Added: incubator/singa/site/trunk/docs/autograd.html
URL: 
http://svn.apache.org/viewvc/incubator/singa/site/trunk/docs/autograd.html?rev=1857927&view=auto
==============================================================================
--- incubator/singa/site/trunk/docs/autograd.html (added)
+++ incubator/singa/site/trunk/docs/autograd.html Sun Apr 21 22:05:49 2019
@@ -0,0 +1,469 @@
+
+
+
+<!DOCTYPE html>
+<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
+<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
+<head>
+  <meta charset="utf-8">
+  
+  <meta name="viewport" content="width=device-width, initial-scale=1.0">
+  
+  <title>Autograd in Singa &mdash; incubator-singa 2.0.0 documentation</title>
+  
+
+  
+  
+  
+  
+
+  
+  <script type="text/javascript" src="../_static/js/modernizr.min.js"></script>
+  
+    
+      <script type="text/javascript" id="documentation_options" 
data-url_root="../" src="../_static/documentation_options.js"></script>
+        <script type="text/javascript" src="../_static/jquery.js"></script>
+        <script type="text/javascript" src="../_static/underscore.js"></script>
+        <script type="text/javascript" src="../_static/doctools.js"></script>
+        <script type="text/javascript" 
src="../_static/language_data.js"></script>
+    
+    <script type="text/javascript" src="../_static/js/theme.js"></script>
+
+    
+
+  
+  <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
+  <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
+    <link rel="index" title="Index" href="../genindex.html" />
+    <link rel="search" title="Search" href="../search.html" />
+    <link rel="next" title="Data" href="data.html" />
+    <link rel="prev" title="Optimizer" href="optimizer.html" />
+    <link href="../_static/style.css" rel="stylesheet" type="text/css">
+    <!--link href="../_static/fontawesome-all.min.css" rel="stylesheet" 
type="text/css"-->
+       <link rel="stylesheet" 
href="https://use.fontawesome.com/releases/v5.0.13/css/all.css"; 
integrity="sha384-DNOHZ68U8hZfKXOrtjWvjxusGo9WQnrNx2sqG0tfsghAvtVlRW3tvkXWZh58N9jp"
 crossorigin="anonymous">
+    <style>
+       .fa:hover {
+           opacity: 0.7;
+       }
+       .fab:hover {
+           opacity: 0.7;
+       }
+    </style>
+
+</head>
+
+<body class="wy-body-for-nav">
+
+   
+  <div class="wy-grid-for-nav">
+    
+    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
+      <div class="wy-side-scroll">
+        <div class="wy-side-nav-search" >
+          
+
+          
+            <a href="../index.html" class="icon icon-home"> incubator-singa
+          
+
+          
+            
+            <img src="../_static/singa.png" class="logo" alt="Logo"/>
+          
+          </a>
+
+          
+            
+            
+              <div class="version">
+                latest
+              </div>
+            
+          
+
+          
+<div role="search">
+  <form id="rtd-search-form" class="wy-form" action="../search.html" 
method="get">
+    <input type="text" name="q" placeholder="Search docs" />
+    <input type="hidden" name="check_keywords" value="yes" />
+    <input type="hidden" name="area" value="default" />
+  </form>
+</div>
+
+          
+        </div>
+
+        <div class="wy-menu wy-menu-vertical" data-spy="affix" 
role="navigation" aria-label="main navigation">
+          
+            
+            
+              
+            
+            
+              <ul class="current">
+<li class="toctree-l1 current"><a class="reference internal" 
href="index.html">Documentation</a><ul class="current">
+<li class="toctree-l2"><a class="reference internal" 
href="installation.html">Installation</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="software_stack.html">Software Stack</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="device.html">Device</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="tensor.html">Tensor</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="layer.html">Layer</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="net.html">FeedForward Net</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="initializer.html">Initializer</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="loss.html">Loss</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="metric.html">Metric</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="optimizer.html">Optimizer</a></li>
+<li class="toctree-l2 current"><a class="current reference internal" 
href="#">Autograd in Singa</a><ul>
+<li class="toctree-l3"><a class="reference internal" 
href="#relevant-modules">Relevant Modules</a><ul>
+<li class="toctree-l4"><a class="reference internal" 
href="#tensor">Tensor</a></li>
+<li class="toctree-l4"><a class="reference internal" 
href="#operation">Operation</a></li>
+<li class="toctree-l4"><a class="reference internal" 
href="#layer">Layer</a></li>
+</ul>
+</li>
+<li class="toctree-l3"><a class="reference internal" 
href="#examples">Examples</a><ul>
+<li class="toctree-l4"><a class="reference internal" 
href="#operation-only">Operation only</a></li>
+<li class="toctree-l4"><a class="reference internal" 
href="#operation-layer">Operation + Layer</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li class="toctree-l2"><a class="reference internal" 
href="data.html">Data</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="image_tool.html">Image Tool</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="snapshot.html">Snapshot</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="converter.html">Caffe Converter</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="utils.html">Utils</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="model_zoo/index.html">Model Zoo</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="security.html">Security</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" 
href="../downloads.html">Download SINGA</a></li>
+</ul>
+<p class="caption"><span class="caption-text">Development</span></p>
+<ul>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/schedule.html">Development Schedule</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/how-contribute.html">How to Contribute to SINGA</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/how-contribute.html#how-to-become-a-singa-committer">How to 
become a SINGA committer</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/contribute-code.html">How to Contribute Code</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/contribute-docs.html">How to Contribute to 
Documentation</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/how-to-release.html">How to prepare a release</a></li>
+</ul>
+<p class="caption"><span class="caption-text">Community</span></p>
+<ul>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/source-repository.html">Source Repository</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/mail-lists.html">Project Mailing Lists</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/issue-tracking.html">Issue Tracking</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/team-list.html">The SINGA Team</a></li>
+</ul>
+
+            
+          
+        </div>
+      </div>
+    </nav>
+
+    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
+
+      
+      <nav class="wy-nav-top" aria-label="top navigation">
+        
+          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
+          <a href="../index.html">incubator-singa</a>
+        
+      </nav>
+
+
+      <div class="wy-nav-content">
+        
+        <div class="rst-content">
+        
+          
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+<div role="navigation" aria-label="breadcrumbs navigation">
+
+  <ul class="wy-breadcrumbs">
+    
+      <li><a href="../index.html">Docs</a> &raquo;</li>
+        
+          <li><a href="index.html">Documentation</a> &raquo;</li>
+        
+      <li>Autograd in Singa</li>
+    
+    
+      <li class="wy-breadcrumbs-aside">
+        
+            
+        
+      </li>
+    
+  </ul>
+
+  
+  <hr/>
+</div>
+          <div role="main" class="document" itemscope="itemscope" 
itemtype="http://schema.org/Article";>
+           <div itemprop="articleBody">
+            
+  <!--
+    Licensed to the Apache Software Foundation (ASF) under one
+    or more contributor license agreements.  See the NOTICE file
+    distributed with this work for additional information
+    regarding copyright ownership.  The ASF licenses this file
+    to you under the Apache License, Version 2.0 (the
+    "License"); you may not use this file except in compliance
+    with the License.  You may obtain a copy of the License at
+
+      http://www.apache.org/licenses/LICENSE-2.0
+
+    Unless required by applicable law or agreed to in writing,
+    software distributed under the License is distributed on an
+    "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+    KIND, either express or implied.  See the License for the
+    specific language governing permissions and limitations
+    under the License.
+--><div class="section" id="autograd-in-singa">
+<h1>Autograd in Singa<a class="headerlink" href="#autograd-in-singa" 
title="Permalink to this headline">¶</a></h1>
+<p>There are two typical ways to implement autograd, via symbolic 
differentiation like <a class="reference external" 
href="http://deeplearning.net/software/theano/index.html";>Theano</a> or reverse 
differentiation like <a class="reference external" 
href="https://pytorch.org/docs/stable/notes/autograd.html";>Pytorch</a>. Singa 
follows Pytorch way, which records the computation graph and apply the backward 
propagation automatically after forward propagation. The autograd algorithm is 
explained in details <a class="reference external" 
href="https://pytorch.org/docs/stable/notes/autograd.html";>here</a>. We explain 
the relevant modules in Singa and give an example to illustrate the usage.</p>
+<div class="section" id="relevant-modules">
+<h2>Relevant Modules<a class="headerlink" href="#relevant-modules" 
title="Permalink to this headline">¶</a></h2>
+<p>There are three classes involved in autograd, namely  <code class="docutils 
literal notranslate"><span class="pre">singa.tensor.Tensor</span></code> , 
<code class="docutils literal notranslate"><span 
class="pre">singa.autograd.Operation</span></code>, and <code class="docutils 
literal notranslate"><span class="pre">singa.autograd.Layer</span></code>. In 
the rest of this article, we use tensor, operation and layer to refer to an 
instance of the respective class.</p>
+<div class="section" id="tensor">
+<h3>Tensor<a class="headerlink" href="#tensor" title="Permalink to this 
headline">¶</a></h3>
+<p>Three attributes of Tensor are used by autograd,</p>
+<ul class="simple">
+<li><code class="docutils literal notranslate"><span 
class="pre">.creator</span></code> is an <code class="docutils literal 
notranslate"><span class="pre">Operation</span></code> instance. It records the 
operation that generates the Tensor instance.</li>
+<li><code class="docutils literal notranslate"><span 
class="pre">.requires_grad</span></code> is a boolean variable. It is used to 
indicate that the autograd algorithm needs to compute the gradient of the 
tensor (i.e., the owner). For example, during backpropagation, the gradients of 
the tensors for the weight matrix of a linear layer and the feature maps of a 
convolution layer (not the bottom layer) should be computed.</li>
+<li><code class="docutils literal notranslate"><span 
class="pre">.stores_grad</span></code> is a boolean variable. It is used to 
indicate that the gradient of the owner tensor should be stored and output by 
the backward function. For example, the gradient of the feature maps is 
computed during backpropagation, but is not included in the output of the 
backward function.</li>
+</ul>
+<p>Programmers can change <code class="docutils literal notranslate"><span 
class="pre">requires_grad</span></code> and <code class="docutils literal 
notranslate"><span class="pre">stores_grad</span></code> of a Tensor instance. 
