This is an automated email from the ASF dual-hosted git repository.

gurwls223 pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/spark.git


The following commit(s) were added to refs/heads/master by this push:
     new 596a5ff  [MINOR][BUILD] Update genjavadoc to 0.13
596a5ff is described below

commit 596a5ff2737e531fbca2f31db1eb9aadd8f08882
Author: Sean Owen <[email protected]>
AuthorDate: Wed Apr 24 13:44:48 2019 +0900

    [MINOR][BUILD] Update genjavadoc to 0.13
    
    ## What changes were proposed in this pull request?
    
    Kind of related to https://github.com/gatorsmile/spark/pull/5 - let's 
update genjavadoc to see if it generates fewer spurious javadoc errors to begin 
with.
    
    ## How was this patch tested?
    
    Existing docs build
    
    Closes #24443 from srowen/genjavadoc013.
    
    Authored-by: Sean Owen <[email protected]>
    Signed-off-by: HyukjinKwon <[email protected]>
---
 .../org/apache/spark/rpc/RpcCallContext.scala      |  2 +-
 .../spark/status/api/v1/ApiRootResource.scala      |  6 +++---
 .../org/apache/spark/util/SizeEstimator.scala      |  2 +-
 .../streaming/kinesis/SparkAWSCredentials.scala    |  4 ++--
 .../main/scala/org/apache/spark/ml/ann/Layer.scala |  6 +++---
 .../org/apache/spark/ml/attribute/attributes.scala |  2 +-
 .../org/apache/spark/ml/stat/Correlation.scala     |  2 +-
 .../org/apache/spark/ml/tree/treeParams.scala      | 25 +++++++++++-----------
 .../mllib/stat/test/StreamingTestMethod.scala      |  2 +-
 project/SparkBuild.scala                           |  2 +-
 .../apache/spark/sql/hive/client/HiveClient.scala  |  6 +++---
 11 files changed, 30 insertions(+), 29 deletions(-)

diff --git a/core/src/main/scala/org/apache/spark/rpc/RpcCallContext.scala 
b/core/src/main/scala/org/apache/spark/rpc/RpcCallContext.scala
index 117f51c..f6b2059 100644
--- a/core/src/main/scala/org/apache/spark/rpc/RpcCallContext.scala
+++ b/core/src/main/scala/org/apache/spark/rpc/RpcCallContext.scala
@@ -24,7 +24,7 @@ package org.apache.spark.rpc
 private[spark] trait RpcCallContext {
 
   /**
-   * Reply a message to the sender. If the sender is [[RpcEndpoint]], its 
[[RpcEndpoint.receive]]
+   * Reply a message to the sender. If the sender is [[RpcEndpoint]], its 
`RpcEndpoint.receive`
    * will be called.
    */
   def reply(response: Any): Unit
diff --git 
a/core/src/main/scala/org/apache/spark/status/api/v1/ApiRootResource.scala 
b/core/src/main/scala/org/apache/spark/status/api/v1/ApiRootResource.scala
index 84c2ad4..83f76db 100644
--- a/core/src/main/scala/org/apache/spark/status/api/v1/ApiRootResource.scala
+++ b/core/src/main/scala/org/apache/spark/status/api/v1/ApiRootResource.scala
@@ -77,7 +77,7 @@ private[spark] trait UIRoot {
   /**
    * Runs some code with the current SparkUI instance for the app / attempt.
    *
-   * @throws NoSuchElementException If the app / attempt pair does not exist.
+   * @throws java.util.NoSuchElementException If the app / attempt pair does 
not exist.
    */
   def withSparkUI[T](appId: String, attemptId: Option[String])(fn: SparkUI => 
T): T
 
@@ -85,8 +85,8 @@ private[spark] trait UIRoot {
   def getApplicationInfo(appId: String): Option[ApplicationInfo]
 
