += X.v[1];\n    
X.v[1] = RotL_32(X.v[1], R_32x4_2_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += 
X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_2_1);\n    X.v[3] ^= X.v[2];\n  
}\n\n  if (Nrounds > 43) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], 
R_32x4_3_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_3_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 43) 
{\n    X.v[0] += ks[1];\n    X.v[1] += ks[2];\n    X.v[2] += ks[3];\n    X.v[3] 
+= ks[4];\n    X.v[4 - 1] += 11;\n  }\n\n  if (Nrounds > 44) {\n    X.v[0] += 
X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_4_0);\n    X.v[1] ^= X.v[0];\n    
X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_4_1);\n    X.v[3] ^= 
X.v[2];\n  }\n\n  if (Nrounds > 45) {\n    X.v[0] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_5_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    
X.v[1] = RotL_32(X.v[1], R_32x4_5_1);\n    X.v[1] ^= X.v[2];\n  }\n\n 
  if (Nrounds > 46) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_6_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_6_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 47) 
{\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_7_0);\n    X.v[3] 
^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_7_1);\n  
  X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 47) {\n    X.v[0] += ks[2];\n    
X.v[1] += ks[3];\n    X.v[2] += ks[4];\n    X.v[3] += ks[0];\n    X.v[4 - 1] += 
12;\n  }\n\n  if (Nrounds > 48) {\n    X.v[0] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_0_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_0_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if 
(Nrounds > 49) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], 
R_32x4_1_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_1_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 50) 
{\n  
   X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_2_0);\n    X.v[1] ^= 
X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_2_1);\n    
X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 51) {\n    X.v[0] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_3_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += 
X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_3_1);\n    X.v[1] ^= X.v[2];\n  
}\n\n  if (Nrounds > 51) {\n    X.v[0] += ks[3];\n    X.v[1] += ks[4];\n    
X.v[2] += ks[0];\n    X.v[3] += ks[1];\n    X.v[4 - 1] += 13;\n  }\n\n  if 
(Nrounds > 52) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_4_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_4_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 53) 
{\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_5_0);\n    X.v[3] 
^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_5_1);\n  
  X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 54) {\n    X.v[0] += X.v[1];\n   
  X.v[1] = RotL_32(X.v[1], R_32x4_6_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += 
X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_6_1);\n    X.v[3] ^= X.v[2];\n  
}\n\n  if (Nrounds > 55) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], 
R_32x4_7_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_7_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 55) 
{\n    X.v[0] += ks[4];\n    X.v[1] += ks[0];\n    X.v[2] += ks[1];\n    X.v[3] 
+= ks[2];\n    X.v[4 - 1] += 14;\n  }\n\n  if (Nrounds > 56) {\n    X.v[0] += 
X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_0_0);\n    X.v[1] ^= X.v[0];\n    
X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_0_1);\n    X.v[3] ^= 
X.v[2];\n  }\n\n  if (Nrounds > 57) {\n    X.v[0] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_1_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    
X.v[1] = RotL_32(X.v[1], R_32x4_1_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if 
(Nrounds > 58) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1]
 , R_32x4_2_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_2_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 59) 
{\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_3_0);\n    X.v[3] 
