This is an automated email from the ASF dual-hosted git repository.
dongjoon pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/spark.git
The following commit(s) were added to refs/heads/master by this push:
new ee83d09 [SPARK-29401][CORE][ML][SQL][GRAPHX][TESTS] Replace calls to
.parallelize Arrays of tuples, ambiguous in Scala 2.13, with Seqs of tuples
ee83d09 is described below
commit ee83d09b536836f5f26abfcda770a098342b47f4
Author: Sean Owen <[email protected]>
AuthorDate: Tue Oct 8 20:22:02 2019 -0700
[SPARK-29401][CORE][ML][SQL][GRAPHX][TESTS] Replace calls to .parallelize
Arrays of tuples, ambiguous in Scala 2.13, with Seqs of tuples
### What changes were proposed in this pull request?
Invocations like `sc.parallelize(Array((1,2)))` cause a compile error in
2.13, like:
```
[ERROR] [Error]
/Users/seanowen/Documents/spark_2.13/core/src/test/scala/org/apache/spark/ShuffleSuite.scala:47:
overloaded method value apply with alternatives:
(x: Unit,xs: Unit*)Array[Unit] <and>
(x: Double,xs: Double*)Array[Double] <and>
(x: Float,xs: Float*)Array[Float] <and>
(x: Long,xs: Long*)Array[Long] <and>
(x: Int,xs: Int*)Array[Int] <and>
(x: Char,xs: Char*)Array[Char] <and>
(x: Short,xs: Short*)Array[Short] <and>
(x: Byte,xs: Byte*)Array[Byte] <and>
(x: Boolean,xs: Boolean*)Array[Boolean]
cannot be applied to ((Int, Int), (Int, Int), (Int, Int), (Int, Int))
```
Using a `Seq` instead appears to resolve it, and is effectively equivalent.
### Why are the changes needed?
To better cross-build for 2.13.
### Does this PR introduce any user-facing change?
None.
### How was this patch tested?
Existing tests.
Closes #26062 from srowen/SPARK-29401.
Authored-by: Sean Owen <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
---
.../scala/org/apache/spark/DistributedSuite.scala | 2 +-
.../test/scala/org/apache/spark/FileSuite.scala | 6 +-
.../scala/org/apache/spark/PartitioningSuite.scala | 14 +--
.../test/scala/org/apache/spark/ShuffleSuite.scala | 2 +-
.../apache/spark/rdd/PairRDDFunctionsSuite.scala | 116 ++++++++++-----------
.../scala/org/apache/spark/rdd/SortingSuite.scala | 2 +-
docs/graphx-programming-guide.md | 4 +-
.../scala/org/apache/spark/graphx/GraphSuite.scala | 2 +-
.../graphx/lib/ConnectedComponentsSuite.scala | 2 +-
.../spark/mllib/rdd/MLPairRDDFunctionsSuite.scala | 2 +-
.../org/apache/spark/sql/DataFrameSuite.scala | 2 +-
11 files changed, 77 insertions(+), 77 deletions(-)
diff --git a/core/src/test/scala/org/apache/spark/DistributedSuite.scala
b/core/src/test/scala/org/apache/spark/DistributedSuite.scala
index f1c2bc0..8173a8e 100644
--- a/core/src/test/scala/org/apache/spark/DistributedSuite.scala
+++ b/core/src/test/scala/org/apache/spark/DistributedSuite.scala
@@ -77,7 +77,7 @@ class DistributedSuite extends SparkFunSuite with Matchers
with LocalSparkContex
test("simple groupByKey") {
sc = new SparkContext(clusterUrl, "test")
- val pairs = sc.parallelize(Array((1, 1), (1, 2), (1, 3), (2, 1)), 5)
+ val pairs = sc.parallelize(Seq((1, 1), (1, 2), (1, 3), (2, 1)), 5)
val groups = pairs.groupByKey(5).collect()
assert(groups.size === 2)
val valuesFor1 = groups.find(_._1 == 1).get._2
diff --git a/core/src/test/scala/org/apache/spark/FileSuite.scala
b/core/src/test/scala/org/apache/spark/FileSuite.scala
index c7ea195..3446c03 100644
--- a/core/src/test/scala/org/apache/spark/FileSuite.scala
+++ b/core/src/test/scala/org/apache/spark/FileSuite.scala
@@ -372,7 +372,7 @@ class FileSuite extends SparkFunSuite with
LocalSparkContext {
test ("prevent user from overwriting the empty directory (old Hadoop API)") {
sc = new SparkContext("local", "test")
- val randomRDD = sc.parallelize(Array((1, "a"), (1, "a"), (2, "b"), (3,
"c")), 1)
+ val randomRDD = sc.parallelize(Seq((1, "a"), (1, "a"), (2, "b"), (3,
"c")), 1)
intercept[FileAlreadyExistsException] {
randomRDD.saveAsTextFile(tempDir.getPath)
}
@@ -380,7 +380,7 @@ class FileSuite extends SparkFunSuite with
LocalSparkContext {
test ("prevent user from overwriting the non-empty directory (old Hadoop