For example, if later is set to True, the corresponding gradient is included in 
the output of the backward function. It should be noted that if <code 
class="docutils literal notranslate"><span 
class="pre">stores_grad</span></code> is True, then <code class="docutils 
literal notranslate"><span class="pre">requires_grad</span></code> must be 
true, not vice versa.</p>
+</div>
+<div class="section" id="operation">
+<h3>Operation<a class="headerlink" href="#operation" title="Permalink to this 
headline">¶</a></h3>
+<p>It takes one or more <code class="docutils literal notranslate"><span 
class="pre">Tensor</span></code> instances as input, and then outputs one or 
more <code class="docutils literal notranslate"><span 
class="pre">Tensor</span></code> instances. For example, ReLU can be 
implemented as a specific Operation subclass. When an <code class="docutils 
literal notranslate"><span class="pre">Operation</span></code> instance is 
called (after instantiation), the following two steps are executed:</p>
+<ol class="simple">
+<li>record the source operations, i.e., the <code class="docutils literal 
notranslate"><span class="pre">creator</span></code>s of the input tensors.    
2. do calculation by calling member function <code class="docutils literal 
notranslate"><span class="pre">.forward()</span></code></li>
+</ol>
+<p>There are two member functions for forwarding and backwarding, i.e., <code 
class="docutils literal notranslate"><span class="pre">.forward()</span></code> 
and <code class="docutils literal notranslate"><span 
class="pre">.backward()</span></code>. They take <code class="docutils literal 
notranslate"><span class="pre">Tensor.data</span></code> as inputs (the type is 
<code class="docutils literal notranslate"><span 
class="pre">CTensor</span></code>), and output <code class="docutils literal 
notranslate"><span class="pre">Ctensor</span></code>s. To add a specific 
operation, subclass <code class="docutils literal notranslate"><span 
class="pre">operation</span></code> should implement their own <code 
class="docutils literal notranslate"><span class="pre">.forward()</span></code> 
and <code class="docutils literal notranslate"><span 
class="pre">.backward()</span></code>. The <code class="docutils literal 
notranslate"><span class="pre">backward()</span></code> function is called by 
the <c
 ode class="docutils literal notranslate"><span 
class="pre">backward()</span></code> function of autograd automatically during 
backward propogation to compute the gradients of inputs (according to the <code 
class="docutils literal notranslate"><span 
class="pre">require_grad</span></code> field).</p>
+</div>
+<div class="section" id="layer">
+<h3>Layer<a class="headerlink" href="#layer" title="Permalink to this 
headline">¶</a></h3>
+<p>For those operations that require parameters, we package them into a new 
class, <code class="docutils literal notranslate"><span 
class="pre">Layer</span></code>. For example, convolution operation is wrapped 
into a convolution layer. <code class="docutils literal notranslate"><span 
class="pre">Layer</span></code> manages (stores) the parameters and calls the 
corresponding <code class="docutils literal notranslate"><span 
class="pre">Operation</span></code>s to implement the transformation.</p>
+</div>
+</div>
+<div class="section" id="examples">
+<h2>Examples<a class="headerlink" href="#examples" title="Permalink to this 
headline">¶</a></h2>
+<p>Multiple examples are provided in the <a class="reference external" 
href="https://github.com/apache/incubator-singa/tree/master/examples/autograd";>example
 folder</a>. We explain two representative examples here.</p>
+<div class="section" id="operation-only">
+<h3>Operation only<a class="headerlink" href="#operation-only" 
title="Permalink to this headline">¶</a></h3>
+<p>The following codes implement a MLP model using only Operation instances 
(no Layer instances).</p>
+<div class="section" id="import-packages">
+<h4>Import packages<a class="headerlink" href="#import-packages" 
title="Permalink to this headline">¶</a></h4>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span><span class="kn">from</span> <span 
class="nn">singa.tensor</span> <span class="k">import</span> <span 
class="n">Tensor</span>
+<span class="kn">from</span> <span class="nn">singa</span> <span 
class="k">import</span> <span class="n">autograd</span>
+<span class="kn">from</span> <span class="nn">singa</span> <span 
class="k">import</span> <span class="n">opt</span>
+</pre></div>
+</div>
+</div>
+<div class="section" id="create-weight-matrix-and-bias-vector">
+<h4>Create weight matrix and bias vector<a class="headerlink" 
href="#create-weight-matrix-and-bias-vector" title="Permalink to this 
headline">¶</a></h4>
+<p>The parameter tensors are created with both <code class="docutils literal 
notranslate"><span class="pre">requires_grad</span></code> and <code 
class="docutils literal notranslate"><span 
class="pre">stores_grad</span></code> set to True.</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span><span class="n">w0</span> <span 
class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span 
class="n">shape</span><span class="o">=</span><span class="p">(</span><span 
class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span 
class="p">),</span> <span class="n">requires_grad</span><span 
class="o">=</span><span class="kc">True</span><span class="p">,</span> <span 
class="n">stores_grad</span><span class="o">=</span><span 
class="kc">True</span><span class="p">)</span>
+<span class="n">w0</span><span class="o">.</span><span 
class="n">gaussian</span><span class="p">(</span><span 
class="mf">0.0</span><span class="p">,</span> <span class="mf">0.1</span><span 
class="p">)</span>
+<span class="n">b0</span> <span class="o">=</span> <span 
class="n">Tensor</span><span class="p">(</span><span 
class="n">shape</span><span class="o">=</span><span class="p">(</span><span 
class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span 
class="p">),</span> <span class="n">requires_grad</span><span 
class="o">=</span><span class="kc">True</span><span class="p">,</span> <span 
class="n">stores_grad</span><span class="o">=</span><span 
class="kc">True</span><span class="p">)</span>
+<span class="n">b0</span><span class="o">.</span><span 
class="n">set_value</span><span class="p">(</span><span 
class="mf">0.0</span><span class="p">)</span>
+
+<span class="n">w1</span> <span class="o">=</span> <span 
class="n">Tensor</span><span class="p">(</span><span 
class="n">shape</span><span class="o">=</span><span class="p">(</span><span 
class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span 
class="p">),</span> <span class="n">requires_grad</span><span 
class="o">=</span><span class="kc">True</span><span class="p">,</span> <span 
class="n">stores_grad</span><span class="o">=</span><span 
class="kc">True</span><span class="p">)</span>
+<span class="n">w1</span><span class="o">.</span><span 
class="n">gaussian</span><span class="p">(</span><span 
class="mf">0.0</span><span class="p">,</span> <span class="mf">0.1</span><span 
class="p">)</span>
+<span class="n">b1</span> <span class="o">=</span> <span 
class="n">Tensor</span><span class="p">(</span><span 
class="n">shape</span><span class="o">=</span><span class="p">(</span><span 
class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span 
class="p">),</span> <span class="n">requires_grad</span><span 
class="o">=</span><span class="kc">True</span><span class="p">,</span> <span 
class="n">stores_grad</span><span class="o">=</span><span 
class="kc">True</span><span class="p">)</span>
+<span class="n">b1</span><span class="o">.</span><span 
class="n">set_value</span><span class="p">(</span><span 
class="mf">0.0</span><span class="p">)</span>
+</pre></div>
+</div>
+</div>
+<div class="section" id="training">
+<h4>Training<a class="headerlink" href="#training" title="Permalink to this 
headline">¶</a></h4>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span><span class="n">inputs</span> <span 
class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span 
class="n">data</span><span class="o">=</span><span class="n">data</span><span 
class="p">)</span>  <span class="c1"># data matrix</span>
+<span class="n">target</span> <span class="o">=</span> <span 
class="n">Tensor</span><span class="p">(</span><span class="n">data</span><span 
class="o">=</span><span class="n">label</span><span class="p">)</span> <span 
class="c1"># label vector</span>
+<span class="n">autograd</span><span class="o">.</span><span 
class="n">training</span> <span class="o">=</span> <span class="kc">True</span> 
   <span class="c1"># for training</span>
+<span class="n">sgd</span> <span class="o">=</span> <span 
class="n">opt</span><span class="o">.</span><span class="n">SGD</span><span 
class="p">(</span><span class="mf">0.05</span><span class="p">)</span>   <span 
class="c1"># optimizer</span>
+
+<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> 
<span class="nb">range</span><span class="p">(</span><span 
class="mi">10</span><span class="p">):</span>
+    <span class="n">x</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">matmul</span><span class="p">(</span><span 
class="n">inputs</span><span class="p">,</span> <span class="n">w0</span><span 
class="p">)</span> <span class="c1"># matrix multiplication</span>
+    <span class="n">x</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">add_bias</span><span class="p">(</span><span class="n">x</span><span 
class="p">,</span> <span class="n">b0</span><span class="p">)</span>    <span 
class="c1"># add the bias vector</span>
+    <span class="n">x</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">relu</span><span class="p">(</span><span class="n">x</span><span 
class="p">)</span>            <span class="c1"># ReLU activation 
operation</span>
+
+    <span class="n">x</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">matmul</span><span class="p">(</span><span class="n">x</span><span 
class="p">,</span> <span class="n">w1</span><span class="p">)</span>
+    <span class="n">x</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">add_bias</span><span class="p">(</span><span class="n">x</span><span 
class="p">,</span> <span class="n">b1</span><span class="p">)</span>
+    
+    <span class="n">loss</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">softmax_cross_entropy</span><span class="p">(</span><span 