^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_3_1);\n  
  X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 59) {\n    X.v[0] += ks[0];\n    
X.v[1] += ks[1];\n    X.v[2] += ks[2];\n    X.v[3] += ks[3];\n    X.v[4 - 1] += 
15;\n  }\n\n  if (Nrounds > 60) {\n    X.v[0] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_4_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_4_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if 
(Nrounds > 61) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], 
R_32x4_5_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = 
RotL_32(X.v[1], R_32x4_5_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 62) 
{\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_6_0);\n    X.v[
 1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], 
R_32x4_6_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 63) {\n    X.v[0] 
+= X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_7_0);\n    X.v[3] ^= X.v[0];\n  
  X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_7_1);\n    X.v[1] ^= 
X.v[2];\n  }\n\n  if (Nrounds > 63) {\n    X.v[0] += ks[1];\n    X.v[1] += 
ks[2];\n    X.v[2] += ks[3];\n    X.v[3] += ks[4];\n    X.v[4 - 1] += 16;\n  
}\n\n  if (Nrounds > 64) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_0_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_0_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 65) 
{\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_1_0);\n    X.v[3] 
^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_1_1);\n  
  X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 66) {\n    X.v[0] += X.v[1];\n    
X.v[1] = RotL_32(X.v[1], R_32x4_2_0);\n    X.v[1] ^= X.v[0];\n    X.v[2
 ] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_2_1);\n    X.v[3] ^= 
X.v[2];\n  }\n\n  if (Nrounds > 67) {\n    X.v[0] += X.v[3];\n    X.v[3] = 
RotL_32(X.v[3], R_32x4_3_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    
X.v[1] = RotL_32(X.v[1], R_32x4_3_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if 
(Nrounds > 67) {\n    X.v[0] += ks[2];\n    X.v[1] += ks[3];\n    X.v[2] += 
ks[4];\n    X.v[3] += ks[0];\n    X.v[4 - 1] += 17;\n  }\n\n  if (Nrounds > 68) 
{\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_4_0);\n    X.v[1] 
^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_4_1);\n  
  X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 69) {\n    X.v[0] += X.v[3];\n    
X.v[3] = RotL_32(X.v[3], R_32x4_5_0);\n    X.v[3] ^= X.v[0];\n    X.v[2] += 
X.v[1];\n    X.v[1] = RotL_32(X.v[1], R_32x4_5_1);\n    X.v[1] ^= X.v[2];\n  
}\n\n  if (Nrounds > 70) {\n    X.v[0] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_6_0);\n    X.v[1] ^= X.v[0];\n    X.v[2] += X.v[3];\n    X.v[3]
  = RotL_32(X.v[3], R_32x4_6_1);\n    X.v[3] ^= X.v[2];\n  }\n\n  if (Nrounds > 
71) {\n    X.v[0] += X.v[3];\n    X.v[3] = RotL_32(X.v[3], R_32x4_7_0);\n    
X.v[3] ^= X.v[0];\n    X.v[2] += X.v[1];\n    X.v[1] = RotL_32(X.v[1], 
R_32x4_7_1);\n    X.v[1] ^= X.v[2];\n  }\n\n  if (Nrounds > 71) {\n    X.v[0] 
+= ks[3];\n    X.v[1] += ks[4];\n    X.v[2] += ks[0];\n    X.v[3] += ks[1];\n   
 X.v[4 - 1] += 18;\n  }\n  return X;\n}\n//end: the open sourced random 
generator from DE Shaw Research\n\n// **************************\n// BERNOULLI 
DISTRIBUTION\n// **************************\n\n__kernel void 
PRNG_threefry4x32_bernoulli(\n__global float4 
*randomnumber,\nthreefry4x32_ctr_t ctr_i,\nfloat inf, float sup,\nfloat 
threshold,\nuint nrounds, uint numrandom) {\n\n  size_t gdx = 
get_global_id(0);\n\n  uint maxUint = 0;\n  maxUint--;\n  float r = 
(float)maxUint;\n\n  threefry4x32_ctr_t ctr = ctr_i;\n  threefry4x32_ukey_t 
ukey;\n\n  ukey.v[0] = ukey.v[1] = ukey.v[2] = ukey.v[3] = gdx;\n\n  threefr
 y4x32_ctr_t random4;\n\n  if ( gdx < numrandom ) {\n    random4 = 
threefry4x32_R(nrounds, ctr, ukey);\n    float4 frnd;\n    frnd.x = ( 
(((float)random4.v[0]) / r) * (sup - inf) + inf ) < threshold ? 1.0f : 0.0f;\n  
  frnd.y = ( (((float)random4.v[1]) / r) * (sup - inf) + inf ) < threshold ? 
1.0f : 0.0f;\n    frnd.z = ( (((float)random4.v[2]) / r) * (sup - inf) + inf ) 