API)") {
sc = new SparkContext("local", "test")
- val randomRDD = sc.parallelize(Array((1, "a"), (1, "a"), (2, "b"), (3,
"c")), 1)
+ val randomRDD = sc.parallelize(Seq((1, "a"), (1, "a"), (2, "b"), (3,
"c")), 1)
randomRDD.saveAsTextFile(tempDir.getPath + "/output")
assert(new File(tempDir.getPath + "/output/part-00000").exists())
intercept[FileAlreadyExistsException] {
@@ -392,7 +392,7 @@ class FileSuite extends SparkFunSuite with
LocalSparkContext {
val conf = new SparkConf()
conf.setAppName("test").setMaster("local").set("spark.hadoop.validateOutputSpecs",
"false")
sc = new SparkContext(conf)
- val randomRDD = sc.parallelize(Array((1, "a"), (1, "a"), (2, "b"), (3,
"c")), 1)
+ val randomRDD = sc.parallelize(Seq((1, "a"), (1, "a"), (2, "b"), (3,
"c")), 1)
randomRDD.saveAsTextFile(tempDir.getPath + "/output")
assert(new File(tempDir.getPath + "/output/part-00000").exists())
randomRDD.saveAsTextFile(tempDir.getPath + "/output")
diff --git a/core/src/test/scala/org/apache/spark/PartitioningSuite.scala
b/core/src/test/scala/org/apache/spark/PartitioningSuite.scala
index ca527ce..1a3259c 100644
--- a/core/src/test/scala/org/apache/spark/PartitioningSuite.scala
+++ b/core/src/test/scala/org/apache/spark/PartitioningSuite.scala
@@ -262,11 +262,11 @@ class PartitioningSuite extends SparkFunSuite with
SharedSparkContext with Priva
test("defaultPartitioner") {
val rdd1 = sc.parallelize((1 to 1000).map(x => (x, x)), 150)
- val rdd2 = sc.parallelize(Array((1, 2), (2, 3), (2, 4), (3, 4)))
+ val rdd2 = sc.parallelize(Seq((1, 2), (2, 3), (2, 4), (3, 4)))
.partitionBy(new HashPartitioner(10))
- val rdd3 = sc.parallelize(Array((1, 6), (7, 8), (3, 10), (5, 12), (13,
14)))
+ val rdd3 = sc.parallelize(Seq((1, 6), (7, 8), (3, 10), (5, 12), (13, 14)))
.partitionBy(new HashPartitioner(100))
- val rdd4 = sc.parallelize(Array((1, 2), (2, 3), (2, 4), (3, 4)))
+ val rdd4 = sc.parallelize(Seq((1, 2), (2, 3), (2, 4), (3, 4)))
.partitionBy(new HashPartitioner(9))
val rdd5 = sc.parallelize((1 to 10).map(x => (x, x)), 11)
@@ -289,14 +289,14 @@ class PartitioningSuite extends SparkFunSuite with
SharedSparkContext with Priva
sc.conf.set("spark.default.parallelism", "4")
val rdd1 = sc.parallelize((1 to 1000).map(x => (x, x)), 150)
- val rdd2 = sc.parallelize(Array((1, 2), (2, 3), (2, 4), (3, 4)))
+ val rdd2 = sc.parallelize(Seq((1, 2), (2, 3), (2, 4), (3, 4)))
.partitionBy(new HashPartitioner(10))
- val rdd3 = sc.parallelize(Array((1, 6), (7, 8), (3, 10), (5, 12), (13,
14)))
+ val rdd3 = sc.parallelize(Seq((1, 6), (7, 8), (3, 10), (5, 12), (13,
14)))
.partitionBy(new HashPartitioner(100))
- val rdd4 = sc.parallelize(Array((1, 2), (2, 3), (2, 4), (3, 4)))
+ val rdd4 = sc.parallelize(Seq((1, 2), (2, 3), (2, 4), (3, 4)))
.partitionBy(new HashPartitioner(9))
val rdd5 = sc.parallelize((1 to 10).map(x => (x, x)), 11)
- val rdd6 = sc.parallelize(Array((1, 2), (2, 3), (2, 4), (3, 4)))
+ val rdd6 = sc.parallelize(Seq((1, 2), (2, 3), (2, 4), (3, 4)))
.partitionBy(new HashPartitioner(3))
val partitioner1 = Partitioner.defaultPartitioner(rdd1, rdd2)
diff --git a/core/src/test/scala/org/apache/spark/ShuffleSuite.scala
b/core/src/test/scala/org/apache/spark/ShuffleSuite.scala
index c652f87..9e39271 100644
--- a/core/src/test/scala/org/apache/spark/ShuffleSuite.scala
+++ b/core/src/test/scala/org/apache/spark/ShuffleSuite.scala
@@ -44,7 +44,7 @@ abstract class ShuffleSuite extends SparkFunSuite with
Matchers with LocalSparkC
test("groupByKey without compression") {
val myConf = conf.clone().set(config.SHUFFLE_COMPRESS, false)
sc = new SparkContext("local", "test", myConf)
- val pairs = sc.parallelize(Array((1, 1), (1, 2), (1, 3), (2, 1)), 4)
+ val pairs = sc.parallelize(Seq((1, 1), (1, 2), (1, 3), (2, 1)), 4)
val groups = pairs.groupByKey(4).collect()
assert(groups.size === 2)
val valuesFor1 = groups.find(_._1 == 1).get._2
diff --git
a/core/src/test/scala/org/apache/spark/rdd/PairRDDFunctionsSuite.scala
b/core/src/test/scala/org/apache/spark/rdd/PairRDDFunctionsSuite.scala