class="n">x</span><span class="p">,</span> <span class="n">target</span><span 
class="p">)</span>
+    
+    <span class="k">for</span> <span class="n">p</span><span 
class="p">,</span> <span class="n">g</span> <span class="ow">in</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">backward</span><span class="p">(</span><span 
class="n">loss</span><span class="p">):</span>        
+        <span class="n">sgd</span><span class="o">.</span><span 
class="n">update</span><span class="p">(</span><span class="n">p</span><span 
class="p">,</span> <span class="n">g</span><span class="p">)</span>
+</pre></div>
+</div>
+</div>
+</div>
+<div class="section" id="operation-layer">
+<h3>Operation + Layer<a class="headerlink" href="#operation-layer" 
title="Permalink to this headline">¶</a></h3>
+<p>The following <a class="reference external" 
href="https://github.com/apache/incubator-singa/blob/master/examples/autograd/mnist_cnn.py";>example</a>
 implements a CNN model using layers provided by the autograd module.</p>
+<div class="section" id="create-the-layers">
+<h4>Create the layers<a class="headerlink" href="#create-the-layers" 
title="Permalink to this headline">¶</a></h4>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span><span class="n">conv1</span> <span 
class="o">=</span> <span class="n">autograd</span><span class="o">.</span><span 
class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span 
class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span 
class="mi">3</span><span class="p">,</span> <span class="n">padding</span><span 
class="o">=</span><span class="mi">1</span><span class="p">,</span> <span 
class="n">bias</span><span class="o">=</span><span class="kc">False</span><span 
class="p">)</span>
+<span class="n">bn1</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">BatchNorm2d</span><span class="p">(</span><span 
class="mi">32</span><span class="p">)</span>
+<span class="n">pooling1</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">MaxPool2d</span><span class="p">(</span><span 
class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span 
class="p">,</span> <span class="n">padding</span><span class="o">=</span><span 
class="mi">1</span><span class="p">)</span>
+<span class="n">conv21</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">Conv2d</span><span class="p">(</span><span class="mi">32</span><span 
class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span 
class="mi">3</span><span class="p">,</span> <span class="n">padding</span><span 
class="o">=</span><span class="mi">1</span><span class="p">)</span>
+<span class="n">conv22</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">Conv2d</span><span class="p">(</span><span class="mi">32</span><span 
class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span 
class="mi">3</span><span class="p">,</span> <span class="n">padding</span><span 
class="o">=</span><span class="mi">1</span><span class="p">)</span>
+<span class="n">bn2</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">BatchNorm2d</span><span class="p">(</span><span 
class="mi">32</span><span class="p">)</span>
+<span class="n">linear</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">Linear</span><span class="p">(</span><span class="mi">32</span> <span 
class="o">*</span> <span class="mi">28</span> <span class="o">*</span> <span 
class="mi">28</span><span class="p">,</span> <span class="mi">10</span><span 
class="p">)</span>    
+<span class="n">pooling2</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">AvgPool2d</span><span class="p">(</span><span 
class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span 
class="p">,</span> <span class="n">padding</span><span class="o">=</span><span 
class="mi">1</span><span class="p">)</span>
+</pre></div>
+</div>
+</div>
+<div class="section" id="define-the-forward-function">
+<h4>Define the forward function<a class="headerlink" 
href="#define-the-forward-function" title="Permalink to this 
headline">¶</a></h4>
+<p>The operations in the forward pass will be recorded automatically for 
backward propagation.</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span><span class="k">def</span> <span 
class="nf">forward</span><span class="p">(</span><span class="n">x</span><span 
class="p">,</span> <span class="n">t</span><span class="p">):</span>
+    <span class="c1"># x is the input data (a batch of images)</span>
+    <span class="c1"># t the the label vector (a batch of integers)</span>
+    <span class="n">y</span> <span class="o">=</span> <span 
class="n">conv1</span><span class="p">(</span><span class="n">x</span><span 
class="p">)</span>           <span class="c1"># Conv layer  </span>
+    <span class="n">y</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">relu</span><span class="p">(</span><span class="n">y</span><span 
class="p">)</span>   <span class="c1"># ReLU operation</span>
+    <span class="n">y</span> <span class="o">=</span> <span 
class="n">bn1</span><span class="p">(</span><span class="n">y</span><span 
class="p">)</span>             <span class="c1"># BN layer</span>
+    <span class="n">y</span> <span class="o">=</span> <span 
class="n">pooling1</span><span class="p">(</span><span class="n">y</span><span 
class="p">)</span>        <span class="c1"># Pooling Layer</span>
+    
+    <span class="c1"># two parallel convolution layers</span>
+    <span class="n">y1</span> <span class="o">=</span> <span 
class="n">conv21</span><span class="p">(</span><span class="n">y</span><span 
class="p">)</span>
+    <span class="n">y2</span> <span class="o">=</span> <span 
class="n">conv22</span><span class="p">(</span><span class="n">y</span><span 
class="p">)</span>
+    <span class="n">y</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">cat</span><span class="p">((</span><span class="n">y1</span><span 
class="p">,</span> <span class="n">y2</span><span class="p">),</span> <span 
class="mi">1</span><span class="p">)</span>  <span class="c1"># cat 
operation</span>
+    <span class="n">y</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">relu</span><span class="p">(</span><span class="n">y</span><span 
class="p">)</span>           <span class="c1"># ReLU operation</span>
+    <span class="n">y</span> <span class="o">=</span> <span 
class="n">bn2</span><span class="p">(</span><span class="n">y</span><span 
class="p">)</span>
+    <span class="n">y</span> <span class="o">=</span> <span 
class="n">pooling2</span><span class="p">(</span><span class="n">y</span><span 
class="p">)</span>
+
+    <span class="n">y</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">flatten</span><span class="p">(</span><span class="n">y</span><span 
class="p">)</span>        <span class="c1"># flatten operation</span>
+    <span class="n">y</span> <span class="o">=</span> <span 
class="n">linear</span><span class="p">(</span><span class="n">y</span><span 
class="p">)</span>                  <span class="c1"># Linear layer</span>
+    <span class="n">loss</span> <span class="o">=</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">softmax_cross_entropy</span><span class="p">(</span><span 
class="n">y</span><span class="p">,</span> <span class="n">t</span><span 
class="p">)</span>  <span class="c1"># operation </span>
+    <span class="k">return</span> <span class="n">loss</span><span 
class="p">,</span> <span class="n">y</span>
+</pre></div>
+</div>
+</div>
+<div class="section" id="id1">
+<h4>Training<a class="headerlink" href="#id1" title="Permalink to this 
headline">¶</a></h4>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span><span class="n">autograd</span><span 
class="o">.</span><span class="n">training</span> <span class="o">=</span> 
<span class="kc">True</span>
+<span class="k">for</span> <span class="n">epoch</span> <span 
class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span 
class="n">epochs</span><span class="p">):</span>
+    <span class="k">for</span> <span class="n">i</span> <span 
class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span 
class="n">batch_number</span><span class="p">):</span>
+        <span class="n">inputs</span> <span class="o">=</span> <span 
class="n">tensor</span><span class="o">.</span><span 
class="n">Tensor</span><span class="p">(</span><span 
class="n">device</span><span class="o">=</span><span class="n">dev</span><span 
class="p">,</span> <span class="n">data</span><span class="o">=</span><span 
class="n">x_train</span><span class="p">[</span>
+                               <span class="n">i</span> <span 
class="o">*</span> <span class="n">batch_sz</span><span 
class="p">:(</span><span class="mi">1</span> <span class="o">+</span> <span 
class="n">i</span><span class="p">)</span> <span class="o">*</span> <span 
class="n">batch_sz</span><span class="p">],</span> <span 
class="n">stores_grad</span><span class="o">=</span><span 
class="kc">False</span><span class="p">)</span>
+        <span class="n">targets</span> <span class="o">=</span> <span 
class="n">tensor</span><span class="o">.</span><span 
class="n">Tensor</span><span class="p">(</span><span 
class="n">device</span><span class="o">=</span><span class="n">dev</span><span 
class="p">,</span> <span class="n">data</span><span class="o">=</span><span 
class="n">y_train</span><span class="p">[</span>
+                                <span class="n">i</span> <span 
class="o">*</span> <span class="n">batch_sz</span><span 
class="p">:(</span><span class="mi">1</span> <span class="o">+</span> <span 
class="n">i</span><span class="p">)</span> <span class="o">*</span> <span 
class="n">batch_sz</span><span class="p">],</span> <span 
class="n">requires_grad</span><span class="o">=</span><span 
class="kc">False</span><span class="p">,</span> <span 
class="n">stores_grad</span><span class="o">=</span><span 
class="kc">False</span><span class="p">)</span>
+
+        <span class="n">loss</span><span class="p">,</span> <span 
class="n">y</span> <span class="o">=</span> <span class="n">forward</span><span 
class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span 
class="n">targets</span><span class="p">)</span> <span class="c1"># forward the 
net</span>
+    
+        <span class="k">for</span> <span class="n">p</span><span 
class="p">,</span> <span class="n">gp</span> <span class="ow">in</span> <span 
class="n">autograd</span><span class="o">.</span><span 
class="n">backward</span><span class="p">(</span><span 
class="n">loss</span><span class="p">):</span>  <span class="c1"># auto 
backward</span>