< threshold ? 1.0f : 0.0f;\n    frnd.w = ( (((float)random4.v[3]) / r) * (sup - 
inf) + inf ) < threshold ? 1.0f : 0.0f;\n    randomnumber[gdx] = frnd;\n  
}\n}\n\n// **************************\n// UNIFORM DISTRIBUTION (float)\n// 
**************************\n\n__kernel void 
PRNG_threefry4x32_uniform(\n__global float4 *randomnumber,\nthreefry4x32_ctr_t 
ctr_i,\nfloat inf, float sup,\nuint nrounds, uint numrandom) {\n\n  size_t gdx 
= get_global_id(0);\n\n  uint maxUint = 0;\n  maxUint--;\n  float r = 
(float)maxUint;\n\n  threefry4x32_ctr_t ctr = ctr_i;\n  threefry4x32_ukey_t 
ukey;\n\n  ukey.v[0] = ukey.v[1] = ukey.v[2] = u
 key.v[3] = gdx;\n\n  threefry4x32_ctr_t random4;\n\n  if ( gdx < numrandom ) 
{\n    random4 = threefry4x32_R(nrounds, ctr, ukey);\n    float4 frnd;\n    
frnd.x = ( (((float)random4.v[0]) / r) * (sup - inf) + inf );\n    frnd.y = ( 
(((float)random4.v[1]) / r) * (sup - inf) + inf );\n    frnd.z = ( 
(((float)random4.v[2]) / r) * (sup - inf) + inf );\n    frnd.w = ( 
(((float)random4.v[3]) / r) * (sup - inf) + inf );\n    randomnumber[gdx] = 
frnd;\n  }\n}\n\n// **************************\n// UNIFORM DISTRIBUTION 
(uint)\n// **************************\n\n__kernel void 
PRNG_threefry4x32_uint_uniform(\n__global uint4 
*randomnumber,\nthreefry4x32_ctr_t ctr_i,\nuint inf, uint sup,\nuint nrounds, 
uint numrandom) {\n\n  size_t gdx = get_global_id(0);\n\n  threefry4x32_ctr_t 
ctr = ctr_i;\n  threefry4x32_ukey_t ukey;\n\n  ukey.v[0] = ukey.v[1] = 
ukey.v[2] = ukey.v[3] = gdx;\n\n  threefry4x32_ctr_t random4;\n\n  if ( gdx < 
numrandom ) {\n    random4 = threefry4x32_R(nrounds, ctr, ukey);\n    uint4 
 frnd;\n    frnd.x = random4.v[0] % (sup - inf) + inf;\n    frnd.y = 
random4.v[1] % (sup - inf) + inf;\n    frnd.z = random4.v[2] % (sup - inf) + 
inf;\n    frnd.w = random4.v[3] % (sup - inf) + inf;\n    randomnumber[gdx] = 
frnd;\n  }\n}\n\n// **************************\n// GAUSSIAN DISTRIBUTION\n// 
**************************\n\n__kernel void 
PRNG_threefry4x32_gaussian(\n__global float4 *randomnumber,\nthreefry4x32_ctr_t 
ctr_i,\nfloat E, float V,\nuint nrounds, uint numrandom) {\n\n  size_t gdx = 
get_global_id(0);\n\n  uint maxUint = 0;\n  maxUint--;\n  float r = 
(float)maxUint;\n\n  threefry4x32_ctr_t ctr = ctr_i;\n  threefry4x32_ukey_t 
ukey1, ukey2;\n\n  ukey1.v[0] = ukey2.v[1] = ukey1.v[2] = ukey2.v[3] = gdx;\n  
ukey2.v[0] = ukey1.v[1] = ukey2.v[2] = ukey1.v[3] = 0;\n\n  threefry4x32_ctr_t 
random1, random2;\n\n  if ( gdx < numrandom ) {\n    random1 = 
threefry4x32_R(nrounds, ctr, ukey1);\n    random2 = threefry4x32_R(nrounds, 
ctr, ukey2);\n    float4 frnd1;\n\n    float r1 = (((fl
 oat)random1.v[0]) / r); // generate a random sequence of uniform 
distribution\n    float r2 = (((float)random2.v[0]) / r);\n    float r3 = 
(((float)random1.v[1]) / r);\n    float r4 = (((float)random2.v[1]) / r);\n    
float r5 = (((float)random1.v[2]) / r);\n    float r6 = (((float)random2.v[2]) 
/ r);\n    float r7 = (((float)random1.v[3]) / r);\n    float r8 = 
(((float)random2.v[3]) / r);\n\n    if(r2 == 0 || r4 == 0 || r6 == 0 || r8 == 
0) {\n      r2 += 0.0001;\n      r4 += 0.0001;\n      r6 += 0.0001;\n      r8 
+= 0.0001;\n    }\n\n    frnd1.x = cos(2*M_PI*r1)*sqrt(-2.0*log(r2)) * V + E;// 
return a pseudo sequence of normal distribution using two above uniform noise 
data\n    //frnd2.x = sin(2*M_PI*r1)*sqrt(-2.0*log(r2));      // return the 
quadrature counterpart of the foregoing pseudo normal distribution sequence\n   
 frnd1.y = cos(2*M_PI*r3)*sqrt(-2.0*log(r4)) * V + E;// return a pseudo 
sequence of normal distribution using two above uniform noise data\n    
//frnd2.y = sin(2*M
 _PI*r3)*sqrt(-2.0*log(r4));      // return the quadrature counterpart of the 
foregoing pseudo normal distribution sequence\n    frnd1.z = 
cos(2*M_PI*r5)*sqrt(-2.0*log(r6)) * V + E;// return a pseudo sequence of normal 
distribution using two above uniform noise data\n    //frnd2.z = 
sin(2*M_PI*r5)*sqrt(-2.0*log(r6));      // return the quadrature counterpart of 
the foregoing pseudo normal distribution sequence\n    frnd1.w = 
cos(2*M_PI*r7)*sqrt(-2.0*log(r8)) * V + E;// return a pseudo sequence of normal 
