Repository: spark
Updated Branches:
  refs/heads/master e6dc5f280 -> 10c27a655


[SPARK-22289][ML] Add JSON support for Matrix parameters (LR with coefficients 
bound)

## What changes were proposed in this pull request?
jira: https://issues.apache.org/jira/browse/SPARK-22289

add JSON encoding/decoding for Param[Matrix].

The issue was reported by Nic Eggert during saving LR model with 
LowerBoundsOnCoefficients.
There're two ways to resolve this as I see:
1. Support save/load on LogisticRegressionParams, and also adjust the save/load 
in LogisticRegression and LogisticRegressionModel.
2. Directly support Matrix in Param.jsonEncode, similar to what we have done 
for Vector.

After some discussion in jira, we prefer the fix to support Matrix as a valid 
Param type, for simplicity and convenience for other classes.

Note that in the implementation, I added a "class" field in the JSON object to 
match different JSON converters when loading, which is for preciseness and 
future extension.

## How was this patch tested?

new unit test to cover the LR case and JsonMatrixConverter

Author: Yuhao Yang <[email protected]>

Closes #19525 from hhbyyh/lrsave.


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/10c27a65
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/10c27a65
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/10c27a65

Branch: refs/heads/master
Commit: 10c27a6559803797e89c28ced11c1087127b82eb
Parents: e6dc5f2
Author: Yuhao Yang <[email protected]>
Authored: Tue Dec 12 11:27:01 2017 -0800
Committer: Yanbo Liang <[email protected]>
Committed: Tue Dec 12 11:27:01 2017 -0800

----------------------------------------------------------------------
 .../org/apache/spark/ml/linalg/Matrices.scala   |  7 ++
 .../spark/ml/linalg/JsonMatrixConverter.scala   | 79 ++++++++++++++++++++
 .../org/apache/spark/ml/param/params.scala      | 36 +++++++--
 .../LogisticRegressionSuite.scala               | 11 +++
 .../ml/linalg/JsonMatrixConverterSuite.scala    | 45 +++++++++++
 5 files changed, 170 insertions(+), 8 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/10c27a65/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala
----------------------------------------------------------------------
diff --git 
a/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala 
b/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala
index 66c5362..14428c6 100644
--- a/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala
+++ b/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Matrices.scala
@@ -476,6 +476,9 @@ class DenseMatrix @Since("2.0.0") (
 @Since("2.0.0")
 object DenseMatrix {
 
+  private[ml] def unapply(dm: DenseMatrix): Option[(Int, Int, Array[Double], 
Boolean)] =
+    Some((dm.numRows, dm.numCols, dm.values, dm.isTransposed))
+
   /**
    * Generate a `DenseMatrix` consisting of zeros.
    * @param numRows number of rows of the matrix
@@ -827,6 +830,10 @@ class SparseMatrix @Since("2.0.0") (
 @Since("2.0.0")
 object SparseMatrix {
 
+  private[ml] def unapply(
+       sm: SparseMatrix): Option[(Int, Int, Array[Int], Array[Int], 
Array[Double], Boolean)] =
+    Some((sm.numRows, sm.numCols, sm.colPtrs, sm.rowIndices, sm.values, 
sm.isTransposed))
+
   /**
    * Generate a `SparseMatrix` from Coordinate List (COO) format. Input must 
be an array of
    * (i, j, value) tuples. Entries that have duplicate values of i and j are