+            <span class="n">sgd</span><span class="o">.</span><span 
class="n">update</span><span class="p">(</span><span class="n">p</span><span 
class="p">,</span> <span class="n">gp</span><span class="p">)</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+</div>
+
+
+           </div>
+           
+          </div>
+          <footer>
+  
+    <div class="rst-footer-buttons" role="navigation" aria-label="footer 
navigation">
+      
+        <a href="data.html" class="btn btn-neutral float-right" title="Data" 
accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
+      
+      
+        <a href="optimizer.html" class="btn btn-neutral float-left" 
title="Optimizer" accesskey="p" rel="prev"><span class="fa 
fa-arrow-circle-left"></span> Previous</a>
+      
+    </div>
+  
+
+  <hr/>
+
+  <div role="contentinfo">
+    <p>
+        &copy; Copyright 2019 The Apache Software Foundation. All rights 
reserved. Apache SINGA, Apache, the Apache feather logo, and the Apache SINGA 
project logos are trademarks of The Apache Software Foundation. All other marks 
mentioned may be trademarks or registered trademarks of their respective owners.
+
+    </p>
+  </div>
+  Built with <a href="http://sphinx-doc.org/";>Sphinx</a> using a <a 
href="https://github.com/rtfd/sphinx_rtd_theme";>theme</a> provided by <a 
href="https://readthedocs.org";>Read the Docs</a>. 
+
+</footer>
+
+        </div>
+      </div>
+
+    </section>
+
+  </div>
+  
+
+
+  <script type="text/javascript">
+      jQuery(function () {
+          SphinxRtdTheme.Navigation.enable(true);
+      });
+  </script>
+
+  
+  
+    
+  
+
+<div class="rst-versions" data-toggle="rst-versions" role="note" 
aria-label="versions">
+  <span class="rst-current-version" data-toggle="rst-current-version">
+    <span class="fa fa-book"> incubator-singa </span>
+    v: latest
+    <span class="fa fa-caret-down"></span>
+  </span>
+  <div class="rst-other-versions">
+      <dl>
+          <dt>Languages</dt>
+          <dd><a href=".././index.html">English</a></dd>
+          <dd><a href=".././zh/index.html">中文</a></dd>
+      </dl>
+      <dl>
+          <dt>Versions</dt>
+          <dd><a href="http://singa.apache.org/v0.3.0/";>0.3</a></dd>
+          <dd><a href="http://singa.apache.org/v1.1.0/";>1.1</a></dd>
+      </dl>
+
+  </div>
+  <a href="http://incubator.apache.org/";> <img src= "../_static/apache.png" 
style="background-color:white;"> </a>
+
+  <a href="https://github.com/apache/incubator-singa"; class="fa fa-github" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a>
+  <a 
href="https://aws.amazon.com/marketplace/seller-profile?id=5bcac385-12c4-4802-aec7-351e09b77b4c";
 class="fab fa-aws" style="padding: 10px; font-size: 20px; width: 30px; 
text-align: center; text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://hub.docker.com/r/apache/singa/"; class="fab fa-docker" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a> 
+  <a href="https://www.linkedin.com/groups/13550034"; class="fa fa-linkedin" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://twitter.com/ApacheSinga"; class="fa fa-twitter" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://www.facebook.com/Apache-SINGA-347284219056544/"; class="fa 
fa-facebook" style="padding: 10px; font-size: 20px; width: 30px; text-align: 
center; text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://www.researchgate.net/project/Apache-SINGA"; class="fab 
fa-researchgate" style="padding: 10px; font-size: 20px; width: 30px; 
text-align: center; text-decoration: none; margin: 5px 2px;"></a>
+
+</div>
+
+ <a href="https://github.com/apache/incubator-singa";>
+    <img style="position: absolute; top: 0; right: 0; border: 0; z-index: 
10000;"
+        
src="https://s3.amazonaws.com/github/ribbons/forkme_right_orange_ff7600.png";
+        alt="Fork me on GitHub">
+</a>
+
+ 
+
+
+</body>
+</html>
\ No newline at end of file

Added: incubator/singa/site/trunk/docs/cnn.html
URL: 
http://svn.apache.org/viewvc/incubator/singa/site/trunk/docs/cnn.html?rev=1857927&view=auto
==============================================================================
--- incubator/singa/site/trunk/docs/cnn.html (added)
+++ incubator/singa/site/trunk/docs/cnn.html Sun Apr 21 22:05:49 2019
@@ -0,0 +1,423 @@
+
+
+
+<!DOCTYPE html>
+<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
+<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
+<head>
+  <meta charset="utf-8">
+  
+  <meta name="viewport" content="width=device-width, initial-scale=1.0">
+  
+  <title>Quickstart - Cifar10 example &mdash; incubator-singa 2.0.0 
documentation</title>
+  
+
+  
+  
+  
+  
+
+  
+  <script type="text/javascript" src="../_static/js/modernizr.min.js"></script>
+  
+    
+      <script type="text/javascript" id="documentation_options" 
data-url_root="../" src="../_static/documentation_options.js"></script>
+        <script type="text/javascript" src="../_static/jquery.js"></script>
+        <script type="text/javascript" src="../_static/underscore.js"></script>
+        <script type="text/javascript" src="../_static/doctools.js"></script>
+        <script type="text/javascript" 
src="../_static/language_data.js"></script>
+    
+    <script type="text/javascript" src="../_static/js/theme.js"></script>
+
+    
+
+  
+  <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
+  <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
+    <link rel="index" title="Index" href="../genindex.html" />
+    <link rel="search" title="Search" href="../search.html" />
+    <link href="../_static/style.css" rel="stylesheet" type="text/css">
+    <!--link href="../_static/fontawesome-all.min.css" rel="stylesheet" 
type="text/css"-->
+       <link rel="stylesheet" 
href="https://use.fontawesome.com/releases/v5.0.13/css/all.css"; 
integrity="sha384-DNOHZ68U8hZfKXOrtjWvjxusGo9WQnrNx2sqG0tfsghAvtVlRW3tvkXWZh58N9jp"
 crossorigin="anonymous">
+    <style>
+       .fa:hover {
+           opacity: 0.7;
+       }
+       .fab:hover {
+           opacity: 0.7;
+       }
+    </style>
+
+</head>
+
+<body class="wy-body-for-nav">
+
+   
+  <div class="wy-grid-for-nav">
+    
+    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
+      <div class="wy-side-scroll">
+        <div class="wy-side-nav-search" >
+          
+
+          
+            <a href="../index.html" class="icon icon-home"> incubator-singa
+          
+
+          
+            
+            <img src="../_static/singa.png" class="logo" alt="Logo"/>
+          
+          </a>
+
+          
+            
+            
+              <div class="version">
+                latest
+              </div>
+            
+          
+
+          
+<div role="search">
+  <form id="rtd-search-form" class="wy-form" action="../search.html" 
method="get">
+    <input type="text" name="q" placeholder="Search docs" />
+    <input type="hidden" name="check_keywords" value="yes" />
+    <input type="hidden" name="area" value="default" />
+  </form>
+</div>
+
+          
+        </div>
+
+        <div class="wy-menu wy-menu-vertical" data-spy="affix" 
role="navigation" aria-label="main navigation">
+          
+            
+            
+              
+            
+            
+              <ul>
+<li class="toctree-l1"><a class="reference internal" 
href="index.html">Documentation</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../downloads.html">Download SINGA</a></li>
+</ul>
+<p class="caption"><span class="caption-text">Development</span></p>
+<ul>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/schedule.html">Development Schedule</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/how-contribute.html">How to Contribute to SINGA</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/how-contribute.html#how-to-become-a-singa-committer">How to 
become a SINGA committer</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/contribute-code.html">How to Contribute Code</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/contribute-docs.html">How to Contribute to 
Documentation</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/how-to-release.html">How to prepare a release</a></li>
+</ul>
+<p class="caption"><span class="caption-text">Community</span></p>
+<ul>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/source-repository.html">Source Repository</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/mail-lists.html">Project Mailing Lists</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/issue-tracking.html">Issue Tracking</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/team-list.html">The SINGA Team</a></li>
+</ul>
+
+            
+          
+        </div>
+      </div>
+    </nav>
+
+    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
+
+      
+      <nav class="wy-nav-top" aria-label="top navigation">
+        
+          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
+          <a href="../index.html">incubator-singa</a>
+        
+      </nav>
+
+
+      <div class="wy-nav-content">
+        
+        <div class="rst-content">
+        
+          
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+<div role="navigation" aria-label="breadcrumbs navigation">
+
+  <ul class="wy-breadcrumbs">
+    
+      <li><a href="../index.html">Docs</a> &raquo;</li>
+        
+      <li>Quickstart - Cifar10 example</li>
+    
+    
+      <li class="wy-breadcrumbs-aside">
+        
+            
+        
+      </li>
+    
+  </ul>
+
+  
+  <hr/>
+</div>
+          <div role="main" class="document" itemscope="itemscope" 
itemtype="http://schema.org/Article";>
+           <div itemprop="articleBody">
+            
+  <!--
+    Licensed to the Apache Software Foundation (ASF) under one
+    or more contributor license agreements.  See the NOTICE file
+    distributed with this work for additional information
+    regarding copyright ownership.  The ASF licenses this file
+    to you under the Apache License, Version 2.0 (the
+    "License"); you may not use this file except in compliance
+    with the License.  You may obtain a copy of the License at
+
+      http://www.apache.org/licenses/LICENSE-2.0
+
+    Unless required by applicable law or agreed to in writing,
+    software distributed under the License is distributed on an
+    "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+    KIND, either express or implied.  See the License for the
+    specific language governing permissions and limitations
+    under the License.
