Repository: spark
Updated Branches:
  refs/heads/master 92c0eaf34 -> 45b786aca


[MINOR][DOC] Fix wrong ml.feature.Normalizer document.

## What changes were proposed in this pull request?
The ```ml.feature.Normalizer``` examples illustrate L1 norm rather than L2, we 
should correct corresponding document.
![image](https://cloud.githubusercontent.com/assets/1962026/17928637/85aec284-69b0-11e6-9b13-d465ee560581.png)

## How was this patch tested?
Doc change, no test.

Author: Yanbo Liang <[email protected]>

Closes #14787 from yanboliang/normalizer.


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/45b786ac
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/45b786ac
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/45b786ac

Branch: refs/heads/master
Commit: 45b786aca2b5818dc233643e6b3a53b869560563
Parents: 92c0eaf
Author: Yanbo Liang <[email protected]>
Authored: Wed Aug 24 08:24:16 2016 -0700
Committer: Yanbo Liang <[email protected]>
Committed: Wed Aug 24 08:24:16 2016 -0700

----------------------------------------------------------------------
 docs/ml-features.md | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/45b786ac/docs/ml-features.md
----------------------------------------------------------------------
diff --git a/docs/ml-features.md b/docs/ml-features.md
index 6020114..e41bf78 100644
--- a/docs/ml-features.md
+++ b/docs/ml-features.md
@@ -734,7 +734,7 @@ for more details on the API.
 
 `Normalizer` is a `Transformer` which transforms a dataset of `Vector` rows, 
normalizing each `Vector` to have unit norm.  It takes parameter `p`, which 
specifies the 
[p-norm](http://en.wikipedia.org/wiki/Norm_%28mathematics%29#p-norm) used for 
normalization.  ($p = 2$ by default.)  This normalization can help standardize 
your input data and improve the behavior of learning algorithms.
 
-The following example demonstrates how to load a dataset in libsvm format and 
then normalize each row to have unit $L^2$ norm and unit $L^\infty$ norm.
+The following example demonstrates how to load a dataset in libsvm format and 
then normalize each row to have unit $L^1$ norm and unit $L^\infty$ norm.
 
 <div class="codetabs">
 <div data-lang="scala" markdown="1">


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to