index 01fe170..135cfff 100644
--- a/core/src/test/scala/org/apache/spark/rdd/PairRDDFunctionsSuite.scala
+++ b/core/src/test/scala/org/apache/spark/rdd/PairRDDFunctionsSuite.scala
@@ -38,7 +38,7 @@ import org.apache.spark.util.Utils
class PairRDDFunctionsSuite extends SparkFunSuite with SharedSparkContext {
test("aggregateByKey") {
- val pairs = sc.parallelize(Array((1, 1), (1, 1), (3, 2), (5, 1), (5, 3)),
2)
+ val pairs = sc.parallelize(Seq((1, 1), (1, 1), (3, 2), (5, 1), (5, 3)), 2)
val sets = pairs.aggregateByKey(new HashSet[Int]())(_ += _, _ ++=
_).collect()
assert(sets.size === 3)
@@ -51,7 +51,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("groupByKey") {
- val pairs = sc.parallelize(Array((1, 1), (1, 2), (1, 3), (2, 1)))
+ val pairs = sc.parallelize(Seq((1, 1), (1, 2), (1, 3), (2, 1)))
val groups = pairs.groupByKey().collect()
assert(groups.size === 2)
val valuesFor1 = groups.find(_._1 == 1).get._2
@@ -61,7 +61,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("groupByKey with duplicates") {
- val pairs = sc.parallelize(Array((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
+ val pairs = sc.parallelize(Seq((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
val groups = pairs.groupByKey().collect()
assert(groups.size === 2)
val valuesFor1 = groups.find(_._1 == 1).get._2
@@ -71,7 +71,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("groupByKey with negative key hash codes") {
- val pairs = sc.parallelize(Array((-1, 1), (-1, 2), (-1, 3), (2, 1)))
+ val pairs = sc.parallelize(Seq((-1, 1), (-1, 2), (-1, 3), (2, 1)))
val groups = pairs.groupByKey().collect()
assert(groups.size === 2)
val valuesForMinus1 = groups.find(_._1 == -1).get._2
@@ -81,7 +81,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("groupByKey with many output partitions") {
- val pairs = sc.parallelize(Array((1, 1), (1, 2), (1, 3), (2, 1)))
+ val pairs = sc.parallelize(Seq((1, 1), (1, 2), (1, 3), (2, 1)))
val groups = pairs.groupByKey(10).collect()
assert(groups.size === 2)
val valuesFor1 = groups.find(_._1 == 1).get._2
@@ -170,13 +170,13 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("reduceByKey") {
- val pairs = sc.parallelize(Array((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
+ val pairs = sc.parallelize(Seq((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
val sums = pairs.reduceByKey(_ + _).collect()
assert(sums.toSet === Set((1, 7), (2, 1)))
}
test("reduceByKey with collectAsMap") {
- val pairs = sc.parallelize(Array((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
+ val pairs = sc.parallelize(Seq((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
val sums = pairs.reduceByKey(_ + _).collectAsMap()
assert(sums.size === 2)
assert(sums(1) === 7)
@@ -184,7 +184,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("reduceByKey with many output partitions") {
- val pairs = sc.parallelize(Array((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
+ val pairs = sc.parallelize(Seq((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
val sums = pairs.reduceByKey(_ + _, 10).collect()
assert(sums.toSet === Set((1, 7), (2, 1)))
}
@@ -194,7 +194,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
def numPartitions = 2
def getPartition(key: Any) = key.asInstanceOf[Int]
}
- val pairs = sc.parallelize(Array((1, 1), (1, 2), (1, 1), (0,
1))).partitionBy(p)
+ val pairs = sc.parallelize(Seq((1, 1), (1, 2), (1, 1), (0,
1))).partitionBy(p)
val sums = pairs.reduceByKey(_ + _)
assert(sums.collect().toSet === Set((1, 4), (0, 1)))
assert(sums.partitioner === Some(p))
@@ -246,8 +246,8 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("join") {
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
- val rdd2 = sc.parallelize(Array((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd2 = sc.parallelize(Seq((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
val joined = rdd1.join(rdd2).collect()
assert(joined.size === 4)
assert(joined.toSet === Set(
