Repository: spark
Updated Branches:
  refs/heads/master 5e360c93b -> 9ee95b6ec


[SPARK-14491] [SQL] refactor object operator framework to make it easy to 
eliminate serializations

## What changes were proposed in this pull request?

This PR tries to separate the serialization and deserialization logic from 
object operators, so that it's easier to eliminate unnecessary serializations 
in optimizer.

Typed aggregate related operators are special, they will deserialize the input 
row to multiple objects and it's difficult to simply use a deserializer 
operator to abstract it, so we still mix the deserialization logic there.

## How was this patch tested?

existing tests and new test in `EliminateSerializationSuite`

Author: Wenchen Fan <wenc...@databricks.com>

Closes #12260 from cloud-fan/encoder.


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/9ee95b6e
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/9ee95b6e
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/9ee95b6e

Branch: refs/heads/master
Commit: 9ee95b6eccba41460b79c0aced9d00a39b5ae0c3
Parents: 5e360c9
Author: Wenchen Fan <wenc...@databricks.com>
Authored: Tue Apr 19 10:00:44 2016 -0700
Committer: Davies Liu <davies....@gmail.com>
Committed: Tue Apr 19 10:00:44 2016 -0700

----------------------------------------------------------------------
 .../spark/sql/catalyst/analysis/Analyzer.scala  |   6 +-
 .../apache/spark/sql/catalyst/dsl/package.scala |   4 +
 .../sql/catalyst/optimizer/Optimizer.scala      |  31 +---
 .../sql/catalyst/plans/logical/object.scala     | 166 +++++++++----------
 .../optimizer/EliminateSerializationSuite.scala |  62 +++----
 .../scala/org/apache/spark/sql/Dataset.scala    |  10 +-
 .../spark/sql/execution/SparkStrategies.scala   |  22 +--
 .../spark/sql/execution/WholeStageCodegen.scala |   4 +
 .../apache/spark/sql/execution/objects.scala    | 160 +++++++++++-------
 .../scala/org/apache/spark/sql/QueryTest.scala  |   4 +-
 .../sql/execution/WholeStageCodegenSuite.scala  |   2 +-
 11 files changed, 254 insertions(+), 217 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/9ee95b6e/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala
----------------------------------------------------------------------
diff --git 
a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala
 
b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala
index 6591559..0e2fd43 100644
--- 
a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala
+++ 
b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala
@@ -1672,9 +1672,9 @@ object CleanupAliases extends Rule[LogicalPlan] {
 
     // Operators that operate on objects should only have expressions from 
encoders, which should
     // never have extra aliases.
-    case o: ObjectOperator => o
-    case d: DeserializeToObject => d
-    case s: SerializeFromObject => s
+    case o: ObjectConsumer => o
+    case o: ObjectProducer => o
+    case a: AppendColumns => a
 
     case other =>
       var stop = false

http://git-wip-us.apache.org/repos/asf/spark/blob/9ee95b6e/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/dsl/package.scala
----------------------------------------------------------------------
diff --git 
a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/dsl/package.scala 
b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/dsl/package.scala
index 9589663..085e95f 100644
--- 
a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/dsl/package.scala
+++ 
b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/dsl/package.scala
@@ -245,6 +245,10 @@ package object dsl {
       def struct(attrs: AttributeReference*): AttributeReference =
         struct(StructType.fromAttributes(attrs))
 
+      /** Creates a new AttributeReference of object type */
+      def obj(cls: Class[_]): AttributeReference =
+        AttributeReference(s, ObjectType(cls), nullable = true)()
+
       /** Create a function. */
       def function(exprs: Expression*): UnresolvedFunction =
         UnresolvedFunction(s, exprs, isDistinct = false)

http://git-wip-us.apache.org/repos/asf/spark/blob/9ee95b6e/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala
----------------------------------------------------------------------
diff --git 
a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala
 
b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala
index b806b72..0a5232b 100644
--- 
a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala
+++ 
b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala
@@ -153,29 +153,16 @@ object SamplePushDown extends Rule[LogicalPlan] {
  * representation of data item.  For example back to back map operations.
  */
 object EliminateSerialization extends Rule[LogicalPlan] {
-  // TODO: find a more general way to do this optimization.
   def apply(plan: LogicalPlan): LogicalPlan = plan transform {
-    case m @ MapPartitions(_, deserializer, _, child: ObjectOperator)
-        if !deserializer.isInstanceOf[Attribute] &&
-          deserializer.dataType == child.outputObject.dataType =>
-      val childWithoutSerialization = child.withObjectOutput
-      m.copy(
-        deserializer = childWithoutSerialization.output.head,
-        child = childWithoutSerialization)
-
-    case m @ MapElements(_, deserializer, _, child: ObjectOperator)
-        if !deserializer.isInstanceOf[Attribute] &&
-          deserializer.dataType == child.outputObject.dataType =>
-      val childWithoutSerialization = child.withObjectOutput
-      m.copy(
-        deserializer = childWithoutSerialization.output.head,
-        child = childWithoutSerialization)
-
-    case d @ DeserializeToObject(_, s: SerializeFromObject)
+    case d @ DeserializeToObject(_, _, s: SerializeFromObject)
         if d.outputObjectType == s.inputObjectType =>
       // Adds an extra Project here, to preserve the output expr id of 
`DeserializeToObject`.
       val objAttr = Alias(s.child.output.head, "obj")(exprId = 
d.output.head.exprId)
       Project(objAttr :: Nil, s.child)
+
+    case a @ AppendColumns(_, _, _, s: SerializeFromObject)
+        if a.deserializer.dataType == s.inputObjectType =>
+      AppendColumnsWithObject(a.func, s.serializer, a.serializer, s.child)
   }
 }
 
@@ -366,9 +353,9 @@ object ColumnPruning extends Rule[LogicalPlan] {
       }
       a.copy(child = Expand(newProjects, newOutput, grandChild))
 