distribution using two above uniform noise data\n    //frnd2.w = 
sin(2*M_PI*r7)*sqrt(-2.0*log(r8));      // return the quadrature counterpart of 
the foregoing pseudo normal distribution sequence\n\n    randomnumber[gdx] = 
frnd1;\n  }\n}\n";const std::string tensormath_str = "/**\n * Licensed to the 
Apache Software Foundation (ASF) under one\n * or more contributor license 
agreements.  See the NOTICE file\n * distributed with this work for additional 
information\n * regarding copyright
  ownership.  The ASF licenses this file\n * to you under the Apache License, 
Version 2.0 (the\n * \"License\"); you may not use this file except in 
compliance\n * with the License.  You may obtain a copy of the License at\n *\n 
*     http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by 
applicable law or agreed to in writing, software\n * distributed under the 
License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR 
CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the 
specific language governing permissions and\n * limitations under the 
License.\n */\n\n// **************************************\n// Element-wise 
functions\n// **************************************\n\n// Sum is basically 
reduction.\n// This reduction code is serial reduction modified from AMD\'s 
example.\n// 
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/\n__kernel\nvoid
 clkernel_fa
 bs(const int num, __global const float* in, __global float* out) {\n  const 
int i = get_global_id(0);\n  if (i >= num) return;\n  out[i] = 
fabs(in[i]);\n}\n\n__kernel\nvoid clkernel_add_scalar(const int num, float x, 
__global const float* in, __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = in[i] + 
x;\n}\n\n__kernel\nvoid clkernel_add(const int num, __global const float* in1, 
__global const float* in2,\n  __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = in1[i] + 
in2[i];\n}\n\n__kernel\nvoid clkernel_clamp(const int num, float low, float 
high, __global const float* in,\n  __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = clamp(in[i], low, 
high);\n}\n\n__kernel\nvoid clkernel_divide_scalar_matx(const int num, __global 
const float* in1, const float x,\n  __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = in1
 [i] / x;\n}\n\n__kernel\nvoid clkernel_divide_scalar_xmat(const int num, const 
float x, __global const float* in1,\n  __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = x / 
in1[i];\n}\n\n__kernel\nvoid clkernel_divide(const int num, __global const 
float* in1, __global const float* in2,\n  __global float* out) {\n  const int i 
= get_global_id(0);\n  if (i >= num) return;\n  out[i] = in1[i] / 
in2[i];\n}\n\n__kernel\nvoid clkernel_eltmult_scalar(const int num, const float 
x, __global const float* in,\n  __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = in[i] * 
x;\n}\n\n__kernel\nvoid clkernel_eltmult(const int num, __global const float* 
in1, __global const float* in2,\n  __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = in1[i] * 
in2[i];\n}\n\n__kernel\nvoid clkernel_exp(const int num, __global const float* 
in, __global float* out) {\n  const int i = get_
 global_id(0);\n  if (i >= num) return;\n  out[i] = 
exp(in[i]);\n}\n\n__kernel\nvoid clkernel_le(const int num, __global const 
float* in, const float x,\n  __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = (in[i] <= x) ? 1.0f : 
0.0f;\n}\n\n__kernel\nvoid clkernel_log(const int num, __global const float* 
in, __global float* out) {\n  const int i = get_global_id(0);\n  if (i >= num) 
return;\n  out[i] = log(in[i]);\n}\n\n__kernel\nvoid clkernel_lt(const int num, 
__global const float* in, const float x,\n  __global float* out) {\n  const int 
i = get_global_id(0);\n  if (i >= num) return;\n  out[i] = (in[i] < x) ? 1.0f : 
0.0f;\n}\n\n__kernel\nvoid clkernel_ge(const int num, __global const float* in, 
const float x,\n  __global float* out) {\n  const int i = get_global_id(0);\n  
if (i >= num) return;\n  out[i] = (in[i] >= x) ? 1.0f : 
0.0f;\n}\n\n__kernel\nvoid clkernel_gt(const int num, __global const float* in, 
const float x,\n  __global float* 