@@ -259,8 +259,8 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("join all-to-all") {
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (1, 3)))
- val rdd2 = sc.parallelize(Array((1, 'x'), (1, 'y')))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (1, 3)))
+ val rdd2 = sc.parallelize(Seq((1, 'x'), (1, 'y')))
val joined = rdd1.join(rdd2).collect()
assert(joined.size === 6)
assert(joined.toSet === Set(
@@ -274,8 +274,8 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("leftOuterJoin") {
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
- val rdd2 = sc.parallelize(Array((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd2 = sc.parallelize(Seq((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
val joined = rdd1.leftOuterJoin(rdd2).collect()
assert(joined.size === 5)
assert(joined.toSet === Set(
@@ -292,7 +292,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
import scala.reflect.classTag
val intPairCT = classTag[(Int, Int)]
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
val rdd2 = sc.emptyRDD[(Int, Int)](intPairCT)
val joined = rdd1.cogroup(rdd2).collect()
@@ -304,7 +304,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
import scala.reflect.classTag
val intCT = classTag[Int]
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
val rdd2 = sc.emptyRDD[Int](intCT).groupBy((x) => 5)
val joined = rdd1.cogroup(rdd2).collect()
assert(joined.size > 0)
@@ -315,7 +315,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
"with an order of magnitude difference in number of partitions") {
val rdd1 = sc.parallelize((1 to 1000).map(x => (x, x)), 1000)
val rdd2 = sc
- .parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
+ .parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
.partitionBy(new HashPartitioner(10))
val joined = rdd1.cogroup(rdd2)
assert(joined.getNumPartitions == rdd1.getNumPartitions)
@@ -325,7 +325,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
test("cogroup between multiple RDD with number of partitions similar in
order of magnitude") {
val rdd1 = sc.parallelize((1 to 1000).map(x => (x, x)), 20)
val rdd2 = sc
- .parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
+ .parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
.partitionBy(new HashPartitioner(10))
val joined = rdd1.cogroup(rdd2)
assert(joined.getNumPartitions == rdd2.getNumPartitions)
@@ -336,7 +336,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
try {
sc.conf.set("spark.default.parallelism", "4")
val rdd1 = sc.parallelize((1 to 1000).map(x => (x, x)), 20)
- val rdd2 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)), 10)
+ val rdd2 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)), 10)
val joined = rdd1.cogroup(rdd2)
assert(joined.getNumPartitions == sc.defaultParallelism)
} finally {
@@ -349,7 +349,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
try {
sc.conf.set("spark.default.parallelism", "4")
val rdd1 = sc.parallelize((1 to 1000).map(x => (x, x)), 20)
- val rdd2 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd2 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
.partitionBy(new HashPartitioner(10))
val joined = rdd1.cogroup(rdd2)
assert(joined.getNumPartitions == rdd2.getNumPartitions)
@@ -364,7 +364,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
try {
sc.conf.set("spark.default.parallelism", "4")
val rdd1 = sc.parallelize((1 to 1000).map(x => (x, x)), 1000)
- val rdd2 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd2 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
.partitionBy(new HashPartitioner(10))
val joined = rdd1.cogroup(rdd2)
assert(joined.getNumPartitions == rdd2.getNumPartitions)
@@ -374,8 +374,8 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("rightOuterJoin") {
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
- val rdd2 = sc.parallelize(Array((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd2 = sc.parallelize(Seq((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
val joined = rdd1.rightOuterJoin(rdd2).collect()
assert(joined.size === 5)