-    // Prunes the unused columns from child of MapPartitions
-    case mp @ MapPartitions(_, _, _, child) if (child.outputSet -- 
mp.references).nonEmpty =>
-      mp.copy(child = prunedChild(child, mp.references))
+    // Prunes the unused columns from child of `DeserializeToObject`
+    case d @ DeserializeToObject(_, _, child) if (child.outputSet -- 
d.references).nonEmpty =>
+      d.copy(child = prunedChild(child, d.references))
 
     // Prunes the unused columns from child of Aggregate/Expand/Generate
     case a @ Aggregate(_, _, child) if (child.outputSet -- 
a.references).nonEmpty =>
@@ -1453,7 +1440,7 @@ object EmbedSerializerInFilter extends Rule[LogicalPlan] {
         s
       } else {
         val newCondition = condition transform {
-          case a: Attribute if a == d.output.head => d.deserializer.child
+          case a: Attribute if a == d.output.head => d.deserializer
         }
         Filter(newCondition, d.child)
       }

http://git-wip-us.apache.org/repos/asf/spark/blob/9ee95b6e/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/object.scala
----------------------------------------------------------------------
diff --git 
a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/object.scala
 
b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/object.scala
index 6df4618..4a1bdb0 100644
--- 
a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/object.scala
+++ 
b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/object.scala
@@ -21,126 +21,111 @@ import org.apache.spark.sql.Encoder
 import org.apache.spark.sql.catalyst.analysis.UnresolvedDeserializer
 import org.apache.spark.sql.catalyst.encoders._
 import org.apache.spark.sql.catalyst.expressions._
-import org.apache.spark.sql.types.{DataType, ObjectType, StructType}
+import org.apache.spark.sql.types.{DataType, StructType}
 
 object CatalystSerde {
   def deserialize[T : Encoder](child: LogicalPlan): DeserializeToObject = {
     val deserializer = UnresolvedDeserializer(encoderFor[T].deserializer)
-    DeserializeToObject(Alias(deserializer, "obj")(), child)
+    DeserializeToObject(deserializer, generateObjAttr[T], child)
   }
 
   def serialize[T : Encoder](child: LogicalPlan): SerializeFromObject = {
     SerializeFromObject(encoderFor[T].namedExpressions, child)
   }
+
+  def generateObjAttr[T : Encoder]: Attribute = {
+    AttributeReference("obj", encoderFor[T].deserializer.dataType, nullable = 
false)()
+  }
 }
 
 /**
- * Takes the input row from child and turns it into object using the given 
deserializer expression.
- * The output of this operator is a single-field safe row containing the 
deserialized object.
+ * A trait for logical operators that produces domain objects as output.
+ * The output of this operator is a single-field safe row containing the 
produced object.
  */
-case class DeserializeToObject(
-    deserializer: Alias,
-    child: LogicalPlan) extends UnaryNode {
-  override def output: Seq[Attribute] = deserializer.toAttribute :: Nil
+trait ObjectProducer extends LogicalPlan {
+  // The attribute that reference to the single object field this operator 
outputs.
+  protected def outputObjAttr: Attribute
+
+  override def output: Seq[Attribute] = outputObjAttr :: Nil
+
+  override def producedAttributes: AttributeSet = AttributeSet(outputObjAttr)
 
-  def outputObjectType: DataType = deserializer.dataType
+  def outputObjectType: DataType = outputObjAttr.dataType
 }
 
 /**
- * Takes the input object from child and turns in into unsafe row using the 
given serializer
- * expression.  The output of its child must be a single-field row containing 
the input object.
+ * A trait for logical operators that consumes domain objects as input.
+ * The output of its child must be a single-field row containing the input 
object.
  */
-case class SerializeFromObject(
-    serializer: Seq[NamedExpression],
-    child: LogicalPlan) extends UnaryNode {
-  override def output: Seq[Attribute] = serializer.map(_.toAttribute)
+trait ObjectConsumer extends UnaryNode {
+  assert(child.output.length == 1)
+
+  // This operator always need all columns of its child, even it doesn't 
reference to.
+  override def references: AttributeSet = child.outputSet
 
   def inputObjectType: DataType = child.output.head.dataType
 }
 
 /**
- * A trait for logical operators that apply user defined functions to domain 
objects.
+ * Takes the input row from child and turns it into object using the given 
deserializer expression.
  */
-trait ObjectOperator extends LogicalPlan {
+case class DeserializeToObject(
+    deserializer: Expression,
+    outputObjAttr: Attribute,
+    child: LogicalPlan) extends UnaryNode with ObjectProducer
 
-  /** The serializer that is used to produce the output of this operator. */
-  def serializer: Seq[NamedExpression]
+/**
+ * Takes the input object from child and turns it into unsafe row using the 
given serializer
+ * expression.
+ */
+case class SerializeFromObject(
+    serializer: Seq[NamedExpression],
+    child: LogicalPlan) extends UnaryNode with ObjectConsumer {
 
   override def output: Seq[Attribute] = serializer.map(_.toAttribute)
-
-  /**
-   * The object type that is produced by the user defined function. Note that 
the return type here
-   * is the same whether or not the operator is output serialized data.
-   */
-  def outputObject: NamedExpression =
-    Alias(serializer.head.collect { case b: BoundReference => b }.head, 
"obj")()
-
-  /**
-   * Returns a copy of this operator that will produce an object instead of an 
encoded row.
-   * Used in the optimizer when transforming plans to remove unneeded 
serialization.
-   */
-  def withObjectOutput: LogicalPlan = if 
(output.head.dataType.isInstanceOf[ObjectType]) {
-    this
-  } else {
-    withNewSerializer(outputObject :: Nil)
-  }
-
-  /** Returns a copy of this operator with a different serializer. */
-  def withNewSerializer(newSerializer: Seq[NamedExpression]): LogicalPlan = 
makeCopy {
-    productIterator.map {
-      case c if c == serializer => newSerializer
-      case other: AnyRef => other
-    }.toArray
-  }
 }
 