 out) {\n  const int i = get_global_id(0);\n  if (i >= num) return;\n  out[i] = 
(in[i] > x) ? 1.0f : 0.0f;\n}\n\n__kernel\nvoid clkernel_pow_scalar(const int 
num, const float x, __global const float* in,\n  __global float* out) {\n  
const int i = get_global_id(0);\n  if (i >= num) return;\n  out[i] = pow(in[i], 
x);\n}\n\n__kernel\nvoid clkernel_pow(const int num, __global const float* in1, 
__global const float* in2,\n  __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = pow(in1[i], 
in2[i]);\n}\n\n__kernel\nvoid clkernel_relu(const int num, __global const 
float* in, __global float* out) {\n  const int i = get_global_id(0);\n  if (i 
>= num) return;\n  out[i] = (in[i] >= 0.0f) ? in[i] : 
0.0f;\n}\n\n__kernel\nvoid clkernel_set(const int num, const float x, __global 
float* out) {\n  const int i = get_global_id(0);\n  if (i >= num) return;\n  
out[i] = x;\n}\n\n__kernel\nvoid clkernel_sigmoid(const int num, __global const 
float* in, __global float*
  out) {\n  const int i = get_global_id(0);\n  if (i >= num) return;\n  out[i] 
= 1 / (1 + exp(-(in[i])));\n}\n\n__kernel\nvoid clkernel_sign(const int num, 
__global const float* in, __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = (in[i] > 0) - (in[i] < 
0);\n}\n\n__kernel\nvoid clkernel_sqrt(const int num, __global const float* in, 
__global float* out) {\n  const int i = get_global_id(0);\n  if (i >= num) 
return;\n  out[i] = sqrt(in[i]);\n}\n\n// kernel for square is called 
pow(2).\n\n__kernel\nvoid clkernel_subtract_scalar(const int num, __global 
const float* in, const float x,\n  __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = in[i] - 
x;\n}\n\n__kernel\nvoid clkernel_subtract(const int num, __global const float* 
in1, __global const float* in2,\n   __global float* out) {\n  const int i = 
get_global_id(0);\n  if (i >= num) return;\n  out[i] = in1[i] - 
in2[i];\n}\n\n// reduce3 kernel from\n// 
 
https://github.com/sschaetz/nvidia-opencl-examples/blob/master/OpenCL/src/oclReduction/oclReduction_kernel.cl\n__kernel\nvoid
 clkernel_sum(const int num, __global const float* in, __global float* out,\n  
__local float* sdata) {\n  const int i = get_group_id(0)*(get_local_size(0)*2) 
+ get_local_id(0);\n  const int tid = get_local_id(0);\n  sdata[tid] = (i < 
num) ? in[i] : 0.0f;\n\n  // Perform the first level of reduction.\n  if (i + 
get_local_size(0) < num) {\nsdata[tid] += in[i + get_local_size(0)];\n  }\n  
barrier(CLK_LOCAL_MEM_FENCE);\n\n  for (int s = get_local_size(0)/2; s > 0; s 
>>= 1) {\nif (tid > s) {\n  sdata[tid] += sdata[tid + 
s];\n}\nbarrier(CLK_LOCAL_MEM_FENCE);\n  }\n\n  if (tid == 0) 
{\nout[get_group_id(0)] = sdata[0];\n  }\n}\n\n__kernel\nvoid 
clkernel_tanh(const int num, __global const float* in, __global float* out) {\n 
 const int i = get_global_id(0);\n  if (i >= num) return;\n  out[i] = 
tanh(in[i]);\n}\n\n// **************************************\n// Random funct
 ions\n// **************************************\n\n// See: 
distribution.cl\n\n// 
*********************************************************\n// BLAS functions, 
ref to http://docs.nvidia.com/cuda/cublas\n// 
*********************************************************\n\n__kernel\nvoid 
clkernel_amax(const int num, __global const float* in, __global int* ret,\n   
__local uint* sdata, __local size_t* temp) {\n  const int gid = 
get_global_id(0);\n  const int tid = get_local_id(0);\n\n  for(int s = 
get_local_size(0)/2; s > 0; s >>= 1) {\nif (tid < s) {\n  sdata[tid] = 
(in[sdata[tid]] > in[tid+s]) ? sdata[tid] : 
tid;\n}\nbarrier(CLK_LOCAL_MEM_FENCE);\n  }\n  if (tid == 0) {\nret[0] = 
sdata[0];\n  }\n}\n\n\n/* TODO: Fix line 284:20.\n__kernel\nvoid 
clkernel_amin(const int num, __global const float* in, __global int* ret,\n   
__local float* sdata, __local size_t* temp) {\n  const int gid = 
get_global_id(0);\n  const int tid = get_local_id(0);\n\n  // Initialize the 
values to pos infinity.\n  sda
 ta[tid] = (gid < num) ? in[gid] : INFINITY;\n  
barrier(CLK_LOCAL_MEM_FENCE);\n\n  for(int s = get_local_size(0)/2; s > 0; s 
>>= 1) {\nif (tid < s) {\n  sdata[tid] = (in[sdata[tid]] < in[tid+s]) ? 