   /**
-   * Write the event logs for the given app to the [[ZipOutputStream]] 
instance. If attemptId is
-   * [[None]], event logs for all attempts of this application will be written 
out.
+   * Write the event logs for the given app to the `ZipOutputStream` instance. 
If attemptId is
+   * `None`, event logs for all attempts of this application will be written 
out.
    */
   def writeEventLogs(appId: String, attemptId: Option[String], zipStream: 
ZipOutputStream): Unit = {
     Response.serverError()
diff --git a/core/src/main/scala/org/apache/spark/util/SizeEstimator.scala 
b/core/src/main/scala/org/apache/spark/util/SizeEstimator.scala
index e09f1fc..09c69f5 100644
--- a/core/src/main/scala/org/apache/spark/util/SizeEstimator.scala
+++ b/core/src/main/scala/org/apache/spark/util/SizeEstimator.scala
@@ -34,7 +34,7 @@ import org.apache.spark.util.collection.OpenHashSet
 /**
  * A trait that allows a class to give [[SizeEstimator]] more accurate size 
estimation.
  * When a class extends it, [[SizeEstimator]] will query the `estimatedSize` 
first.
- * If `estimatedSize` does not return [[None]], [[SizeEstimator]] will use the 
returned size
+ * If `estimatedSize` does not return `None`, [[SizeEstimator]] will use the 
returned size
  * as the size of the object. Otherwise, [[SizeEstimator]] will do the 
estimation work.
  * The difference between a [[KnownSizeEstimation]] and
  * [[org.apache.spark.util.collection.SizeTracker]] is that, a
diff --git 
a/external/kinesis-asl/src/main/scala/org/apache/spark/streaming/kinesis/SparkAWSCredentials.scala
 
b/external/kinesis-asl/src/main/scala/org/apache/spark/streaming/kinesis/SparkAWSCredentials.scala
index dcb60b2..7488971 100644
--- 
a/external/kinesis-asl/src/main/scala/org/apache/spark/streaming/kinesis/SparkAWSCredentials.scala
+++ 
b/external/kinesis-asl/src/main/scala/org/apache/spark/streaming/kinesis/SparkAWSCredentials.scala
@@ -101,8 +101,8 @@ object SparkAWSCredentials {
      *
      * @note The given AWS keypair will be saved in DStream checkpoints if 
checkpointing is
      * enabled. Make sure that your checkpoint directory is secure. Prefer 
using the
-     * 
[[http://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html#credentials-default
 default provider chain]]
-     * instead if possible.
+     * default provider chain instead if possible
+     * 
(http://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html#credentials-default).
      *
      * @param accessKeyId AWS access key ID
      * @param secretKey AWS secret key
diff --git a/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala 
b/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala
index 014ff07..2b4b0fc 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala
@@ -371,7 +371,7 @@ private[ann] trait TopologyModel extends Serializable {
   def forward(data: BDM[Double], includeLastLayer: Boolean): Array[BDM[Double]]
 
   /**
-   * Prediction of the model. See {@link ProbabilisticClassificationModel}
+   * Prediction of the model. See `ProbabilisticClassificationModel``
    *
    * @param features input features
    * @return prediction
@@ -379,7 +379,7 @@ private[ann] trait TopologyModel extends Serializable {
   def predict(features: Vector): Vector
 
   /**
-   * Raw prediction of the model. See {@link ProbabilisticClassificationModel}
+   * Raw prediction of the model. See `ProbabilisticClassificationModel`
    *
    * @param features input features
    * @return raw prediction
@@ -389,7 +389,7 @@ private[ann] trait TopologyModel extends Serializable {
   def predictRaw(features: Vector): Vector
 
   /**
-   * Probability of the model. See {@link ProbabilisticClassificationModel}
+   * Probability of the model. See `ProbabilisticClassificationModel`
    *
    * @param rawPrediction raw prediction vector
    * @return probability
diff --git 
a/mllib/src/main/scala/org/apache/spark/ml/attribute/attributes.scala 
b/mllib/src/main/scala/org/apache/spark/ml/attribute/attributes.scala
index 1cd2b1a..756dd67 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/attribute/attributes.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/attribute/attributes.scala
@@ -121,7 +121,7 @@ sealed abstract class Attribute extends Serializable {
 private[attribute] trait AttributeFactory {
 