 object MapPartitions {
   def apply[T : Encoder, U : Encoder](
       func: Iterator[T] => Iterator[U],
-      child: LogicalPlan): MapPartitions = {
-    MapPartitions(
+      child: LogicalPlan): LogicalPlan = {
+    val deserialized = CatalystSerde.deserialize[T](child)
+    val mapped = MapPartitions(
       func.asInstanceOf[Iterator[Any] => Iterator[Any]],
-      UnresolvedDeserializer(encoderFor[T].deserializer),
-      encoderFor[U].namedExpressions,
-      child)
+      CatalystSerde.generateObjAttr[U],
+      deserialized)
+    CatalystSerde.serialize[U](mapped)
   }
 }
 
 /**
  * A relation produced by applying `func` to each partition of the `child`.
- *
- * @param deserializer used to extract the input to `func` from an input row.
- * @param serializer use to serialize the output of `func`.
  */
 case class MapPartitions(
     func: Iterator[Any] => Iterator[Any],
-    deserializer: Expression,
-    serializer: Seq[NamedExpression],
-    child: LogicalPlan) extends UnaryNode with ObjectOperator
+    outputObjAttr: Attribute,
+    child: LogicalPlan) extends UnaryNode with ObjectConsumer with 
ObjectProducer
 
 object MapElements {
   def apply[T : Encoder, U : Encoder](
       func: AnyRef,
-      child: LogicalPlan): MapElements = {
-    MapElements(
+      child: LogicalPlan): LogicalPlan = {
+    val deserialized = CatalystSerde.deserialize[T](child)
+    val mapped = MapElements(
       func,
-      UnresolvedDeserializer(encoderFor[T].deserializer),
-      encoderFor[U].namedExpressions,
-      child)
+      CatalystSerde.generateObjAttr[U],
+      deserialized)
+    CatalystSerde.serialize[U](mapped)
   }
 }
 
 /**
  * A relation produced by applying `func` to each element of the `child`.
- *
- * @param deserializer used to extract the input to `func` from an input row.
- * @param serializer use to serialize the output of `func`.
  */
 case class MapElements(
     func: AnyRef,
-    deserializer: Expression,
-    serializer: Seq[NamedExpression],
-    child: LogicalPlan) extends UnaryNode with ObjectOperator
+    outputObjAttr: Attribute,
+    child: LogicalPlan) extends UnaryNode with ObjectConsumer with 
ObjectProducer
 
 /** Factory for constructing new `AppendColumn` nodes. */
 object AppendColumns {
@@ -156,7 +141,7 @@ object AppendColumns {
 }
 
 /**
- * A relation produced by applying `func` to each partition of the `child`, 
concatenating the
+ * A relation produced by applying `func` to each element of the `child`, 
concatenating the
  * resulting columns at the end of the input row.
  *
  * @param deserializer used to extract the input to `func` from an input row.
@@ -166,28 +151,41 @@ case class AppendColumns(
     func: Any => Any,
     deserializer: Expression,
     serializer: Seq[NamedExpression],
-    child: LogicalPlan) extends UnaryNode with ObjectOperator {
+    child: LogicalPlan) extends UnaryNode {
 
   override def output: Seq[Attribute] = child.output ++ newColumns
 
   def newColumns: Seq[Attribute] = serializer.map(_.toAttribute)
 }
 
+/**
+ * An optimized version of [[AppendColumns]], that can be executed on 
deserialized object directly.
+ */
+case class AppendColumnsWithObject(
+    func: Any => Any,
+    childSerializer: Seq[NamedExpression],
+    newColumnsSerializer: Seq[NamedExpression],
+    child: LogicalPlan) extends UnaryNode with ObjectConsumer {
+
+  override def output: Seq[Attribute] = (childSerializer ++ 
newColumnsSerializer).map(_.toAttribute)
+}
+
 /** Factory for constructing new `MapGroups` nodes. */
 object MapGroups {
   def apply[K : Encoder, T : Encoder, U : Encoder](
       func: (K, Iterator[T]) => TraversableOnce[U],
       groupingAttributes: Seq[Attribute],
       dataAttributes: Seq[Attribute],
-      child: LogicalPlan): MapGroups = {
-    new MapGroups(
+      child: LogicalPlan): LogicalPlan = {
+    val mapped = new MapGroups(
       func.asInstanceOf[(Any, Iterator[Any]) => TraversableOnce[Any]],
       UnresolvedDeserializer(encoderFor[K].deserializer, groupingAttributes),
       UnresolvedDeserializer(encoderFor[T].deserializer, dataAttributes),
-      encoderFor[U].namedExpressions,
       groupingAttributes,
       dataAttributes,
+      CatalystSerde.generateObjAttr[U],
       child)
+    CatalystSerde.serialize[U](mapped)
   }
 }
 
@@ -198,43 +196,43 @@ object MapGroups {
  *
  * @param keyDeserializer used to extract the key object for each group.
  * @param valueDeserializer used to extract the items in the iterator from an 
input row.
- * @param serializer use to serialize the output of `func`.
  */
 case class MapGroups(
     func: (Any, Iterator[Any]) => TraversableOnce[Any],
     keyDeserializer: Expression,
     valueDeserializer: Expression,
-    serializer: Seq[NamedExpression],
     groupingAttributes: Seq[Attribute],
     dataAttributes: Seq[Attribute],
-    child: LogicalPlan) extends UnaryNode with ObjectOperator
+    outputObjAttr: Attribute,
+    child: LogicalPlan) extends UnaryNode with ObjectProducer
 