+--><div class="section" id="quickstart-cifar10-example">
+<h1>Quickstart - Cifar10 example<a class="headerlink" 
href="#quickstart-cifar10-example" title="Permalink to this 
headline">¶</a></h1>
+<p>Convolution neural network (CNN) is a type of feed-forward artificial 
neural network widely used for image classification. In this example, we will 
use a deep CNN model to do image classification for the <a class="reference 
external" href="http://www.cs.toronto.edu/~kriz/cifar.html";>CIFAR10 
dataset</a>.</p>
+<div class="section" id="running-instructions-for-cpp-version">
+<h2>Running instructions for CPP version<a class="headerlink" 
href="#running-instructions-for-cpp-version" title="Permalink to this 
headline">¶</a></h2>
+<p>Please refer to <a class="reference external" 
href="installation.html">Installation</a> page for how to install SINGA. 
Currently, we CNN requires CUDNN, hence both CUDA and CUDNN should be installed 
and SINGA should be compiled with CUDA and CUDNN.</p>
+<p>The Cifar10 dataset could be downloaded by running</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span># switch to cifar10 directory
+$ cd ../examples/cifar10
+# download data for CPP version
+$ python download_data.py bin
+</pre></div>
+</div>
+<p>‘bin’ is for downloading binary version of Cifar10 data.</p>
+<p>During downloading, you should see the detailed output like</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span> Downloading CIFAR10 from 
http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
+ The tar file does exist. Extracting it now..
+ Finished!
+</pre></div>
+</div>
+<p>Now you have prepared the data for this Cifar10 example, the final step is 
to execute the <code class="docutils literal notranslate"><span 
class="pre">run.sh</span></code> script,</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span># in SINGA_ROOT/examples/cifar10/
+$ ./run.sh
+</pre></div>
+</div>
+<p>You should see the detailed output as follows: first read the data files in 
order, show the statistics of training and testing data, then show the details 
of neural net structure with some parameter information, finally illustrate the 
performance details during training and validation process. The number of 
epochs can be specified in <code class="docutils literal notranslate"><span 
class="pre">run.sh</span></code> file.</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span><span class="n">Start</span> <span 
class="n">training</span>
+<span class="n">Reading</span> <span class="n">file</span> <span 
class="n">cifar</span><span class="o">-</span><span class="mi">10</span><span 
class="o">-</span><span class="n">batches</span><span class="o">-</span><span 
class="nb">bin</span><span class="o">/</span><span 
class="n">data_batch_1</span><span class="o">.</span><span class="n">bin</span>
+<span class="n">Reading</span> <span class="n">file</span> <span 
class="n">cifar</span><span class="o">-</span><span class="mi">10</span><span 
class="o">-</span><span class="n">batches</span><span class="o">-</span><span 
class="nb">bin</span><span class="o">/</span><span 
class="n">data_batch_2</span><span class="o">.</span><span class="n">bin</span>
+<span class="n">Reading</span> <span class="n">file</span> <span 
class="n">cifar</span><span class="o">-</span><span class="mi">10</span><span 
class="o">-</span><span class="n">batches</span><span class="o">-</span><span 
class="nb">bin</span><span class="o">/</span><span 
class="n">data_batch_3</span><span class="o">.</span><span class="n">bin</span>
+<span class="n">Reading</span> <span class="n">file</span> <span 
class="n">cifar</span><span class="o">-</span><span class="mi">10</span><span 
class="o">-</span><span class="n">batches</span><span class="o">-</span><span 
class="nb">bin</span><span class="o">/</span><span 
class="n">data_batch_4</span><span class="o">.</span><span class="n">bin</span>
+<span class="n">Reading</span> <span class="n">file</span> <span 
class="n">cifar</span><span class="o">-</span><span class="mi">10</span><span 
class="o">-</span><span class="n">batches</span><span class="o">-</span><span 
class="nb">bin</span><span class="o">/</span><span 
class="n">data_batch_5</span><span class="o">.</span><span class="n">bin</span>
+<span class="n">Reading</span> <span class="n">file</span> <span 
class="n">cifar</span><span class="o">-</span><span class="mi">10</span><span 
class="o">-</span><span class="n">batches</span><span class="o">-</span><span 
class="nb">bin</span><span class="o">/</span><span 
class="n">test_batch</span><span class="o">.</span><span class="n">bin</span>
+<span class="n">Training</span> <span class="n">samples</span> <span 
class="o">=</span> <span class="mi">50000</span><span class="p">,</span> <span 
class="n">Test</span> <span class="n">samples</span> <span class="o">=</span> 
<span class="mi">10000</span>
+<span class="n">conv1</span><span class="p">(</span><span 
class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span 
class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span 
class="p">)</span>
+<span class="n">pool1</span><span class="p">(</span><span 
class="mi">32</span><span class="p">,</span> <span class="mi">16</span><span 
class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span 
class="p">)</span>
+<span class="n">relu1</span><span class="p">(</span><span 
class="mi">32</span><span class="p">,</span> <span class="mi">16</span><span 
class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span 
class="p">)</span>
+<span class="n">lrn1</span><span class="p">(</span><span 
class="mi">32</span><span class="p">,</span> <span class="mi">16</span><span 
class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span 
class="p">)</span>
+<span class="n">conv2</span><span class="p">(</span><span 
class="mi">32</span><span class="p">,</span> <span class="mi">16</span><span 
class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span 
class="p">)</span>
+<span class="n">relu2</span><span class="p">(</span><span 
class="mi">32</span><span class="p">,</span> <span class="mi">16</span><span 
class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span 
class="p">)</span>
+<span class="n">pool2</span><span class="p">(</span><span 
class="mi">32</span><span class="p">,</span> <span class="mi">8</span><span 
class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span 
class="p">)</span>
+<span class="n">lrn2</span><span class="p">(</span><span 
class="mi">32</span><span class="p">,</span> <span class="mi">8</span><span 
class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span 
class="p">)</span>
+<span class="n">conv3</span><span class="p">(</span><span 
class="mi">64</span><span class="p">,</span> <span class="mi">8</span><span 
class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span 
class="p">)</span>
+<span class="n">relu3</span><span class="p">(</span><span 
class="mi">64</span><span class="p">,</span> <span class="mi">8</span><span 
class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span 
class="p">)</span>
+<span class="n">pool3</span><span class="p">(</span><span 
class="mi">64</span><span class="p">,</span> <span class="mi">4</span><span 
class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span 
class="p">)</span>
+<span class="n">flat</span><span class="p">(</span><span 
class="mi">1024</span><span class="p">,</span> <span class="p">)</span>
+<span class="n">ip</span><span class="p">(</span><span 
class="mi">10</span><span class="p">,</span> <span class="p">)</span>
+<span class="n">conv1_weight</span> <span class="p">:</span> <span 
class="mf">8.09309e-05</span>
+<span class="n">conv1_bias</span> <span class="p">:</span> <span 
class="mi">0</span>
+<span class="n">conv2_weight</span> <span class="p">:</span> <span 
class="mf">0.00797731</span>
+<span class="n">conv2_bias</span> <span class="p">:</span> <span 
class="mi">0</span>
+<span class="n">conv3_weight</span> <span class="p">:</span> <span 
class="mf">0.00795888</span>
+<span class="n">conv3_bias</span> <span class="p">:</span> <span 
class="mi">0</span>
+<span class="n">ip_weight</span> <span class="p">:</span> <span 
class="mf">0.00798683</span>
+<span class="n">ip_bias</span> <span class="p">:</span> <span 
class="mi">0</span>
+<span class="n">Messages</span> <span class="n">will</span> <span 
class="n">be</span> <span class="n">appended</span> <span class="n">to</span> 
<span class="n">an</span> <span class="n">existed</span> <span 
class="n">file</span><span class="p">:</span> <span class="n">train_perf</span>
+<span class="n">Messages</span> <span class="n">will</span> <span 
class="n">be</span> <span class="n">appended</span> <span class="n">to</span> 
<span class="n">an</span> <span class="n">existed</span> <span 
class="n">file</span><span class="p">:</span> <span class="n">val_perf</span>
+<span class="n">Epoch</span> <span class="mi">0</span><span class="p">,</span> 
<span class="n">training</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.828369</span><span class="p">,</span> 
<span class="n">accuracy</span> <span class="o">=</span> <span 
class="mf">0.329420</span><span class="p">,</span> <span class="n">lr</span> 