assert(joined.toSet === Set(
@@ -388,8 +388,8 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("fullOuterJoin") {
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
- val rdd2 = sc.parallelize(Array((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd2 = sc.parallelize(Seq((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
val joined = rdd1.fullOuterJoin(rdd2).collect()
assert(joined.size === 6)
assert(joined.toSet === Set(
@@ -403,15 +403,15 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("join with no matches") {
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
- val rdd2 = sc.parallelize(Array((4, 'x'), (5, 'y'), (5, 'z'), (6, 'w')))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd2 = sc.parallelize(Seq((4, 'x'), (5, 'y'), (5, 'z'), (6, 'w')))
val joined = rdd1.join(rdd2).collect()
assert(joined.size === 0)
}
test("join with many output partitions") {
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
- val rdd2 = sc.parallelize(Array((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd2 = sc.parallelize(Seq((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
val joined = rdd1.join(rdd2, 10).collect()
assert(joined.size === 4)
assert(joined.toSet === Set(
@@ -423,8 +423,8 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("groupWith") {
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
- val rdd2 = sc.parallelize(Array((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd2 = sc.parallelize(Seq((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
val joined = rdd1.groupWith(rdd2).collect()
assert(joined.size === 4)
val joinedSet = joined.map(x => (x._1, (x._2._1.toList,
x._2._2.toList))).toSet
@@ -437,9 +437,9 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("groupWith3") {
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
- val rdd2 = sc.parallelize(Array((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
- val rdd3 = sc.parallelize(Array((1, 'a'), (3, 'b'), (4, 'c'), (4, 'd')))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd2 = sc.parallelize(Seq((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
+ val rdd3 = sc.parallelize(Seq((1, 'a'), (3, 'b'), (4, 'c'), (4, 'd')))
val joined = rdd1.groupWith(rdd2, rdd3).collect()
assert(joined.size === 4)
val joinedSet = joined.map(x => (x._1,
@@ -453,10 +453,10 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("groupWith4") {
- val rdd1 = sc.parallelize(Array((1, 1), (1, 2), (2, 1), (3, 1)))
- val rdd2 = sc.parallelize(Array((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
- val rdd3 = sc.parallelize(Array((1, 'a'), (3, 'b'), (4, 'c'), (4, 'd')))
- val rdd4 = sc.parallelize(Array((2, '@')))
+ val rdd1 = sc.parallelize(Seq((1, 1), (1, 2), (2, 1), (3, 1)))
+ val rdd2 = sc.parallelize(Seq((1, 'x'), (2, 'y'), (2, 'z'), (4, 'w')))
+ val rdd3 = sc.parallelize(Seq((1, 'a'), (3, 'b'), (4, 'c'), (4, 'd')))
+ val rdd4 = sc.parallelize(Seq((2, '@')))
val joined = rdd1.groupWith(rdd2, rdd3, rdd4).collect()
assert(joined.size === 4)
val joinedSet = joined.map(x => (x._1,
@@ -480,7 +480,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("keys and values") {
- val rdd = sc.parallelize(Array((1, "a"), (2, "b")))
+ val rdd = sc.parallelize(Seq((1, "a"), (2, "b")))
assert(rdd.keys.collect().toList === List(1, 2))
assert(rdd.values.collect().toList === List("a", "b"))
}
@@ -517,9 +517,9 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
def getPartition(key: Any) = key.asInstanceOf[Int]
}
// partitionBy so we have a narrow dependency
- val a = sc.parallelize(Array((1, "a"), (2, "b"), (3, "c"))).partitionBy(p)
+ val a = sc.parallelize(Seq((1, "a"), (2, "b"), (3, "c"))).partitionBy(p)
// more partitions/no partitioner so a shuffle dependency
- val b = sc.parallelize(Array((2, "b"), (3, "cc"), (4, "d")), 4)
+ val b = sc.parallelize(Seq((2, "b"), (3, "cc"), (4, "d")), 4)
val c = a.subtract(b)
assert(c.collect().toSet === Set((1, "a"), (3, "c")))
// Ideally we could keep the original partitioner...