 /** Factory for constructing new `CoGroup` nodes. */
 object CoGroup {
-  def apply[Key : Encoder, Left : Encoder, Right : Encoder, Result : Encoder](
-      func: (Key, Iterator[Left], Iterator[Right]) => TraversableOnce[Result],
+  def apply[K : Encoder, L : Encoder, R : Encoder, OUT : Encoder](
+      func: (K, Iterator[L], Iterator[R]) => TraversableOnce[OUT],
       leftGroup: Seq[Attribute],
       rightGroup: Seq[Attribute],
       leftAttr: Seq[Attribute],
       rightAttr: Seq[Attribute],
       left: LogicalPlan,
-      right: LogicalPlan): CoGroup = {
+      right: LogicalPlan): LogicalPlan = {
     require(StructType.fromAttributes(leftGroup) == 
StructType.fromAttributes(rightGroup))
 
-    CoGroup(
+    val cogrouped = CoGroup(
       func.asInstanceOf[(Any, Iterator[Any], Iterator[Any]) => 
TraversableOnce[Any]],
       // The `leftGroup` and `rightGroup` are guaranteed te be of same schema, 
so it's safe to
       // resolve the `keyDeserializer` based on either of them, here we pick 
the left one.
-      UnresolvedDeserializer(encoderFor[Key].deserializer, leftGroup),
-      UnresolvedDeserializer(encoderFor[Left].deserializer, leftAttr),
-      UnresolvedDeserializer(encoderFor[Right].deserializer, rightAttr),
-      encoderFor[Result].namedExpressions,
+      UnresolvedDeserializer(encoderFor[K].deserializer, leftGroup),
+      UnresolvedDeserializer(encoderFor[L].deserializer, leftAttr),
+      UnresolvedDeserializer(encoderFor[R].deserializer, rightAttr),
       leftGroup,
       rightGroup,
       leftAttr,
       rightAttr,
+      CatalystSerde.generateObjAttr[OUT],
       left,
       right)
+    CatalystSerde.serialize[OUT](cogrouped)
   }
 }
 
@@ -247,10 +245,10 @@ case class CoGroup(
     keyDeserializer: Expression,
     leftDeserializer: Expression,
     rightDeserializer: Expression,
-    serializer: Seq[NamedExpression],
     leftGroup: Seq[Attribute],
     rightGroup: Seq[Attribute],
     leftAttr: Seq[Attribute],
     rightAttr: Seq[Attribute],
+    outputObjAttr: Attribute,
     left: LogicalPlan,
-    right: LogicalPlan) extends BinaryNode with ObjectOperator
+    right: LogicalPlan) extends BinaryNode with ObjectProducer

http://git-wip-us.apache.org/repos/asf/spark/blob/9ee95b6e/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/EliminateSerializationSuite.scala
----------------------------------------------------------------------
diff --git 
a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/EliminateSerializationSuite.scala
 
b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/EliminateSerializationSuite.scala
index 9177737..3c033dd 100644
--- 
a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/EliminateSerializationSuite.scala
+++ 
b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/optimizer/EliminateSerializationSuite.scala
@@ -22,8 +22,7 @@ import scala.reflect.runtime.universe.TypeTag
 import org.apache.spark.sql.catalyst.dsl.expressions._
 import org.apache.spark.sql.catalyst.dsl.plans._
 import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
-import org.apache.spark.sql.catalyst.expressions.NewInstance
-import org.apache.spark.sql.catalyst.plans.logical.{LocalRelation, 
LogicalPlan, MapPartitions}
+import org.apache.spark.sql.catalyst.plans.logical._
 import org.apache.spark.sql.catalyst.plans.PlanTest
 import org.apache.spark.sql.catalyst.rules.RuleExecutor
 
@@ -37,40 +36,45 @@ class EliminateSerializationSuite extends PlanTest {
   }
 
   implicit private def productEncoder[T <: Product : TypeTag] = 
ExpressionEncoder[T]()
-  private val func = identity[Iterator[(Int, Int)]] _
-  private val func2 = identity[Iterator[OtherTuple]] _
+  implicit private def intEncoder = ExpressionEncoder[Int]()
 
-  def assertObjectCreations(count: Int, plan: LogicalPlan): Unit = {
-    val newInstances = plan.flatMap(_.expressions.collect {
-      case n: NewInstance => n
-    })
+  test("back to back serialization") {
+    val input = LocalRelation('obj.obj(classOf[(Int, Int)]))
+    val plan = input.serialize[(Int, Int)].deserialize[(Int, Int)].analyze
+    val optimized = Optimize.execute(plan)
+    val expected = input.select('obj.as("obj")).analyze
+    comparePlans(optimized, expected)
+  }
 
-    if (newInstances.size != count) {
-      fail(
-        s"""
-           |Wrong number of object creations in plan: ${newInstances.size} != 
$count
-           |$plan
-         """.stripMargin)
-    }
+  test("back to back serialization with object change") {
+    val input = LocalRelation('obj.obj(classOf[OtherTuple]))
+    val plan = input.serialize[OtherTuple].deserialize[(Int, Int)].analyze
+    val optimized = Optimize.execute(plan)
+    comparePlans(optimized, plan)
   }
 
-  test("back to back MapPartitions") {
-    val input = LocalRelation('_1.int, '_2.int)
-    val plan =
-      MapPartitions(func,
-        MapPartitions(func, input))
+  test("back to back serialization in AppendColumns") {
+    val input = LocalRelation('obj.obj(classOf[(Int, Int)]))
+    val func = (item: (Int, Int)) => item._1
+    val plan = AppendColumns(func, input.serialize[(Int, Int)]).analyze
+
+    val optimized = Optimize.execute(plan)
+
+    val expected = AppendColumnsWithObject(
+      func.asInstanceOf[Any => Any],
+      productEncoder[(Int, Int)].namedExpressions,
+      intEncoder.namedExpressions,
+      input).analyze
 
-    val optimized = Optimize.execute(plan.analyze)
-    assertObjectCreations(1, optimized)
+    comparePlans(optimized, expected)
   }
 