<span class="o">=</span> <span class="mf">0.001000</span>
+<span class="n">Epoch</span> <span class="mi">0</span><span class="p">,</span> 
<span class="n">val</span> <span class="n">loss</span> <span class="o">=</span> 
<span class="mf">1.561823</span><span class="p">,</span> <span 
class="n">metric</span> <span class="o">=</span> <span 
class="mf">0.420600</span>
+<span class="n">Epoch</span> <span class="mi">1</span><span class="p">,</span> 
<span class="n">training</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.465898</span><span class="p">,</span> 
<span class="n">accuracy</span> <span class="o">=</span> <span 
class="mf">0.469940</span><span class="p">,</span> <span class="n">lr</span> 
<span class="o">=</span> <span class="mf">0.001000</span>
+<span class="n">Epoch</span> <span class="mi">1</span><span class="p">,</span> 
<span class="n">val</span> <span class="n">loss</span> <span class="o">=</span> 
<span class="mf">1.361778</span><span class="p">,</span> <span 
class="n">metric</span> <span class="o">=</span> <span 
class="mf">0.513300</span>
+<span class="n">Epoch</span> <span class="mi">2</span><span class="p">,</span> 
<span class="n">training</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.320708</span><span class="p">,</span> 
<span class="n">accuracy</span> <span class="o">=</span> <span 
class="mf">0.529000</span><span class="p">,</span> <span class="n">lr</span> 
<span class="o">=</span> <span class="mf">0.001000</span>
+<span class="n">Epoch</span> <span class="mi">2</span><span class="p">,</span> 
<span class="n">val</span> <span class="n">loss</span> <span class="o">=</span> 
<span class="mf">1.242080</span><span class="p">,</span> <span 
class="n">metric</span> <span class="o">=</span> <span 
class="mf">0.549100</span>
+<span class="n">Epoch</span> <span class="mi">3</span><span class="p">,</span> 
<span class="n">training</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.213776</span><span class="p">,</span> 
<span class="n">accuracy</span> <span class="o">=</span> <span 
class="mf">0.571620</span><span class="p">,</span> <span class="n">lr</span> 
<span class="o">=</span> <span class="mf">0.001000</span>
+<span class="n">Epoch</span> <span class="mi">3</span><span class="p">,</span> 
<span class="n">val</span> <span class="n">loss</span> <span class="o">=</span> 
<span class="mf">1.175346</span><span class="p">,</span> <span 
class="n">metric</span> <span class="o">=</span> <span 
class="mf">0.582000</span>
+</pre></div>
+</div>
+<p>The training details are stored in <code class="docutils literal 
notranslate"><span class="pre">train_perf</span></code> file in the same 
directory and the validation details in <code class="docutils literal 
notranslate"><span class="pre">val_perf</span></code> file.</p>
+</div>
+<div class="section" id="running-instructions-for-python-version">
+<h2>Running instructions for Python version<a class="headerlink" 
href="#running-instructions-for-python-version" title="Permalink to this 
headline">¶</a></h2>
+<p>To run CNN example in Python version, we need to compile SINGA with Python 
binding,</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span>$ mkdir build &amp;&amp; cd build
+$ cmake -DUSE_PYTHON=ON ..
+$ make
+</pre></div>
+</div>
+<p>Now download the Cifar10 dataset,</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span># switch to cifar10 directory
+$ cd ../examples/cifar10
+# download data for Python version
+$ python download_data.py py
+</pre></div>
+</div>
+<p>During downloading, you should see the detailed output like</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span> Downloading CIFAR10 from 
http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
+ The tar file does exist. Extracting it now..
+ Finished!
+</pre></div>
+</div>
+<p>Then execute the <code class="docutils literal notranslate"><span 
class="pre">train.py</span></code> script to build the model</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span>$ python train.py
+</pre></div>
+</div>
+<p>You should see the output as follows including the details of neural net 
structure with some parameter information, reading data files, and the 
performance details during training and testing process.</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span><span class="p">(</span><span 
class="mi">32</span><span class="n">L</span><span class="p">,</span> <span 
class="mi">32</span><span class="n">L</span><span class="p">,</span> <span 
class="mi">32</span><span class="n">L</span><span class="p">)</span>
+<span class="p">(</span><span class="mi">32</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">16</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">16</span><span 
class="n">L</span><span class="p">)</span>
+<span class="p">(</span><span class="mi">32</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">16</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">16</span><span 
class="n">L</span><span class="p">)</span>
+<span class="p">(</span><span class="mi">32</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">16</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">16</span><span 
class="n">L</span><span class="p">)</span>
+<span class="p">(</span><span class="mi">32</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">16</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">16</span><span 
class="n">L</span><span class="p">)</span>
+<span class="p">(</span><span class="mi">32</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">16</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">16</span><span 
class="n">L</span><span class="p">)</span>
+<span class="p">(</span><span class="mi">32</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">8</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">8</span><span 
class="n">L</span><span class="p">)</span>
+<span class="p">(</span><span class="mi">32</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">8</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">8</span><span 
class="n">L</span><span class="p">)</span>
+<span class="p">(</span><span class="mi">64</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">8</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">8</span><span 
class="n">L</span><span class="p">)</span>
+<span class="p">(</span><span class="mi">64</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">8</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">8</span><span 
class="n">L</span><span class="p">)</span>
+<span class="p">(</span><span class="mi">64</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">4</span><span 
class="n">L</span><span class="p">,</span> <span class="mi">4</span><span 
class="n">L</span><span class="p">)</span>
+<span class="p">(</span><span class="mi">1024</span><span 
class="n">L</span><span class="p">,)</span>
+<span class="n">Start</span> <span class="n">intialization</span><span 
class="o">............</span>
+<span class="n">conv1_weight</span> <span class="n">gaussian</span> <span 
class="mf">7.938460476e-05</span>
+<span class="n">conv1_bias</span> <span class="n">constant</span> <span 
class="mf">0.0</span>
+<span class="n">conv2_weight</span> <span class="n">gaussian</span> <span 
class="mf">0.00793507322669</span>
+<span class="n">conv2_bias</span> <span class="n">constant</span> <span 
class="mf">0.0</span>
+<span class="n">conv3_weight</span> <span class="n">gaussian</span> <span 
class="mf">0.00799657031894</span>
+<span class="n">conv3_bias</span> <span class="n">constant</span> <span 
class="mf">0.0</span>
+<span class="n">dense_weight</span> <span class="n">gaussian</span> <span 
class="mf">0.00804364029318</span>
+<span class="n">dense_bias</span> <span class="n">constant</span> <span 
class="mf">0.0</span>
+<span class="n">Loading</span> <span class="n">data</span> <span 
class="o">..................</span>
+<span class="n">Loading</span> <span class="n">data</span> <span 
class="n">file</span> <span class="n">cifar</span><span class="o">-</span><span 
class="mi">10</span><span class="o">-</span><span class="n">batches</span><span 
class="o">-</span><span class="n">py</span><span class="o">/</span><span 
class="n">data_batch_1</span>
+<span class="n">Loading</span> <span class="n">data</span> <span 
class="n">file</span> <span class="n">cifar</span><span class="o">-</span><span 
class="mi">10</span><span class="o">-</span><span class="n">batches</span><span 
class="o">-</span><span class="n">py</span><span class="o">/</span><span 
class="n">data_batch_2</span>
+<span class="n">Loading</span> <span class="n">data</span> <span 
class="n">file</span> <span class="n">cifar</span><span class="o">-</span><span 
class="mi">10</span><span class="o">-</span><span class="n">batches</span><span 
class="o">-</span><span class="n">py</span><span class="o">/</span><span 
class="n">data_batch_3</span>
+<span class="n">Loading</span> <span class="n">data</span> <span 
class="n">file</span> <span class="n">cifar</span><span class="o">-</span><span 
class="mi">10</span><span class="o">-</span><span class="n">batches</span><span 
class="o">-</span><span class="n">py</span><span class="o">/</span><span 
class="n">data_batch_4</span>
+<span class="n">Loading</span> <span class="n">data</span> <span 