sdata[tid] : tid;\n}\nbarrier(CLK_LOCAL_MEM_FENCE);\n  }\n  if (tid == 0) 
{\nret[0] = sdata[0];\n  }\n}*/\n\n\n__kernel\nvoid clkernel_asum(const int 
num, __global const float* in, __global float* out,\n   __local float* sdata) 
{\n  const int tid = get_local_id(0);\n  const int i = get_global_id(0);\n\n  
// Initialize\n  sdata[tid] = (i < num) ? in[i] : INFINITY;\n  // Perform the 
first level of reduction.\n  if (i + get_local_size(0) < num) {\nsdata[tid] += 
in[i + get_local_size(0)];\n  }\n  barrier(CLK_LOCAL_MEM_FENCE);\n\n  for(int s 
= get_local_size(0)/2; s > 0; s >>= 1) {\nif (tid < s) {\n  sdata[tid] = 
fabs(sdata[tid + s]);\n}\nbarrier(CLK_LOCAL_MEM_FENCE);\n  }\n  if (tid == 0) 
{\nout[0] = sdata[0];\n  }\n}\n\n__kernel\nvoid clkernel_axpy(const int num, 
float alpha, __global const fl
 oat* in,\n   __global float* out) {\n  const int i = get_global_id(0);\n  if 
(i >= num) return;\n  out[i] = fma(alpha, in[i], out[i]);\n}\n\n// This kernel 
is essentially the same as Sum, except that during the process\n// of reading 
in data to the local memory, the value is also doubled.\n// Then, just before 
submitting the sum to out, we do a square-root on it.\n__kernel\nvoid 
clkernel_nrm2(const int num, __global const float* in, __global float* out,\n   
__local float* sdata) {\n  const int i = get_group_id(0)*(get_local_size(0)*2) 
+ get_local_id(0);\n  const int tid = get_local_id(0);\n  sdata[tid] = (i < 
num) ? (in[i] * in[i]) : 0.0f;\n\n  // Perform the first level of reduction.\n  
if (i + get_local_size(0) < num) {\nsdata[tid] += in[i + get_local_size(0)];\n  
}\n  barrier(CLK_LOCAL_MEM_FENCE);\n\n  for (int s = get_local_size(0)/2; s > 
0; s >>= 1) {\nif (tid > s) {\n  sdata[tid] += sdata[tid + 
s];\n}\nbarrier(CLK_LOCAL_MEM_FENCE);\n  }\n\n  if (tid == 0) 
{\nout[get_group_id(0
 )] = sqrt(sdata[0]);\n  }\n}\n\n__kernel\nvoid clkernel_scale(const int num, 
float x, __global float* out) {\n  const int i = get_global_id(0);\n  if (i >= 
num) return;\n  out[i] = x * out[i];\n}\n\n__kernel\nvoid clkernel_dot(const 
int num, __global const float* in1, __global const float* in2,\n    __global 
float* out, __local float* scratch) {\n  const int i = get_global_id(0);\n  if 
(i >= num) return;\n  int offset = i << 2;\n  scratch[i] = in1[offset] * 
in2[offset];\n\n}\n\n// First kernel from 
http://www.bealto.com/gpu-gemv_intro.html\n// y = \xce\xb1*A*v + \xce\xb2*y\n// 
fma(a, b, c) == (a * b) + c with infinite precision\n__kernel\nvoid 
clkernel_gemv(const int m, const int n, const float alpha,\n   __global const 
float* A, __global const float* v,\n   const float beta, __global float* out) 
{\n  const int i = get_global_id(0);\n  float sum  = 0.0f;\n  for (int k = 0; k 
< n; k++) {\n    sum += fma(beta, out[i + m * k], alpha * A[i + m * k] * 
v[k]);\n  }\n  out[i] = sum;\n}\n\n/
 / http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-dgmm\n// X[j] = 
x[j*inc(x)] if inc(x) \xe2\x89\xa5 0\n//= x[(\xcf\x87 \xe2\x88\x92 1)*|inc(x)| 
\xe2\x88\x92 j*|inc(x)|] if inc(x) < 0\n\n// C = diag( X )*A\n__kernel\nvoid 
clkernel_dgmm_left(const int nrow, const int ncol,\n__global const float* M, 
__global const float* v,\n__global float* out) {\n  const uint gidx = 
get_global_id(0);\n\n  uint offset = gidx * ncol;\n  for (uint i = 0; i < ncol; 
i++) {\nout[offset + i] = M[offset + i] * v[i];\n  }\n}\n\n// C = A*diag( X 
)\n__kernel\nvoid clkernel_dgmm_right(const int nrow, const int ncol,\n 
__global const float* M, __global const float* v,\n __global float* out) {\n  
const uint gidx = get_global_id(0);\n\n  uint offset = gidx * ncol;\n  for 