   /**
-   * Creates an [[Attribute]] from a [[Metadata]] instance.
+   * Creates an [[Attribute]] from a `Metadata` instance.
    */
   private[attribute] def fromMetadata(metadata: Metadata): Attribute
 
diff --git a/mllib/src/main/scala/org/apache/spark/ml/stat/Correlation.scala 
b/mllib/src/main/scala/org/apache/spark/ml/stat/Correlation.scala
index 6e885d7..8167ea6 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/stat/Correlation.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/stat/Correlation.scala
@@ -49,7 +49,7 @@ object Correlation {
    *               Supported: `pearson` (default), `spearman`
    * @return A dataframe that contains the correlation matrix of the column of 
vectors. This
    *         dataframe contains a single row and a single column of name
-   *         '$METHODNAME($COLUMN)'.
+   *         `$METHODNAME($COLUMN)`.
    * @throws IllegalArgumentException if the column is not a valid column in 
the dataset, or if
    *                                  the content of this column is not of 
type Vector.
    *
diff --git a/mllib/src/main/scala/org/apache/spark/ml/tree/treeParams.scala 
b/mllib/src/main/scala/org/apache/spark/ml/tree/treeParams.scala
index df01dc0..c1e44e9 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/tree/treeParams.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/tree/treeParams.scala
@@ -40,39 +40,39 @@ private[ml] trait DecisionTreeParams extends PredictorParams
   with HasCheckpointInterval with HasSeed with HasWeightCol {
 
   /**
-   * Maximum depth of the tree (>= 0).
+   * Maximum depth of the tree (nonnegative).
    * E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf 
nodes.
    * (default = 5)
    * @group param
    */
   final val maxDepth: IntParam =
-    new IntParam(this, "maxDepth", "Maximum depth of the tree. (>= 0)" +
+    new IntParam(this, "maxDepth", "Maximum depth of the tree. (Nonnegative)" +
       " E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 
leaf nodes.",
       ParamValidators.gtEq(0))
 
   /**
    * Maximum number of bins used for discretizing continuous features and for 
choosing how to split
    * on features at each node.  More bins give higher granularity.
-   * Must be >= 2 and >= number of categories in any categorical feature.
+   * Must be at least 2 and at least number of categories in any categorical 
feature.
    * (default = 32)
    * @group param
    */
   final val maxBins: IntParam = new IntParam(this, "maxBins", "Max number of 
bins for" +
-    " discretizing continuous features.  Must be >=2 and >= number of 
categories for any" +
-    " categorical feature.", ParamValidators.gtEq(2))
+    " discretizing continuous features.  Must be at least 2 and at least 
number of categories" +
+    " for any categorical feature.", ParamValidators.gtEq(2))
 
   /**
    * Minimum number of instances each child must have after split.
    * If a split causes the left or right child to have fewer than 
minInstancesPerNode,
    * the split will be discarded as invalid.
-   * Should be >= 1.
+   * Must be at least 1.
    * (default = 1)
    * @group param
    */
   final val minInstancesPerNode: IntParam = new IntParam(this, 
"minInstancesPerNode", "Minimum" +
     " number of instances each child must have after split.  If a split causes 
the left or right" +
     " child to have fewer than minInstancesPerNode, the split will be 
discarded as invalid." +
-    " Should be >= 1.", ParamValidators.gtEq(1))
+    " Must be at least 1.", ParamValidators.gtEq(1))
 
   /**
    * Minimum fraction of the weighted sample count that each child must have 
after split.
@@ -91,7 +91,7 @@ private[ml] trait DecisionTreeParams extends PredictorParams
 
   /**
    * Minimum information gain for a split to be considered at a tree node.
-   * Should be >= 0.0.
+   * Should be at least 0.0.
    * (default = 0.0)
    * @group param
    */
@@ -316,7 +316,7 @@ private[ml] trait TreeEnsembleParams extends 
DecisionTreeParams {
    * Supported options:
    *  - "auto": Choose automatically for task:
    *            If numTrees == 1, set to "all."
-   *            If numTrees > 1 (forest), set to "sqrt" for classification and
+   *            If numTrees greater than 1 (forest), set to "sqrt" for 
classification and
    *              to "onethird" for regression.
    *  - "all": use all features
    *  - "onethird": use 1/3 of the features
@@ -361,8 +361,8 @@ private[ml] trait TreeEnsembleParams extends 
DecisionTreeParams {
 private[ml] trait RandomForestParams extends TreeEnsembleParams {
 