class="n">file</span> <span class="n">cifar</span><span class="o">-</span><span 
class="mi">10</span><span class="o">-</span><span class="n">batches</span><span 
class="o">-</span><span class="n">py</span><span class="o">/</span><span 
class="n">data_batch_5</span>
+<span class="n">Loading</span> <span class="n">data</span> <span 
class="n">file</span> <span class="n">cifar</span><span class="o">-</span><span 
class="mi">10</span><span class="o">-</span><span class="n">batches</span><span 
class="o">-</span><span class="n">py</span><span class="o">/</span><span 
class="n">test_batch</span>
+<span class="n">Epoch</span> <span class="mi">0</span>
+<span class="n">training</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.881866</span><span class="p">,</span> 
<span class="n">training</span> <span class="n">accuracy</span> <span 
class="o">=</span> <span class="mf">0.306360</span> <span 
class="n">accuracy</span> <span class="o">=</span> <span 
class="mf">0.420000</span>
+<span class="n">test</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.602577</span><span class="p">,</span> 
<span class="n">test</span> <span class="n">accuracy</span> <span 
class="o">=</span> <span class="mf">0.412200</span>
+<span class="n">Epoch</span> <span class="mi">1</span>
+<span class="n">training</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.536011</span><span class="p">,</span> 
<span class="n">training</span> <span class="n">accuracy</span> <span 
class="o">=</span> <span class="mf">0.441940</span> <span 
class="n">accuracy</span> <span class="o">=</span> <span 
class="mf">0.500000</span>
+<span class="n">test</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.378170</span><span class="p">,</span> 
<span class="n">test</span> <span class="n">accuracy</span> <span 
class="o">=</span> <span class="mf">0.507600</span>
+<span class="n">Epoch</span> <span class="mi">2</span>
+<span class="n">training</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.333137</span><span class="p">,</span> 
<span class="n">training</span> <span class="n">accuracy</span> <span 
class="o">=</span> <span class="mf">0.519960</span> <span 
class="n">accuracy</span> <span class="o">=</span> <span 
class="mf">0.520000</span>
+<span class="n">test</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.272205</span><span class="p">,</span> 
<span class="n">test</span> <span class="n">accuracy</span> <span 
class="o">=</span> <span class="mf">0.540600</span>
+<span class="n">Epoch</span> <span class="mi">3</span>
+<span class="n">training</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.185212</span><span class="p">,</span> 
<span class="n">training</span> <span class="n">accuracy</span> <span 
class="o">=</span> <span class="mf">0.574120</span> <span 
class="n">accuracy</span> <span class="o">=</span> <span 
class="mf">0.540000</span>
+<span class="n">test</span> <span class="n">loss</span> <span 
class="o">=</span> <span class="mf">1.211573</span><span class="p">,</span> 
<span class="n">test</span> <span class="n">accuracy</span> <span 
class="o">=</span> <span class="mf">0.567600</span>
+</pre></div>
+</div>
+<p>This script will call <code class="docutils literal notranslate"><span 
class="pre">alexnet.py</span></code> file to build the alexnet model. After the 
training is finished, SINGA will save the model parameters into a checkpoint 
file <code class="docutils literal notranslate"><span 
class="pre">model.bin</span></code> in the same directory. Then we can use this 
<code class="docutils literal notranslate"><span 
class="pre">model.bin</span></code> file for prediction.</p>
+<div class="highlight-default notranslate"><div 
class="highlight"><pre><span></span>$ python predict.py
+</pre></div>
+</div>
+</div>
+</div>
+
+
+           </div>
+           
+          </div>
+          <footer>
+  
+
+  <hr/>
+
+  <div role="contentinfo">
+    <p>
+        &copy; Copyright 2019 The Apache Software Foundation. All rights 
reserved. Apache SINGA, Apache, the Apache feather logo, and the Apache SINGA 
project logos are trademarks of The Apache Software Foundation. All other marks 
mentioned may be trademarks or registered trademarks of their respective owners.
+
+    </p>
+  </div>
+  Built with <a href="http://sphinx-doc.org/";>Sphinx</a> using a <a 
href="https://github.com/rtfd/sphinx_rtd_theme";>theme</a> provided by <a 
href="https://readthedocs.org";>Read the Docs</a>. 
+
+</footer>
+
+        </div>
+      </div>
+
+    </section>
+
+  </div>
+  
+
+
+  <script type="text/javascript">
+      jQuery(function () {
+          SphinxRtdTheme.Navigation.enable(true);
+      });
+  </script>
+
+  
+  
+    
+  
+
+<div class="rst-versions" data-toggle="rst-versions" role="note" 
aria-label="versions">
+  <span class="rst-current-version" data-toggle="rst-current-version">
+    <span class="fa fa-book"> incubator-singa </span>
+    v: latest
+    <span class="fa fa-caret-down"></span>
+  </span>
+  <div class="rst-other-versions">
+      <dl>
+          <dt>Languages</dt>
+          <dd><a href=".././index.html">English</a></dd>
+          <dd><a href=".././zh/index.html">中文</a></dd>
+      </dl>
+      <dl>
+          <dt>Versions</dt>
+          <dd><a href="http://singa.apache.org/v0.3.0/";>0.3</a></dd>
+          <dd><a href="http://singa.apache.org/v1.1.0/";>1.1</a></dd>
+      </dl>
+
+  </div>
+  <a href="http://incubator.apache.org/";> <img src= "../_static/apache.png" 
style="background-color:white;"> </a>
+
+  <a href="https://github.com/apache/incubator-singa"; class="fa fa-github" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a>
+  <a 
href="https://aws.amazon.com/marketplace/seller-profile?id=5bcac385-12c4-4802-aec7-351e09b77b4c";
 class="fab fa-aws" style="padding: 10px; font-size: 20px; width: 30px; 
text-align: center; text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://hub.docker.com/r/apache/singa/"; class="fab fa-docker" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a> 
+  <a href="https://www.linkedin.com/groups/13550034"; class="fa fa-linkedin" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://twitter.com/ApacheSinga"; class="fa fa-twitter" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://www.facebook.com/Apache-SINGA-347284219056544/"; class="fa 
fa-facebook" style="padding: 10px; font-size: 20px; width: 30px; text-align: 
center; text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://www.researchgate.net/project/Apache-SINGA"; class="fab 
fa-researchgate" style="padding: 10px; font-size: 20px; width: 30px; 
text-align: center; text-decoration: none; margin: 5px 2px;"></a>
+
+</div>
+
+ <a href="https://github.com/apache/incubator-singa";>
+    <img style="position: absolute; top: 0; right: 0; border: 0; z-index: 
10000;"
+        
src="https://s3.amazonaws.com/github/ribbons/forkme_right_orange_ff7600.png";
+        alt="Fork me on GitHub">
+</a>
+
+ 
+
+
+</body>
+</html>
\ No newline at end of file

Added: incubator/singa/site/trunk/docs/converter.html
URL: 
http://svn.apache.org/viewvc/incubator/singa/site/trunk/docs/converter.html?rev=1857927&view=auto
==============================================================================
--- incubator/singa/site/trunk/docs/converter.html (added)
+++ incubator/singa/site/trunk/docs/converter.html Sun Apr 21 22:05:49 2019
@@ -0,0 +1,299 @@
+
+
+
+<!DOCTYPE html>
+<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
+<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
+<head>
+  <meta charset="utf-8">
+  
+  <meta name="viewport" content="width=device-width, initial-scale=1.0">
+  
+  <title>Caffe Converter &mdash; incubator-singa 2.0.0 documentation</title>
+  
+
+  
+  
+  
+  
+
+  
+  <script type="text/javascript" src="../_static/js/modernizr.min.js"></script>
+  
+    
+      <script type="text/javascript" id="documentation_options" 
data-url_root="../" src="../_static/documentation_options.js"></script>
+        <script type="text/javascript" src="../_static/jquery.js"></script>
+        <script type="text/javascript" src="../_static/underscore.js"></script>
+        <script type="text/javascript" src="../_static/doctools.js"></script>
+        <script type="text/javascript" 
src="../_static/language_data.js"></script>
+    
+    <script type="text/javascript" src="../_static/js/theme.js"></script>
+
+    
+
+  
+  <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
+  <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
+    <link rel="index" title="Index" href="../genindex.html" />
+    <link rel="search" title="Search" href="../search.html" />
+    <link rel="next" title="Utils" href="utils.html" />
+    <link rel="prev" title="Snapshot" href="snapshot.html" />
+    <link href="../_static/style.css" rel="stylesheet" type="text/css">
+    <!--link href="../_static/fontawesome-all.min.css" rel="stylesheet" 
type="text/css"-->
+       <link rel="stylesheet" 
href="https://use.fontawesome.com/releases/v5.0.13/css/all.css"; 
integrity="sha384-DNOHZ68U8hZfKXOrtjWvjxusGo9WQnrNx2sqG0tfsghAvtVlRW3tvkXWZh58N9jp"
 crossorigin="anonymous">
+    <style>
+       .fa:hover {
+           opacity: 0.7;
+       }
+       .fab:hover {