(uint i = 0; i < ncol; i++) {\nout[offset + i] = M[offset + i] * v[gidx];\n  
}\n}\n\n// TODO: Optimize with Reference from 
http://www.cedricnugteren.nl/tutorial.php?page=1\n//  C = \xce\xb1*A*B + 
\xce\xb2*C\n__kernel\nvoid clkernel_gemm(const u
 int nrowA, const uint ncolB, const uint ncolA, const float alpha,\n    
__global const float* A, __global const float* B, const float beta,\n     
__global float* C, __local float* Asub, __local float* Bsub) {\n\n  const uint 
lidx = get_local_id(0);\n  const uint lidy = get_local_id(1);\n  const uint TS 
= get_local_size(0); // Tile size\n  const uint gidx = TS * get_group_id(0) + 
lidx; // Row ID of C (0..M)\n  const uint gidy = TS * get_group_id(1) + lidy; 
// Row ID of C (0..N)\n\n  // Initialise the accumulation register\n  float acc 
= 0.0f;\n\n  // Loop over all tiles\n  const int numtiles = ncolA / TS;\n  for 
(int t = 0; t < numtiles; t++) {\n    const int tiledRow = TS * t + lidx;\n    
const int tiledCol = TS * t + lidy;\n    Asub[lidy * TS + lidx] = A[tiledCol * 
nrowA + gidx];\n    Bsub[lidy * TS + lidx] = B[gidy * ncolA + tiledRow];\n\n    
barrier(CLK_LOCAL_MEM_FENCE);\n\n    for(int k = 0; k < TS; k++) {\n      acc 
+= Asub[k * TS + lidx] * Bsub[lidy * TS + k] * alpha;\n    }\n\
 n    barrier(CLK_LOCAL_MEM_FENCE);\n  }\n\n  C[gidy * nrowA + gidx] = 
fma(beta, C[gidy * nrowA + gidx], acc);\n}\n\n\n__kernel\nvoid 
clkernel_crossentropy(const uint batchsize, const uint dim,\n   __global const 
float* p, __global const int* t,\n   __global float* loss) {\n  const uint gidx 
= get_global_id(0);\n  if (gidx >= batchsize) return;\n\n  int truth_idx = 
t[gidx];\n  if (truth_idx <= 0) return;\n  float prob_of_truth = p[gidx * dim + 
truth_idx];\n  loss[gidx] = -log(fmax(prob_of_truth, 
-FLT_MIN));\n}\n\n\n__kernel\nvoid clkernel_softmaxentropy(const uint 
batchsize, const uint dim,\n __global const float* p, __global const int* t,\n 
__global float* grad) {\n  const uint gidx = get_global_id(0);\n  if (gidx >= 
batchsize) return;\n\n  int truth_idx = t[gidx];\n  if (truth_idx <= 0) 
return;\n  grad[gidx * dim + truth_idx] -= 1.0;\n}\n\n\n__kernel\nvoid 
clkernel_rowmax(const uint nrow, const uint ncol,\n                     
__global const float* in, __global float* out) {\n  con
 st uint row_id = get_global_id(0);\n  if (row_id >= nrow) return;\n\n  float 
row_max_val = -FLT_MAX;\n  for (uint i = 0; i < ncol; i++) {\n    row_max_val = 
fmax(row_max_val, in[row_id * ncol + i]);\n  }\n\n  out[row_id] = 
row_max_val;\n}\n\n\n// **************************************\n// Matrix 
functions\n// **************************************\n/*\n__kernel\nvoid 
clkernel_addcol(int nrow, int ncol, __global const float* A, __global const 
float* v, __global float* out) {\n  const int i = get_global_id(0);\n  const 
int j = get_global_id(1);\n  if (i >= nrow) return;\n  if (j >= ncol) return;\n 
 ret[j] = A[j + nrow * i] + v[j];\n}\n\n__kernel\nvoid clkernel_addrow(int 
nrow, int ncol, __global const float* A, __global const float* v, __global 
float* out) {\n  const int i = get_global_id(0);\n  const int j = 
get_global_id(1);\n  if (i >= nrow) return;\n  if (j >= ncol) return;\n  out[i] 
= A[i + ncol * j] + v[i];\n}\n\n__kernel\nvoid clkernel_outerproduct(int m, 
const int n, __global 
 const float* in1, __global const float* in2, __global float* out) {\n  const 
int col = get_global_id(0);\n  const int row = get_global_id(1);\n\n  // TODO: 
This\n}\n\n__kernel\nvoid clkernel_sumcol(int nrow, int ncol, __global const 