http://git-wip-us.apache.org/repos/asf/spark/blob/10c27a65/mllib/src/main/scala/org/apache/spark/ml/linalg/JsonMatrixConverter.scala
----------------------------------------------------------------------
diff --git 
a/mllib/src/main/scala/org/apache/spark/ml/linalg/JsonMatrixConverter.scala 
b/mllib/src/main/scala/org/apache/spark/ml/linalg/JsonMatrixConverter.scala
new file mode 100644
index 0000000..0bee643
--- /dev/null
+++ b/mllib/src/main/scala/org/apache/spark/ml/linalg/JsonMatrixConverter.scala
@@ -0,0 +1,79 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.spark.ml.linalg
+
+import org.json4s.DefaultFormats
+import org.json4s.JsonDSL._
+import org.json4s.jackson.JsonMethods.{compact, parse => parseJson, render}
+
+private[ml] object JsonMatrixConverter {
+
+  /** Unique class name for identifying JSON object encoded by this class. */
+  val className = "matrix"
+
+  /**
+   * Parses the JSON representation of a Matrix into a [[Matrix]].
+   */
+  def fromJson(json: String): Matrix = {
+    implicit val formats = DefaultFormats
+    val jValue = parseJson(json)
+    (jValue \ "type").extract[Int] match {
+      case 0 => // sparse
+        val numRows = (jValue \ "numRows").extract[Int]
+        val numCols = (jValue \ "numCols").extract[Int]
+        val colPtrs = (jValue \ "colPtrs").extract[Seq[Int]].toArray
+        val rowIndices = (jValue \ "rowIndices").extract[Seq[Int]].toArray
+        val values = (jValue \ "values").extract[Seq[Double]].toArray
+        val isTransposed = (jValue \ "isTransposed").extract[Boolean]
+        new SparseMatrix(numRows, numCols, colPtrs, rowIndices, values, 
isTransposed)
+      case 1 => // dense
+        val numRows = (jValue \ "numRows").extract[Int]
+        val numCols = (jValue \ "numCols").extract[Int]
+        val values = (jValue \ "values").extract[Seq[Double]].toArray
+        val isTransposed = (jValue \ "isTransposed").extract[Boolean]
+        new DenseMatrix(numRows, numCols, values, isTransposed)
+      case _ =>
+        throw new IllegalArgumentException(s"Cannot parse $json into a 
Matrix.")
+    }
+  }
+
+  /**
+   * Coverts the Matrix to a JSON string.
+   */
+  def toJson(m: Matrix): String = {
+    m match {
+      case SparseMatrix(numRows, numCols, colPtrs, rowIndices, values, 
isTransposed) =>
+        val jValue = ("class" -> className) ~
+          ("type" -> 0) ~
+          ("numRows" -> numRows) ~
+          ("numCols" -> numCols) ~
+          ("colPtrs" -> colPtrs.toSeq) ~
+          ("rowIndices" -> rowIndices.toSeq) ~
+          ("values" -> values.toSeq) ~
+          ("isTransposed" -> isTransposed)
+        compact(render(jValue))
+      case DenseMatrix(numRows, numCols, values, isTransposed) =>
+        val jValue = ("class" -> className) ~
+          ("type" -> 1) ~
+          ("numRows" -> numRows) ~
+          ("numCols" -> numCols) ~
+          ("values" -> values.toSeq) ~
+          ("isTransposed" -> isTransposed)
+        compact(render(jValue))
+    }
+  }
+}

http://git-wip-us.apache.org/repos/asf/spark/blob/10c27a65/mllib/src/main/scala/org/apache/spark/ml/param/params.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/param/params.scala 
b/mllib/src/main/scala/org/apache/spark/ml/param/params.scala
index 8985f2a..1b4b401 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/param/params.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/param/params.scala
@@ -28,9 +28,9 @@ import scala.collection.mutable
 import org.json4s._
 import org.json4s.jackson.JsonMethods._
 
+import org.apache.spark.SparkException
 import org.apache.spark.annotation.{DeveloperApi, Since}
-import org.apache.spark.ml.linalg.JsonVectorConverter
-import org.apache.spark.ml.linalg.Vector
+import org.apache.spark.ml.linalg.{JsonMatrixConverter, JsonVectorConverter, 
Matrix, Vector}
 import org.apache.spark.ml.util.Identifiable
 
 /**
@@ -94,9 +94,11 @@ class Param[T](val parent: String, val name: String, val 
doc: String, val isVali
         compact(render(JString(x)))
       case v: Vector =>
         JsonVectorConverter.toJson(v)
+      case m: Matrix =>
+        JsonMatrixConverter.toJson(m)
       case _ =>
         throw new NotImplementedError(
-          "The default jsonEncode only supports string and vector. " +
+          "The default jsonEncode only supports string, vector and matrix. " +
             s"${this.getClass.getName} must override jsonEncode for 
${value.getClass.getName}.")
     }
   }
@@ -122,17 +124,35 @@ private[ml] object Param {
 