-  test("back to back with object change") {
-    val input = LocalRelation('_1.int, '_2.int)
-    val plan =
-      MapPartitions(func,
-        MapPartitions(func2, input))
+  test("back to back serialization in AppendColumns with object change") {
+    val input = LocalRelation('obj.obj(classOf[OtherTuple]))
+    val func = (item: (Int, Int)) => item._1
+    val plan = AppendColumns(func, input.serialize[OtherTuple]).analyze
 
-    val optimized = Optimize.execute(plan.analyze)
-    assertObjectCreations(2, optimized)
+    val optimized = Optimize.execute(plan)
+    comparePlans(optimized, plan)
   }
 }

http://git-wip-us.apache.org/repos/asf/spark/blob/9ee95b6e/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala 
b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala
index 1a09d70..3c708cb 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala
@@ -2251,16 +2251,16 @@ class Dataset[T] private[sql](
   def unpersist(): this.type = unpersist(blocking = false)
 
   /**
-   * Represents the content of the [[Dataset]] as an [[RDD]] of [[Row]]s. Note 
that the RDD is
-   * memoized. Once called, it won't change even if you change any query 
planning related Spark SQL
-   * configurations (e.g. `spark.sql.shuffle.partitions`).
+   * Represents the content of the [[Dataset]] as an [[RDD]] of [[T]].
    *
    * @group rdd
    * @since 1.6.0
    */
   lazy val rdd: RDD[T] = {
-    queryExecution.toRdd.mapPartitions { rows =>
-      rows.map(boundTEncoder.fromRow)
+    val objectType = unresolvedTEncoder.deserializer.dataType
+    val deserialized = CatalystSerde.deserialize[T](logicalPlan)
+    sqlContext.executePlan(deserialized).toRdd.mapPartitions { rows =>
+      rows.map(_.get(0, objectType).asInstanceOf[T])
     }
   }
 

http://git-wip-us.apache.org/repos/asf/spark/blob/9ee95b6e/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala
----------------------------------------------------------------------
diff --git 
a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala 
b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala
index c15aaed..a4b0fa5 100644
--- 
a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala
+++ 
b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala
@@ -346,21 +346,23 @@ private[sql] abstract class SparkStrategies extends 
QueryPlanner[SparkPlan] {
         throw new IllegalStateException(
           "logical intersect operator should have been replaced by semi-join 
in the optimizer")
 
-      case logical.DeserializeToObject(deserializer, child) =>
-        execution.DeserializeToObject(deserializer, planLater(child)) :: Nil
+      case logical.DeserializeToObject(deserializer, objAttr, child) =>
+        execution.DeserializeToObject(deserializer, objAttr, planLater(child)) 
:: Nil
       case logical.SerializeFromObject(serializer, child) =>
         execution.SerializeFromObject(serializer, planLater(child)) :: Nil
-      case logical.MapPartitions(f, in, out, child) =>
-        execution.MapPartitions(f, in, out, planLater(child)) :: Nil
-      case logical.MapElements(f, in, out, child) =>
-        execution.MapElements(f, in, out, planLater(child)) :: Nil
+      case logical.MapPartitions(f, objAttr, child) =>
+        execution.MapPartitions(f, objAttr, planLater(child)) :: Nil
+      case logical.MapElements(f, objAttr, child) =>
+        execution.MapElements(f, objAttr, planLater(child)) :: Nil
       case logical.AppendColumns(f, in, out, child) =>
         execution.AppendColumns(f, in, out, planLater(child)) :: Nil
-      case logical.MapGroups(f, key, in, out, grouping, data, child) =>
-        execution.MapGroups(f, key, in, out, grouping, data, planLater(child)) 
:: Nil
-      case logical.CoGroup(f, keyObj, lObj, rObj, out, lGroup, rGroup, lAttr, 
rAttr, left, right) =>
+      case logical.AppendColumnsWithObject(f, childSer, newSer, child) =>
+        execution.AppendColumnsWithObject(f, childSer, newSer, 
planLater(child)) :: Nil
+      case logical.MapGroups(f, key, value, grouping, data, objAttr, child) =>
+        execution.MapGroups(f, key, value, grouping, data, objAttr, 
planLater(child)) :: Nil
+      case logical.CoGroup(f, key, lObj, rObj, lGroup, rGroup, lAttr, rAttr, 
oAttr, left, right) =>
         execution.CoGroup(
-          f, keyObj, lObj, rObj, out, lGroup, rGroup, lAttr, rAttr,
+          f, key, lObj, rObj, lGroup, rGroup, lAttr, rAttr, oAttr,
           planLater(left), planLater(right)) :: Nil
 
       case logical.Repartition(numPartitions, shuffle, child) =>

http://git-wip-us.apache.org/repos/asf/spark/blob/9ee95b6e/sql/core/src/main/scala/org/apache/spark/sql/execution/WholeStageCodegen.scala
----------------------------------------------------------------------
diff --git 
a/sql/core/src/main/scala/org/apache/spark/sql/execution/WholeStageCodegen.scala
 
b/sql/core/src/main/scala/org/apache/spark/sql/execution/WholeStageCodegen.scala
index 46eaede..23b2eab 100644
--- 
a/sql/core/src/main/scala/org/apache/spark/sql/execution/WholeStageCodegen.scala
+++ 
b/sql/core/src/main/scala/org/apache/spark/sql/execution/WholeStageCodegen.scala
@@ -473,6 +473,10 @@ case class CollapseCodegenStages(conf: SQLConf) extends 
Rule[SparkPlan] {
    * Inserts a WholeStageCodegen on top of those that support codegen.
    */
   private def insertWholeStageCodegen(plan: SparkPlan): SparkPlan = plan match 
{
+    // For operators that will output domain object, do not insert 
WholeStageCodegen for it as
+    // domain object can not be written into unsafe row.
+    case plan if plan.output.length == 1 && 
plan.output.head.dataType.isInstanceOf[ObjectType] =>
+      plan.withNewChildren(plan.children.map(insertWholeStageCodegen))
     case plan: CodegenSupport if supportCodegen(plan) =>
       WholeStageCodegen(insertInputAdapter(plan))
     case other =>