+           opacity: 0.7;
+       }
+    </style>
+
+</head>
+
+<body class="wy-body-for-nav">
+
+   
+  <div class="wy-grid-for-nav">
+    
+    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
+      <div class="wy-side-scroll">
+        <div class="wy-side-nav-search" >
+          
+
+          
+            <a href="../index.html" class="icon icon-home"> incubator-singa
+          
+
+          
+            
+            <img src="../_static/singa.png" class="logo" alt="Logo"/>
+          
+          </a>
+
+          
+            
+            
+              <div class="version">
+                latest
+              </div>
+            
+          
+
+          
+<div role="search">
+  <form id="rtd-search-form" class="wy-form" action="../search.html" 
method="get">
+    <input type="text" name="q" placeholder="Search docs" />
+    <input type="hidden" name="check_keywords" value="yes" />
+    <input type="hidden" name="area" value="default" />
+  </form>
+</div>
+
+          
+        </div>
+
+        <div class="wy-menu wy-menu-vertical" data-spy="affix" 
role="navigation" aria-label="main navigation">
+          
+            
+            
+              
+            
+            
+              <ul class="current">
+<li class="toctree-l1 current"><a class="reference internal" 
href="index.html">Documentation</a><ul class="current">
+<li class="toctree-l2"><a class="reference internal" 
href="installation.html">Installation</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="software_stack.html">Software Stack</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="device.html">Device</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="tensor.html">Tensor</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="layer.html">Layer</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="net.html">FeedForward Net</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="initializer.html">Initializer</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="loss.html">Loss</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="metric.html">Metric</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="optimizer.html">Optimizer</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="autograd.html">Autograd in Singa</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="data.html">Data</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="image_tool.html">Image Tool</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="snapshot.html">Snapshot</a></li>
+<li class="toctree-l2 current"><a class="current reference internal" 
href="#">Caffe Converter</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="utils.html">Utils</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="model_zoo/index.html">Model Zoo</a></li>
+<li class="toctree-l2"><a class="reference internal" 
href="security.html">Security</a></li>
+</ul>
+</li>
+<li class="toctree-l1"><a class="reference internal" 
href="../downloads.html">Download SINGA</a></li>
+</ul>
+<p class="caption"><span class="caption-text">Development</span></p>
+<ul>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/schedule.html">Development Schedule</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/how-contribute.html">How to Contribute to SINGA</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/how-contribute.html#how-to-become-a-singa-committer">How to 
become a SINGA committer</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/contribute-code.html">How to Contribute Code</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/contribute-docs.html">How to Contribute to 
Documentation</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../develop/how-to-release.html">How to prepare a release</a></li>
+</ul>
+<p class="caption"><span class="caption-text">Community</span></p>
+<ul>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/source-repository.html">Source Repository</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/mail-lists.html">Project Mailing Lists</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/issue-tracking.html">Issue Tracking</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="../community/team-list.html">The SINGA Team</a></li>
+</ul>
+
+            
+          
+        </div>
+      </div>
+    </nav>
+
+    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
+
+      
+      <nav class="wy-nav-top" aria-label="top navigation">
+        
+          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
+          <a href="../index.html">incubator-singa</a>
+        
+      </nav>
+
+
+      <div class="wy-nav-content">
+        
+        <div class="rst-content">
+        
+          
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+<div role="navigation" aria-label="breadcrumbs navigation">
+
+  <ul class="wy-breadcrumbs">
+    
+      <li><a href="../index.html">Docs</a> &raquo;</li>
+        
+          <li><a href="index.html">Documentation</a> &raquo;</li>
+        
+      <li>Caffe Converter</li>
+    
+    
+      <li class="wy-breadcrumbs-aside">
+        
+            
+        
+      </li>
+    
+  </ul>
+
+  
+  <hr/>
+</div>
+          <div role="main" class="document" itemscope="itemscope" 
itemtype="http://schema.org/Article";>
+           <div itemprop="articleBody">
+            
+  <div class="section" id="caffe-converter">
+<h1>Caffe Converter<a class="headerlink" href="#caffe-converter" 
title="Permalink to this headline">¶</a></h1>
+</div>
+
+
+           </div>
+           
+          </div>
+          <footer>
+  
+    <div class="rst-footer-buttons" role="navigation" aria-label="footer 
navigation">
+      
+        <a href="utils.html" class="btn btn-neutral float-right" title="Utils" 
accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
+      
+      
+        <a href="snapshot.html" class="btn btn-neutral float-left" 
title="Snapshot" accesskey="p" rel="prev"><span class="fa 
fa-arrow-circle-left"></span> Previous</a>
+      
+    </div>
+  
+
+  <hr/>
+
+  <div role="contentinfo">
+    <p>
+        &copy; Copyright 2019 The Apache Software Foundation. All rights 
reserved. Apache SINGA, Apache, the Apache feather logo, and the Apache SINGA 
project logos are trademarks of The Apache Software Foundation. All other marks 
mentioned may be trademarks or registered trademarks of their respective owners.
+
+    </p>
+  </div>
+  Built with <a href="http://sphinx-doc.org/";>Sphinx</a> using a <a 
href="https://github.com/rtfd/sphinx_rtd_theme";>theme</a> provided by <a 
href="https://readthedocs.org";>Read the Docs</a>. 
+
+</footer>
+
+        </div>
+      </div>
+
+    </section>
+
+  </div>
+  
+
+
+  <script type="text/javascript">
+      jQuery(function () {
+          SphinxRtdTheme.Navigation.enable(true);
+      });
+  </script>
+
+  
+  
+    
+  
+
+<div class="rst-versions" data-toggle="rst-versions" role="note" 
aria-label="versions">
+  <span class="rst-current-version" data-toggle="rst-current-version">
+    <span class="fa fa-book"> incubator-singa </span>
+    v: latest
+    <span class="fa fa-caret-down"></span>
+  </span>
+  <div class="rst-other-versions">
+      <dl>
+          <dt>Languages</dt>
+          <dd><a href=".././index.html">English</a></dd>
+          <dd><a href=".././zh/index.html">中文</a></dd>
+      </dl>
+      <dl>
+          <dt>Versions</dt>
+          <dd><a href="http://singa.apache.org/v0.3.0/";>0.3</a></dd>
+          <dd><a href="http://singa.apache.org/v1.1.0/";>1.1</a></dd>
+      </dl>
+
+  </div>
+  <a href="http://incubator.apache.org/";> <img src= "../_static/apache.png" 
style="background-color:white;"> </a>
+
+  <a href="https://github.com/apache/incubator-singa"; class="fa fa-github" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a>
+  <a 
href="https://aws.amazon.com/marketplace/seller-profile?id=5bcac385-12c4-4802-aec7-351e09b77b4c";
 class="fab fa-aws" style="padding: 10px; font-size: 20px; width: 30px; 
text-align: center; text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://hub.docker.com/r/apache/singa/"; class="fab fa-docker" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a> 
+  <a href="https://www.linkedin.com/groups/13550034"; class="fa fa-linkedin" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://twitter.com/ApacheSinga"; class="fa fa-twitter" 
style="padding: 10px; font-size: 20px; width: 30px; text-align: center; 
text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://www.facebook.com/Apache-SINGA-347284219056544/"; class="fa 
fa-facebook" style="padding: 10px; font-size: 20px; width: 30px; text-align: 
center; text-decoration: none; margin: 5px 2px;"></a>
+  <a href="https://www.researchgate.net/project/Apache-SINGA"; class="fab 
fa-researchgate" style="padding: 10px; font-size: 20px; width: 30px; 
text-align: center; text-decoration: none; margin: 5px 2px;"></a>
+
+</div>
+
+ <a href="https://github.com/apache/incubator-singa";>
+    <img style="position: absolute; top: 0; right: 0; border: 0; z-index: 
10000;"
+        
src="https://s3.amazonaws.com/github/ribbons/forkme_right_orange_ff7600.png";
+        alt="Fork me on GitHub">
+</a>
+
+ 
+
+
+</body>
+</html>
\ No newline at end of file


Reply via email to