@@ -527,8 +527,8 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("subtractByKey") {
- val a = sc.parallelize(Array((1, "a"), (1, "a"), (2, "b"), (3, "c")), 2)
- val b = sc.parallelize(Array((2, 20), (3, 30), (4, 40)), 4)
+ val a = sc.parallelize(Seq((1, "a"), (1, "a"), (2, "b"), (3, "c")), 2)
+ val b = sc.parallelize(Seq((2, 20), (3, 30), (4, 40)), 4)
val c = a.subtractByKey(b)
assert(c.collect().toSet === Set((1, "a"), (1, "a")))
assert(c.partitions.size === a.partitions.size)
@@ -541,22 +541,22 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
def getPartition(key: Any) = key.asInstanceOf[Int]
}
// partitionBy so we have a narrow dependency
- val a = sc.parallelize(Array((1, "a"), (1, "a"), (2, "b"), (3,
"c"))).partitionBy(p)
+ val a = sc.parallelize(Seq((1, "a"), (1, "a"), (2, "b"), (3,
"c"))).partitionBy(p)
// more partitions/no partitioner so a shuffle dependency
- val b = sc.parallelize(Array((2, "b"), (3, "cc"), (4, "d")), 4)
+ val b = sc.parallelize(Seq((2, "b"), (3, "cc"), (4, "d")), 4)
val c = a.subtractByKey(b)
assert(c.collect().toSet === Set((1, "a"), (1, "a")))
assert(c.partitioner.get === p)
}
test("foldByKey") {
- val pairs = sc.parallelize(Array((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
+ val pairs = sc.parallelize(Seq((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
val sums = pairs.foldByKey(0)(_ + _).collect()
assert(sums.toSet === Set((1, 7), (2, 1)))
}
test("foldByKey with mutable result type") {
- val pairs = sc.parallelize(Array((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
+ val pairs = sc.parallelize(Seq((1, 1), (1, 2), (1, 3), (1, 1), (2, 1)))
val bufs = pairs.mapValues(v => ArrayBuffer(v)).cache()
// Fold the values using in-place mutation
val sums = bufs.foldByKey(new ArrayBuffer[Int])(_ ++= _).collect()
@@ -571,7 +571,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("saveNewAPIHadoopFile should call setConf if format is configurable") {
- val pairs = sc.parallelize(Array((Integer.valueOf(1), Integer.valueOf(1))))
+ val pairs = sc.parallelize(Seq((Integer.valueOf(1), Integer.valueOf(1))))
// No error, non-configurable formats still work
pairs.saveAsNewAPIHadoopFile[NewFakeFormat]("ignored")
@@ -587,7 +587,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
test("The JobId on the driver and executors should be the same during the
commit") {
// Create more than one rdd to mimic stageId not equal to rddId
- val pairs = sc.parallelize(Array((1, 2), (2, 3)), 2)
+ val pairs = sc.parallelize(Seq((1, 2), (2, 3)), 2)
.map { p => (Integer.valueOf(p._1 + 1), Integer.valueOf(p._2 + 1)) }
.filter { p => p._1 > 0 }
pairs.saveAsNewAPIHadoopFile[YetAnotherFakeFormat]("ignored")
@@ -595,7 +595,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("saveAsHadoopFile should respect configured output committers") {
- val pairs = sc.parallelize(Array((Integer.valueOf(1), Integer.valueOf(1))))
+ val pairs = sc.parallelize(Seq((Integer.valueOf(1), Integer.valueOf(1))))
val conf = new JobConf()
conf.setOutputCommitter(classOf[FakeOutputCommitter])
@@ -607,7 +607,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("failure callbacks should be called before calling writer.close() in
saveNewAPIHadoopFile") {
- val pairs = sc.parallelize(Array((Integer.valueOf(1),
Integer.valueOf(2))), 1)
+ val pairs = sc.parallelize(Seq((Integer.valueOf(1), Integer.valueOf(2))),
1)
FakeWriterWithCallback.calledBy = ""
FakeWriterWithCallback.exception = null