http://git-wip-us.apache.org/repos/asf/spark/blob/9ee95b6e/sql/core/src/main/scala/org/apache/spark/sql/execution/objects.scala
----------------------------------------------------------------------
diff --git 
a/sql/core/src/main/scala/org/apache/spark/sql/execution/objects.scala 
b/sql/core/src/main/scala/org/apache/spark/sql/execution/objects.scala
index e7261fc..7c8bc7f 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/execution/objects.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/objects.scala
@@ -25,16 +25,19 @@ import org.apache.spark.sql.catalyst.InternalRow
 import org.apache.spark.sql.catalyst.expressions._
 import org.apache.spark.sql.catalyst.expressions.codegen._
 import org.apache.spark.sql.catalyst.plans.physical._
-import org.apache.spark.sql.types.ObjectType
+import org.apache.spark.sql.types.{DataType, ObjectType}
 
 /**
  * Takes the input row from child and turns it into object using the given 
deserializer expression.
  * The output of this operator is a single-field safe row containing the 
deserialized object.
  */
 case class DeserializeToObject(
-    deserializer: Alias,
+    deserializer: Expression,
+    outputObjAttr: Attribute,
     child: SparkPlan) extends UnaryNode with CodegenSupport {
-  override def output: Seq[Attribute] = deserializer.toAttribute :: Nil
+
+  override def output: Seq[Attribute] = outputObjAttr :: Nil
+  override def producedAttributes: AttributeSet = AttributeSet(outputObjAttr)
 
   override def inputRDDs(): Seq[RDD[InternalRow]] = {
     child.asInstanceOf[CodegenSupport].inputRDDs()
@@ -67,6 +70,7 @@ case class DeserializeToObject(
 case class SerializeFromObject(
     serializer: Seq[NamedExpression],
     child: SparkPlan) extends UnaryNode with CodegenSupport {
+
   override def output: Seq[Attribute] = serializer.map(_.toAttribute)
 
   override def inputRDDs(): Seq[RDD[InternalRow]] = {
@@ -98,60 +102,71 @@ case class SerializeFromObject(
  * Helper functions for physical operators that work with user defined objects.
  */
 trait ObjectOperator extends SparkPlan {
-  def generateToObject(objExpr: Expression, inputSchema: Seq[Attribute]): 
InternalRow => Any = {
-    val objectProjection = GenerateSafeProjection.generate(objExpr :: Nil, 
inputSchema)
-    (i: InternalRow) => objectProjection(i).get(0, objExpr.dataType)
+  def deserializeRowToObject(
+      deserializer: Expression,
+      inputSchema: Seq[Attribute]): InternalRow => Any = {
+    val proj = GenerateSafeProjection.generate(deserializer :: Nil, 
inputSchema)
+    (i: InternalRow) => proj(i).get(0, deserializer.dataType)
   }
 
-  def generateToRow(serializer: Seq[Expression]): Any => InternalRow = {
-    val outputProjection = if 
(serializer.head.dataType.isInstanceOf[ObjectType]) {
-      GenerateSafeProjection.generate(serializer)
-    } else {
-      GenerateUnsafeProjection.generate(serializer)
+  def serializeObjectToRow(serializer: Seq[Expression]): Any => UnsafeRow = {
+    val proj = GenerateUnsafeProjection.generate(serializer)
+    val objType = serializer.head.collect { case b: BoundReference => 
b.dataType }.head
+    val objRow = new SpecificMutableRow(objType :: Nil)
+    (o: Any) => {
+      objRow(0) = o
+      proj(objRow)
     }
-    val inputType = serializer.head.collect { case b: BoundReference => 
b.dataType }.head
-    val outputRow = new SpecificMutableRow(inputType :: Nil)
+  }
+
+  def wrapObjectToRow(objType: DataType): Any => InternalRow = {
+    val outputRow = new SpecificMutableRow(objType :: Nil)
     (o: Any) => {
       outputRow(0) = o
-      outputProjection(outputRow)
+      outputRow
     }
   }
+
+  def unwrapObjectFromRow(objType: DataType): InternalRow => Any = {
+    (i: InternalRow) => i.get(0, objType)
+  }
 }
 
 /**
- * Applies the given function to each input row and encodes the result.
+ * Applies the given function to input object iterator.
+ * The output of its child must be a single-field row containing the input 
object.
  */
 case class MapPartitions(
     func: Iterator[Any] => Iterator[Any],
-    deserializer: Expression,
-    serializer: Seq[NamedExpression],
+    outputObjAttr: Attribute,
     child: SparkPlan) extends UnaryNode with ObjectOperator {
-  override def output: Seq[Attribute] = serializer.map(_.toAttribute)
+
+  override def output: Seq[Attribute] = outputObjAttr :: Nil
+  override def producedAttributes: AttributeSet = AttributeSet(outputObjAttr)
 
   override protected def doExecute(): RDD[InternalRow] = {
     child.execute().mapPartitionsInternal { iter =>
-      val getObject = generateToObject(deserializer, child.output)
-      val outputObject = generateToRow(serializer)
+      val getObject = unwrapObjectFromRow(child.output.head.dataType)
+      val outputObject = wrapObjectToRow(outputObjAttr.dataType)
       func(iter.map(getObject)).map(outputObject)
     }
   }
 }
 
