Repository: spark
Updated Branches:
  refs/heads/master c2fe3a6ff -> b19605619


[SPARK-5537][MLlib][Docs] Add user guide for multinomial logistic regression

Adding more description on top of #4861.

Author: DB Tsai <[email protected]>

Closes #4866 from dbtsai/doc and squashes the following commits:

37e9d07 [DB Tsai] doc


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/b1960561
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/b1960561
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/b1960561

Branch: refs/heads/master
Commit: b196056190c569505cc32669d1aec30ed9d70665
Parents: c2fe3a6
Author: DB Tsai <[email protected]>
Authored: Mon Mar 2 22:37:12 2015 -0800
Committer: Xiangrui Meng <[email protected]>
Committed: Mon Mar 2 22:37:12 2015 -0800

----------------------------------------------------------------------
 docs/mllib-linear-methods.md | 10 ++++++++++
 1 file changed, 10 insertions(+)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/b1960561/docs/mllib-linear-methods.md
----------------------------------------------------------------------
diff --git a/docs/mllib-linear-methods.md b/docs/mllib-linear-methods.md
index 03f90d7..9270741 100644
--- a/docs/mllib-linear-methods.md
+++ b/docs/mllib-linear-methods.md
@@ -784,9 +784,19 @@ regularization parameter (`regParam`) along with various 
parameters associated w
 gradient descent (`stepSize`, `numIterations`, `miniBatchFraction`).  For each 
of them, we support
 all three possible regularizations (none, L1 or L2).
 
+For Logistic Regression, 
[L-BFGS](api/scala/index.html#org.apache.spark.mllib.optimization.LBFGS)
+version is implemented under [LogisticRegressionWithLBFGS]
+(api/scala/index.html#org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS),
 and this
+version supports both binary and multinomial Logistic Regression while SGD 
version only supports
+binary Logistic Regression. However, L-BFGS version doesn't support L1 
regularization but SGD one
+supports L1 regularization. When L1 regularization is not required, L-BFGS 
version is strongly
+recommended since it converges faster and more accurately compared to SGD by 
approximating the
+inverse Hessian matrix using quasi-Newton method.
+
 Algorithms are all implemented in Scala:
 
 * 
[SVMWithSGD](api/scala/index.html#org.apache.spark.mllib.classification.SVMWithSGD)
+* 
[LogisticRegressionWithLBFGS](api/scala/index.html#org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS)
 * 
[LogisticRegressionWithSGD](api/scala/index.html#org.apache.spark.mllib.classification.LogisticRegressionWithSGD)
 * 
[LinearRegressionWithSGD](api/scala/index.html#org.apache.spark.mllib.regression.LinearRegressionWithSGD)
 * 
[RidgeRegressionWithSGD](api/scala/index.html#org.apache.spark.mllib.regression.RidgeRegressionWithSGD)


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to