   /** Decodes a param value from JSON. */
   def jsonDecode[T](json: String): T = {
-    parse(json) match {
+    val jValue = parse(json)
+    jValue match {
       case JString(x) =>
         x.asInstanceOf[T]
       case JObject(v) =>
         val keys = v.map(_._1)
-        assert(keys.contains("type") && keys.contains("values"),
-          s"Expect a JSON serialized vector but cannot find fields 'type' and 
'values' in $json.")
-        JsonVectorConverter.fromJson(json).asInstanceOf[T]
+        if (keys.contains("class")) {
+          implicit val formats = DefaultFormats
+          val className = (jValue \ "class").extract[String]
+          className match {
+            case JsonMatrixConverter.className =>
+              val checkFields = Array("numRows", "numCols", "values", 
"isTransposed", "type")
+              require(checkFields.forall(keys.contains), s"Expect a JSON 
serialized Matrix" +
+                s" but cannot find fields ${checkFields.mkString(", ")} in 
$json.")
+              JsonMatrixConverter.fromJson(json).asInstanceOf[T]
+
+            case s => throw new SparkException(s"unrecognized class $s in 
$json")
+          }
+        } else {
+          // "class" info in JSON was added in Spark 2.3(SPARK-22289). JSON 
support for Vector was
+          // implemented before that and does not have "class" attribute.
+          require(keys.contains("type") && keys.contains("values"), s"Expect a 
JSON serialized" +
+            s" vector/matrix but cannot find fields 'type' and 'values' in 
$json.")
+          JsonVectorConverter.fromJson(json).asInstanceOf[T]
+        }
+
       case _ =>
         throw new NotImplementedError(
-          "The default jsonDecode only supports string and vector. " +
+          "The default jsonDecode only supports string, vector and matrix. " +
             s"${this.getClass.getName} must override jsonDecode to support its 
value type.")
     }
   }

http://git-wip-us.apache.org/repos/asf/spark/blob/10c27a65/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala
----------------------------------------------------------------------
diff --git 
a/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala
 
b/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala
index 14f5508..a5f81a3 100644
--- 
a/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala
+++ 
b/mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala
@@ -2767,6 +2767,17 @@ class LogisticRegressionSuite
     val lr = new LogisticRegression()
     testEstimatorAndModelReadWrite(lr, smallBinaryDataset, 
LogisticRegressionSuite.allParamSettings,
       LogisticRegressionSuite.allParamSettings, checkModelData)
+
+    // test lr with bounds on coefficients, need to set elasticNetParam to 0.
+    val numFeatures = 
smallBinaryDataset.select("features").head().getAs[Vector](0).size
+    val lowerBounds = new DenseMatrix(1, numFeatures, (1 to numFeatures).map(_ 
/ 1000.0).toArray)
+    val upperBounds = new DenseMatrix(1, numFeatures, (1 to numFeatures).map(_ 
* 1000.0).toArray)
+    val paramSettings = Map("lowerBoundsOnCoefficients" -> lowerBounds,
+      "upperBoundsOnCoefficients" -> upperBounds,
+      "elasticNetParam" -> 0.0
+    )
+    testEstimatorAndModelReadWrite(lr, smallBinaryDataset, paramSettings,
+      paramSettings, checkModelData)
   }
 
   test("should support all NumericType labels and weights, and not support 
other types") {

http://git-wip-us.apache.org/repos/asf/spark/blob/10c27a65/mllib/src/test/scala/org/apache/spark/ml/linalg/JsonMatrixConverterSuite.scala
----------------------------------------------------------------------
diff --git 
a/mllib/src/test/scala/org/apache/spark/ml/linalg/JsonMatrixConverterSuite.scala
 
b/mllib/src/test/scala/org/apache/spark/ml/linalg/JsonMatrixConverterSuite.scala
new file mode 100644
index 0000000..4d83f94
--- /dev/null
+++ 
b/mllib/src/test/scala/org/apache/spark/ml/linalg/JsonMatrixConverterSuite.scala
@@ -0,0 +1,45 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.linalg
+
+import org.json4s.jackson.JsonMethods.parse
+
+import org.apache.spark.SparkFunSuite
+
+class JsonMatrixConverterSuite extends SparkFunSuite {
+
+  test("toJson/fromJson") {
+    val denseMatrices = Seq(
+      Matrices.dense(0, 0, Array.empty[Double]),
+      Matrices.dense(1, 1, Array(0.1)),
+      new DenseMatrix(3, 2, Array(0.0, 1.21, 2.3, 9.8, 9.0, 0.0), true)
+    )
+
+    val sparseMatrices = denseMatrices.map(_.toSparse) ++ Seq(
+      Matrices.sparse(3, 2, Array(0, 1, 2), Array(1, 2), Array(3.1, 3.5))
+    )
+
+    for (m <- sparseMatrices ++ denseMatrices) {
+      val json = JsonMatrixConverter.toJson(m)
+      parse(json) // `json` should be a valid JSON string
+      val u = JsonMatrixConverter.fromJson(json)
+      assert(u.getClass === m.getClass, "toJson/fromJson should preserve 
Matrix types.")
+      assert(u === m, "toJson/fromJson should preserve Matrix values.")
+    }
+  }
+}


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to