float* in, __global float* out) {\n  const int i = get_global_id(0);\n  if (i 
>= nrow) return;\n\n  float sum = 0.0f;\n  for (int j = 0; j < nrow; j++) 
{\nsum += input[nrow * i + j];\n  }\n  out[i] = sum;\n}\n*/\n__kernel\nvoid 
clkernel_sumrow(int nrow, int ncol, __global const float* in, __global float* 
out) {\n  const int idx = get_global_id(0);\n  if (idx >= nrow) return;\n\n  
float sum = 0.0f;\n  for (int j = 0; j < ncol; j++) {\nsum += in[j + ncol * 
idx];\n  }\n  out[idx] = sum;\n}\n\n\n// Adapted from 
http://code.haskell.org/HsOpenCL/tests/bench/transpose.cl\n#define BLOCK_DIM 
16\n__kernel\nvoid clkernel_transpose(uint nrow, uint ncol,\n__global const 
float* in, __global float* out,\n__local float* sdata) {\n  uint gidx = 
get_global_id(0);\n  uint 
 gidy = get_global_id(1);\n\n  if ((gidx < ncol) && (gidy < nrow)) {\nuint 
id_in = gidy * ncol + gidx;\nsdata[get_local_id(1) * (BLOCK_DIM+1) + 
get_local_id(0)] = in[id_in];\n  }\n\n  barrier(CLK_LOCAL_MEM_FENCE);\n\n  gidx 
= get_group_id(1) * BLOCK_DIM + get_local_id(0);\n  gidy = get_group_id(0) * 
BLOCK_DIM + get_local_id(1);\n  if ((gidx < nrow) && (gidy < ncol)) {\nuint 
id_out = gidy * nrow + gidx;\nout[id_out] = sdata[get_local_id(0) * (BLOCK_DIM 
+ 1) + get_local_id(1)];\n  }\n}\n/*\n__kernel\nvoid clkernel_transpose2(uint 
nrow, uint ncol, __global const float* in, __global float* out, __local float* 
sdata) {\n  const uint lidx = get_local_id(0);\n  const uint lidy = 
get_local_id(1);\n  const uint id0 = get_group_id(0) * ncol * lidx;\n  const 
uint id1 = get_group_id(1) * nrow * lidy;\n\n  if (id0 < nrow && id1 < ncol) 
{\nsdata[lidx][lidy] = in[id1 * nrow + id0];\n  }\n\n  
barrier(CLK_LOCAL_MEM_FENCE);\n\n  const uint new_id0 = get_group_id(1) * nrow 
+ lidx;\n  const uint new_id1
  = get_group_id(0) * ncol + lidy;\n\n  if (new_id0 < ncol && new_id1 < nrow) 
{\nout[new_id1 * ncol + new_id0] = sdata[lidx][lidy];\n  
}\n}*/\n\n__kernel\nvoid clkernel_diagvec_left(uint vsize, __global const 
float* vin, __global float* out) {\n  const uint gid = get_global_id(0);\n\n  
for (uint i = 0; i < vsize; i++)\nout[gid * vsize + i] = (i == gid) ? vin[gid] 
: 0.0f;\n}\n\n\n__kernel\nvoid clkernel_diagvec_right(uint vsize, __global 
const float* vin, __global float* out) {\n  const uint gid = 
get_global_id(0);\n\n  for (uint i = 0; i < vsize; i++)\nout[gid * vsize + i] = 
(i == gid) ? vin[gid] : 0.0f;\n}\n";
  } //  namespace opencl 
-} //  namespace singa
\ No newline at end of file
+} //  namespace singa
+
+#endif

http://git-wip-us.apache.org/repos/asf/incubator-singa/blob/ceea70c8/tool/opencl/clsrc_to_str.py
----------------------------------------------------------------------
diff --git a/tool/opencl/clsrc_to_str.py b/tool/opencl/clsrc_to_str.py
index 9faea7d..06aea41 100755
--- a/tool/opencl/clsrc_to_str.py
+++ b/tool/opencl/clsrc_to_str.py
@@ -57,6 +57,7 @@ if __name__ == "__main__":
  */
 """
         fout.write(license)
+               fout.write("#ifdef USE_OPENCL\n\n")
         fout.write("#include <string>\n\n")
         fout.write("namespace singa {\n namespace opencl {\n")
         for name, path in iteritems(files):
@@ -69,5 +70,6 @@ if __name__ == "__main__":
                 fout.write("const std::string " + name + " = \"")
                 fout.write(src)
                 fout.write("\";")
-        fout.write("\n } //  namespace opencl \n} //  namespace singa")
+        fout.write("\n } //  namespace opencl \n} //  namespace singa\n\n")
+               fout.write("#endif")
         fout.close()

Reply via email to