This is an automated email from the ASF dual-hosted git repository.

hossman pushed a commit to branch SOLR-17335
in repository https://gitbox.apache.org/repos/asf/solr.git

commit de4536cf738b35d3470d2f8caa2f3fa911fe3297
Author: Chris Hostetter <[email protected]>
AuthorDate: Tue Jun 18 11:55:15 2024 -0700

    Fix typos
---
 .../java/org/apache/solr/search/neural/VectorSimilarityQParser.java   | 2 +-
 .../solr-ref-guide/modules/query-guide/pages/dense-vector-search.adoc | 4 ++--
 2 files changed, 3 insertions(+), 3 deletions(-)

diff --git 
a/solr/core/src/java/org/apache/solr/search/neural/VectorSimilarityQParser.java 
b/solr/core/src/java/org/apache/solr/search/neural/VectorSimilarityQParser.java
index 164cafc5192..e3ec2f242f7 100644
--- 
a/solr/core/src/java/org/apache/solr/search/neural/VectorSimilarityQParser.java
+++ 
b/solr/core/src/java/org/apache/solr/search/neural/VectorSimilarityQParser.java
@@ -52,7 +52,7 @@ public class VectorSimilarityQParser extends 
AbstractVectorQParserBase {
     if (null == minReturn) {
       throw new SolrException(
           SolrException.ErrorCode.BAD_REQUEST,
-          MIN_RETURN + " is requried to use Vector Similarity QParser");
+          MIN_RETURN + " is required to use Vector Similarity QParser");
     }
 
     final DenseVectorParser vectorBuilder =
diff --git 
a/solr/solr-ref-guide/modules/query-guide/pages/dense-vector-search.adoc 
b/solr/solr-ref-guide/modules/query-guide/pages/dense-vector-search.adoc
index df761eeaf8d..d4ad9756176 100644
--- a/solr/solr-ref-guide/modules/query-guide/pages/dense-vector-search.adoc
+++ b/solr/solr-ref-guide/modules/query-guide/pages/dense-vector-search.adoc
@@ -238,7 +238,7 @@ client.add(Arrays.asList(d1, d2));
 
 == Query Time
 
-Apache Solr provides two query parsers that work with dense vector fields, 
that each support differnet ways of matching documents based on vector 
similarity: The `knn` query parser, and the `vecSim` query parser.
+Apache Solr provides two query parsers that work with dense vector fields, 
that each support different ways of matching documents based on vector 
similarity: The `knn` query parser, and the `vecSim` query parser.
 
 Both parsers return scores for retrieved documents that is the approximate 
distance to the target vector (defined by the similarityFunction configured at 
indexing time) and both support "Pre-Filtering" the document graph to reduce 
the number of candidate vectors evaluated (with out needing to compute their 
vector similarity distances).
 
@@ -348,7 +348,7 @@ The `preFilter` parameter can be specified explicitly to 
reduce the number of ca
 [source,text]
 ?q={!vecSim f=vector minReturn=0.7 preFilter=inStock:true}[1.0, 2.0, 3.0, 4.0]
 
-In the above example, only documents matching the Pre-Filter `inStock:true` 
will be candidates for consideration when evaluating the `knn` search against 
the specified vector.
+In the above example, only documents matching the Pre-Filter `inStock:true` 
will be candidates for consideration when evaluating the `vecSim` search 
against the specified vector.
 
 The `preFilter` parameter may be blank (ex: `preFilter=""`) to indicate that 
no Pre-Filtering should be performed; or it may be multi-valued -- either 
through repetition, or via duplicated 
xref:local-params.adoc#parameter-dereferencing[Parameter References].
 

Reply via email to