   /**
-   * Number of trees to train (>= 1).
-   * If 1, then no bootstrapping is used.  If > 1, then bootstrapping is done.
+   * Number of trees to train (at least 1).
+   * If 1, then no bootstrapping is used.  If greater than 1, then 
bootstrapping is done.
    * TODO: Change to always do bootstrapping (simpler).  SPARK-7130
    * (default = 20)
    *
@@ -371,7 +371,8 @@ private[ml] trait RandomForestParams extends 
TreeEnsembleParams {
    * are a bit different.
    * @group param
    */
-  final val numTrees: IntParam = new IntParam(this, "numTrees", "Number of 
trees to train (>= 1)",
+  final val numTrees: IntParam =
+    new IntParam(this, "numTrees", "Number of trees to train (at least 1)",
     ParamValidators.gtEq(1))
 
   setDefault(numTrees -> 20)
diff --git 
a/mllib/src/main/scala/org/apache/spark/mllib/stat/test/StreamingTestMethod.scala
 
b/mllib/src/main/scala/org/apache/spark/mllib/stat/test/StreamingTestMethod.scala
index 14ac14d..8f3d0f8 100644
--- 
a/mllib/src/main/scala/org/apache/spark/mllib/stat/test/StreamingTestMethod.scala
+++ 
b/mllib/src/main/scala/org/apache/spark/mllib/stat/test/StreamingTestMethod.scala
@@ -33,7 +33,7 @@ import org.apache.spark.util.StatCounter
 /**
  * Significance testing methods for [[StreamingTest]]. New 2-sample 
statistical significance tests
  * should extend [[StreamingTestMethod]] and introduce a new entry in
- * [[StreamingTestMethod.TEST_NAME_TO_OBJECT]]
+ * `StreamingTestMethod.TEST_NAME_TO_OBJECT`
  */
 private[stat] sealed trait StreamingTestMethod extends Serializable {
 
diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala
index f55f187..83fe904 100644
--- a/project/SparkBuild.scala
+++ b/project/SparkBuild.scala
@@ -219,7 +219,7 @@ object SparkBuild extends PomBuild {
       .map(file),
     incOptions := incOptions.value.withNameHashing(true),
     publishMavenStyle := true,
-    unidocGenjavadocVersion := "0.11",
+    unidocGenjavadocVersion := "0.13",
 
     // Override SBT's default resolvers:
     resolvers := Seq(
diff --git 
a/sql/hive/src/main/scala/org/apache/spark/sql/hive/client/HiveClient.scala 
b/sql/hive/src/main/scala/org/apache/spark/sql/hive/client/HiveClient.scala
index f697174..e1280d0 100644
--- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/client/HiveClient.scala
+++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/client/HiveClient.scala
@@ -41,7 +41,7 @@ private[hive] trait HiveClient {
 
   /**
    * Return the associated Hive SessionState of this [[HiveClientImpl]]
-   * @return [[Any]] not SessionState to avoid linkage error
+   * @return `Any` not SessionState to avoid linkage error
    */
   def getState: Any
 
@@ -76,7 +76,7 @@ private[hive] trait HiveClient {
   /** Return whether a table/view with the specified name exists. */
   def tableExists(dbName: String, tableName: String): Boolean
 
-  /** Returns the specified table, or throws [[NoSuchTableException]]. */
+  /** Returns the specified table, or throws `NoSuchTableException`. */
   final def getTable(dbName: String, tableName: String): CatalogTable = {
     getTableOption(dbName, tableName).getOrElse(throw new 
NoSuchTableException(dbName, tableName))
   }
@@ -166,7 +166,7 @@ private[hive] trait HiveClient {
       table: String,
       newParts: Seq[CatalogTablePartition]): Unit
 
-  /** Returns the specified partition, or throws [[NoSuchPartitionException]]. 
*/
+  /** Returns the specified partition, or throws `NoSuchPartitionException`. */
   final def getPartition(
       dbName: String,
       tableName: String,


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to