@@ -622,7 +622,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("failure callbacks should be called before calling writer.close() in
saveAsHadoopFile") {
- val pairs = sc.parallelize(Array((Integer.valueOf(1),
Integer.valueOf(2))), 1)
+ val pairs = sc.parallelize(Seq((Integer.valueOf(1), Integer.valueOf(2))),
1)
val conf = new JobConf()
FakeWriterWithCallback.calledBy = ""
@@ -640,7 +640,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
test("saveAsNewAPIHadoopDataset should support invalid output paths when " +
"there are no files to be committed to an absolute output location") {
- val pairs = sc.parallelize(Array((Integer.valueOf(1),
Integer.valueOf(2))), 1)
+ val pairs = sc.parallelize(Seq((Integer.valueOf(1), Integer.valueOf(2))),
1)
def saveRddWithPath(path: String): Unit = {
val job = NewJob.getInstance(new Configuration(sc.hadoopConfiguration))
@@ -668,7 +668,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
// for non-null invalid paths.
test("saveAsHadoopDataset should respect empty output directory when " +
"there are no files to be committed to an absolute output location") {
- val pairs = sc.parallelize(Array((Integer.valueOf(1),
Integer.valueOf(2))), 1)
+ val pairs = sc.parallelize(Seq((Integer.valueOf(1), Integer.valueOf(2))),
1)
val conf = new JobConf()
conf.setOutputKeyClass(classOf[Integer])
@@ -683,7 +683,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("lookup") {
- val pairs = sc.parallelize(Array((1, 2), (3, 4), (5, 6), (5, 7)))
+ val pairs = sc.parallelize(Seq((1, 2), (3, 4), (5, 6), (5, 7)))
assert(pairs.partitioner === None)
assert(pairs.lookup(1) === Seq(2))
@@ -693,7 +693,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("lookup with partitioner") {
- val pairs = sc.parallelize(Array((1, 2), (3, 4), (5, 6), (5, 7)))
+ val pairs = sc.parallelize(Seq((1, 2), (3, 4), (5, 6), (5, 7)))
val p = new Partitioner {
def numPartitions: Int = 2
@@ -709,7 +709,7 @@ class PairRDDFunctionsSuite extends SparkFunSuite with
SharedSparkContext {
}
test("lookup with bad partitioner") {
- val pairs = sc.parallelize(Array((1, 2), (3, 4), (5, 6), (5, 7)))
+ val pairs = sc.parallelize(Seq((1, 2), (3, 4), (5, 6), (5, 7)))
val p = new Partitioner {
def numPartitions: Int = 2
diff --git a/core/src/test/scala/org/apache/spark/rdd/SortingSuite.scala
b/core/src/test/scala/org/apache/spark/rdd/SortingSuite.scala
index 7f20206..d5f7d30 100644
--- a/core/src/test/scala/org/apache/spark/rdd/SortingSuite.scala
+++ b/core/src/test/scala/org/apache/spark/rdd/SortingSuite.scala
@@ -25,7 +25,7 @@ import org.apache.spark.internal.Logging
class SortingSuite extends SparkFunSuite with SharedSparkContext with Matchers
with Logging {
test("sortByKey") {
- val pairs = sc.parallelize(Array((1, 0), (2, 0), (0, 0), (3, 0)), 2)
+ val pairs = sc.parallelize(Seq((1, 0), (2, 0), (0, 0), (3, 0)), 2)
assert(pairs.sortByKey().collect() === Array((0, 0), (1, 0), (2, 0), (3,
0)))
}
diff --git a/docs/graphx-programming-guide.md b/docs/graphx-programming-guide.md
index c96f7aa..903f802 100644
--- a/docs/graphx-programming-guide.md
+++ b/docs/graphx-programming-guide.md
@@ -183,7 +183,7 @@ code constructs a graph from a collection of RDDs:
val sc: SparkContext
// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))] =
- sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
+ sc.parallelize(Seq((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))
// Create an RDD for edges
val relationships: RDD[Edge[String]] =
@@ -420,7 +420,7 @@ interest or eliminate broken links. For example in the