 /**
- * Applies the given function to each input row and encodes the result.
+ * Applies the given function to each input object.
+ * The output of its child must be a single-field row containing the input 
object.
  *
- * Note that, each serializer expression needs the result object which is 
returned by the given
- * function, as input. This operator uses some tricks to make sure we only 
calculate the result
- * object once. We don't use [[Project]] directly as subexpression elimination 
doesn't work with
- * whole stage codegen and it's confusing to show the 
un-common-subexpression-eliminated version of
- * a project while explain.
+ * This operator is kind of a safe version of [[Project]], as it's output is 
custom object, we need
+ * to use safe row to contain it.
  */
 case class MapElements(
     func: AnyRef,
-    deserializer: Expression,
-    serializer: Seq[NamedExpression],
+    outputObjAttr: Attribute,
     child: SparkPlan) extends UnaryNode with ObjectOperator with 
CodegenSupport {
-  override def output: Seq[Attribute] = serializer.map(_.toAttribute)
+
+  override def output: Seq[Attribute] = outputObjAttr :: Nil
+  override def producedAttributes: AttributeSet = AttributeSet(outputObjAttr)
 
   override def inputRDDs(): Seq[RDD[InternalRow]] = {
     child.asInstanceOf[CodegenSupport].inputRDDs()
@@ -167,23 +182,14 @@ case class MapElements(
       case _ => classOf[Any => Any] -> "apply"
     }
     val funcObj = Literal.create(func, ObjectType(funcClass))
-    val resultObjType = serializer.head.collect { case b: BoundReference => b 
}.head.dataType
-    val callFunc = Invoke(funcObj, methodName, resultObjType, 
Seq(deserializer))
+    val callFunc = Invoke(funcObj, methodName, outputObjAttr.dataType, 
child.output)
 
     val bound = ExpressionCanonicalizer.execute(
       BindReferences.bindReference(callFunc, child.output))
     ctx.currentVars = input
-    val evaluated = bound.genCode(ctx)
-
-    val resultObj = LambdaVariable(evaluated.value, evaluated.isNull, 
resultObjType)
-    val outputFields = serializer.map(_ transform {
-      case _: BoundReference => resultObj
-    })
-    val resultVars = outputFields.map(_.genCode(ctx))
-    s"""
-      ${evaluated.code}
-      ${consume(ctx, resultVars)}
-    """
+    val resultVars = bound.genCode(ctx) :: Nil
+
+    consume(ctx, resultVars)
   }
 
   override protected def doExecute(): RDD[InternalRow] = {
@@ -191,9 +197,10 @@ case class MapElements(
       case m: MapFunction[_, _] => i => m.asInstanceOf[MapFunction[Any, 
Any]].call(i)
       case _ => func.asInstanceOf[Any => Any]
     }
+
     child.execute().mapPartitionsInternal { iter =>
-      val getObject = generateToObject(deserializer, child.output)
-      val outputObject = generateToRow(serializer)
+      val getObject = unwrapObjectFromRow(child.output.head.dataType)
+      val outputObject = wrapObjectToRow(outputObjAttr.dataType)
       iter.map(row => outputObject(callFunc(getObject(row))))
     }
   }
@@ -216,15 +223,43 @@ case class AppendColumns(
 
   override protected def doExecute(): RDD[InternalRow] = {
     child.execute().mapPartitionsInternal { iter =>
-      val getObject = generateToObject(deserializer, child.output)
+      val getObject = deserializeRowToObject(deserializer, child.output)
       val combiner = GenerateUnsafeRowJoiner.create(child.schema, 
newColumnSchema)
-      val outputObject = generateToRow(serializer)
+      val outputObject = serializeObjectToRow(serializer)
 
       iter.map { row =>
         val newColumns = outputObject(func(getObject(row)))
+        combiner.join(row.asInstanceOf[UnsafeRow], newColumns): InternalRow
+      }
+    }
+  }
+}
+
+/**
+ * An optimized version of [[AppendColumns]], that can be executed on 
deserialized object directly.
+ */
+case class AppendColumnsWithObject(
+    func: Any => Any,
+    inputSerializer: Seq[NamedExpression],
+    newColumnsSerializer: Seq[NamedExpression],
+    child: SparkPlan) extends UnaryNode with ObjectOperator {
+
+  override def output: Seq[Attribute] = (inputSerializer ++ 
newColumnsSerializer).map(_.toAttribute)
 
-        // This operates on the assumption that we always serialize the 
result...
-        combiner.join(row.asInstanceOf[UnsafeRow], 
newColumns.asInstanceOf[UnsafeRow]): InternalRow
+  private def inputSchema = inputSerializer.map(_.toAttribute).toStructType
+  private def newColumnSchema = 
newColumnsSerializer.map(_.toAttribute).toStructType
+
+  override protected def doExecute(): RDD[InternalRow] = {
+    child.execute().mapPartitionsInternal { iter =>
+      val getChildObject = unwrapObjectFromRow(child.output.head.dataType)
+      val outputChildObject = serializeObjectToRow(inputSerializer)
+      val outputNewColumnOjb = serializeObjectToRow(newColumnsSerializer)
+      val combiner = GenerateUnsafeRowJoiner.create(inputSchema, 
newColumnSchema)
+
+      iter.map { row =>
+        val childObj = getChildObject(row)
+        val newColumns = outputNewColumnOjb(func(childObj))
+        combiner.join(outputChildObject(childObj), newColumns): InternalRow
       }
     }
   }
@@ -232,19 +267,19 @@ case class AppendColumns(
 
 /**
  * Groups the input rows together and calls the function with each group and 
an iterator containing
- * all elements in the group.  The result of this function is encoded and 
flattened before
- * being output.
+ * all elements in the group.  The result of this function is flattened before 
being output.
  */
 case class MapGroups(
     func: (Any, Iterator[Any]) => TraversableOnce[Any],
     keyDeserializer: Expression,
     valueDeserializer: Expression,
-    serializer: Seq[NamedExpression],
     groupingAttributes: Seq[Attribute],
     dataAttributes: Seq[Attribute],
+    outputObjAttr: Attribute,
     child: SparkPlan) extends UnaryNode with ObjectOperator {
 
-  override def output: Seq[Attribute] = serializer.map(_.toAttribute)
+  override def output: Seq[Attribute] = outputObjAttr :: Nil
+  override def producedAttributes: AttributeSet = AttributeSet(outputObjAttr)
 
   override def requiredChildDistribution: Seq[Distribution] =
     ClusteredDistribution(groupingAttributes) :: Nil
@@ -256,9 +291,9 @@ case class MapGroups(
     child.execute().mapPartitionsInternal { iter =>
       val grouped = GroupedIterator(iter, groupingAttributes, child.output)
 
-      val getKey = generateToObject(keyDeserializer, groupingAttributes)
-      val getValue = generateToObject(valueDeserializer, dataAttributes)
-      val outputObject = generateToRow(serializer)
+      val getKey = deserializeRowToObject(keyDeserializer, groupingAttributes)
+      val getValue = deserializeRowToObject(valueDeserializer, dataAttributes)
+      val outputObject = wrapObjectToRow(outputObjAttr.dataType)
 
       grouped.flatMap { case (key, rowIter) =>
         val result = func(
@@ -273,22 +308,23 @@ case class MapGroups(
 /**
  * Co-groups the data from left and right children, and calls the function 
with each group and 2
  * iterators containing all elements in the group from left and right side.
- * The result of this function is encoded and flattened before being output.
+ * The result of this function is flattened before being output.
  */
 case class CoGroup(
     func: (Any, Iterator[Any], Iterator[Any]) => TraversableOnce[Any],
     keyDeserializer: Expression,
     leftDeserializer: Expression,
     rightDeserializer: Expression,
-    serializer: Seq[NamedExpression],
     leftGroup: Seq[Attribute],
     rightGroup: Seq[Attribute],
     leftAttr: Seq[Attribute],
     rightAttr: Seq[Attribute],
+    outputObjAttr: Attribute,
     left: SparkPlan,
     right: SparkPlan) extends BinaryNode with ObjectOperator {
 
-  override def output: Seq[Attribute] = serializer.map(_.toAttribute)
+  override def output: Seq[Attribute] = outputObjAttr :: Nil
+  override def producedAttributes: AttributeSet = AttributeSet(outputObjAttr)
 
   override def requiredChildDistribution: Seq[Distribution] =
     ClusteredDistribution(leftGroup) :: ClusteredDistribution(rightGroup) :: 
Nil
@@ -301,10 +337,10 @@ case class CoGroup(
       val leftGrouped = GroupedIterator(leftData, leftGroup, left.output)
       val rightGrouped = GroupedIterator(rightData, rightGroup, right.output)
 
-      val getKey = generateToObject(keyDeserializer, leftGroup)
-      val getLeft = generateToObject(leftDeserializer, leftAttr)
-      val getRight = generateToObject(rightDeserializer, rightAttr)
-      val outputObject = generateToRow(serializer)
+      val getKey = deserializeRowToObject(keyDeserializer, leftGroup)
+      val getLeft = deserializeRowToObject(leftDeserializer, leftAttr)
+      val getRight = deserializeRowToObject(rightDeserializer, rightAttr)
+      val outputObject = wrapObjectToRow(outputObjAttr.dataType)
 
       new CoGroupedIterator(leftGrouped, rightGrouped, leftGroup).flatMap {
         case (key, leftResult, rightResult) =>

http://git-wip-us.apache.org/repos/asf/spark/blob/9ee95b6e/sql/core/src/test/scala/org/apache/spark/sql/QueryTest.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/test/scala/org/apache/spark/sql/QueryTest.scala 
b/sql/core/src/test/scala/org/apache/spark/sql/QueryTest.scala
index 23a0ce2..2dca792 100644
--- a/sql/core/src/test/scala/org/apache/spark/sql/QueryTest.scala
+++ b/sql/core/src/test/scala/org/apache/spark/sql/QueryTest.scala
@@ -201,7 +201,9 @@ abstract class QueryTest extends PlanTest {
     val logicalPlan = df.queryExecution.analyzed
     // bypass some cases that we can't handle currently.
     logicalPlan.transform {
-      case _: ObjectOperator => return
+      case _: ObjectConsumer => return
+      case _: ObjectProducer => return
+      case _: AppendColumns => return
       case _: LogicalRelation => return
       case _: MemoryPlan => return
     }.transformAllExpressions {

http://git-wip-us.apache.org/repos/asf/spark/blob/9ee95b6e/sql/core/src/test/scala/org/apache/spark/sql/execution/WholeStageCodegenSuite.scala
----------------------------------------------------------------------
diff --git 
a/sql/core/src/test/scala/org/apache/spark/sql/execution/WholeStageCodegenSuite.scala
 
b/sql/core/src/test/scala/org/apache/spark/sql/execution/WholeStageCodegenSuite.scala
index 8efd9de..d7cf1dc 100644
--- 
a/sql/core/src/test/scala/org/apache/spark/sql/execution/WholeStageCodegenSuite.scala
+++ 
b/sql/core/src/test/scala/org/apache/spark/sql/execution/WholeStageCodegenSuite.scala
@@ -79,7 +79,7 @@ class WholeStageCodegenSuite extends SparkPlanTest with 
SharedSQLContext {
     val plan = ds.queryExecution.executedPlan
     assert(plan.find(p =>
       p.isInstanceOf[WholeStageCodegen] &&
-        
p.asInstanceOf[WholeStageCodegen].child.isInstanceOf[MapElements]).isDefined)
+        
p.asInstanceOf[WholeStageCodegen].child.isInstanceOf[SerializeFromObject]).isDefined)
     assert(ds.collect() === 0.until(10).map(_.toString).toArray)
   }
 


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org
For additional commands, e-mail: commits-h...@spark.apache.org

Reply via email to