following code we remove
{% highlight scala %}
// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))] =
- sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
+ sc.parallelize(Seq((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
(5L, ("franklin", "prof")), (2L, ("istoica", "prof")),
(4L, ("peter", "student"))))
// Create an RDD for edges
diff --git a/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala
b/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala
index dede3b5..6f9670f 100644
--- a/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala
+++ b/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala
@@ -218,7 +218,7 @@ class GraphSuite extends SparkFunSuite with
LocalSparkContext {
test("reverse with join elimination") {
withSpark { sc =>
- val vertices: RDD[(VertexId, Int)] = sc.parallelize(Array((1L, 1), (2L,
2)))
+ val vertices: RDD[(VertexId, Int)] = sc.parallelize(Seq((1L, 1), (2L,
2)))
val edges: RDD[Edge[Int]] = sc.parallelize(Array(Edge(1L, 2L, 0)))
val graph = Graph(vertices, edges).reverse
val result = GraphXUtils.mapReduceTriplets[Int, Int, Int](
diff --git
a/graphx/src/test/scala/org/apache/spark/graphx/lib/ConnectedComponentsSuite.scala
b/graphx/src/test/scala/org/apache/spark/graphx/lib/ConnectedComponentsSuite.scala
index 1b81423..d0231c8 100644
---
a/graphx/src/test/scala/org/apache/spark/graphx/lib/ConnectedComponentsSuite.scala
+++
b/graphx/src/test/scala/org/apache/spark/graphx/lib/ConnectedComponentsSuite.scala
@@ -101,7 +101,7 @@ class ConnectedComponentsSuite extends SparkFunSuite with
LocalSparkContext {
withSpark { sc =>
// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))] =
- sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal",
"postdoc")),
+ sc.parallelize(Seq((3L, ("rxin", "student")), (7L, ("jgonzal",
"postdoc")),
(5L, ("franklin", "prof")), (2L, ("istoica", "prof")),
(4L, ("peter", "student"))))
// Create an RDD for edges
diff --git
a/mllib/src/test/scala/org/apache/spark/mllib/rdd/MLPairRDDFunctionsSuite.scala
b/mllib/src/test/scala/org/apache/spark/mllib/rdd/MLPairRDDFunctionsSuite.scala
index 5623142..db17db9 100644
---
a/mllib/src/test/scala/org/apache/spark/mllib/rdd/MLPairRDDFunctionsSuite.scala
+++
b/mllib/src/test/scala/org/apache/spark/mllib/rdd/MLPairRDDFunctionsSuite.scala
@@ -23,7 +23,7 @@ import org.apache.spark.mllib.util.MLlibTestSparkContext
class MLPairRDDFunctionsSuite extends SparkFunSuite with MLlibTestSparkContext
{
test("topByKey") {
- val topMap = sc.parallelize(Array((1, 7), (1, 3), (1, 6), (1, 1), (1, 2),
(3, 2), (3, 7), (5,
+ val topMap = sc.parallelize(Seq((1, 7), (1, 3), (1, 6), (1, 1), (1, 2),
(3, 2), (3, 7), (5,
1), (3, 5)), 2)
.topByKey(5)
.collectAsMap()
diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DataFrameSuite.scala
b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameSuite.scala
index 48195ad..52adf3e 100644
--- a/sql/core/src/test/scala/org/apache/spark/sql/DataFrameSuite.scala
+++ b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameSuite.scala
@@ -554,7 +554,7 @@ class DataFrameSuite extends QueryTest with
SharedSparkSession {
}
test("replace column using withColumns") {
- val df2 = sparkContext.parallelize(Array((1, 2), (2, 3), (3,
4))).toDF("x", "y")
+ val df2 = sparkContext.parallelize(Seq((1, 2), (2, 3), (3, 4))).toDF("x",
"y")
val df3 = df2.withColumns(Seq("x", "newCol1", "newCol2"),
Seq(df2("x") + 1, df2("y"), df2("y") + 1))
checkAnswer(
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]