This is an automated email from the ASF dual-hosted git repository.
srowen pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/spark.git
The following commit(s) were added to refs/heads/master by this push:
new ac520d4 [SPARK-32676][3.0][ML] Fix double caching in KMeans/BiKMeans
ac520d4 is described below
commit ac520d4a7c40a1d67358ee64af26e7f73face448
Author: zhengruifeng <[email protected]>
AuthorDate: Sun Aug 23 17:14:40 2020 -0500
[SPARK-32676][3.0][ML] Fix double caching in KMeans/BiKMeans
### What changes were proposed in this pull request?
Fix double caching in KMeans/BiKMeans:
1, let the callers of `runWithWeight` to pass whether `handlePersistence`
is needed;
2, persist and unpersist inside of `runWithWeight`;
3, persist the `norms` if needed according to the comments;
### Why are the changes needed?
avoid double caching
### Does this PR introduce _any_ user-facing change?
no
### How was this patch tested?
existing testsuites
Closes #29501 from zhengruifeng/kmeans_handlePersistence.
Authored-by: zhengruifeng <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
---
.../spark/ml/clustering/BisectingKMeans.scala | 33 ++++++---------
.../org/apache/spark/ml/clustering/KMeans.scala | 33 ++++++---------
.../spark/mllib/clustering/BisectingKMeans.scala | 47 ++++++++++------------
.../org/apache/spark/mllib/clustering/KMeans.scala | 29 +++++++------
4 files changed, 59 insertions(+), 83 deletions(-)
diff --git
a/mllib/src/main/scala/org/apache/spark/ml/clustering/BisectingKMeans.scala
b/mllib/src/main/scala/org/apache/spark/ml/clustering/BisectingKMeans.scala
index 5a60bed..061091c 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/clustering/BisectingKMeans.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/clustering/BisectingKMeans.scala
@@ -29,9 +29,8 @@ import org.apache.spark.ml.util._
import org.apache.spark.ml.util.Instrumentation.instrumented
import org.apache.spark.mllib.clustering.{BisectingKMeans =>
MLlibBisectingKMeans,
BisectingKMeansModel => MLlibBisectingKMeansModel}
-import org.apache.spark.mllib.linalg.{Vector => OldVector, Vectors =>
OldVectors}
+import org.apache.spark.mllib.linalg.{Vectors => OldVectors}
import org.apache.spark.mllib.linalg.VectorImplicits._
-import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{DoubleType, IntegerType, StructType}
@@ -276,21 +275,6 @@ class BisectingKMeans @Since("2.0.0") (
override def fit(dataset: Dataset[_]): BisectingKMeansModel = instrumented {
instr =>
transformSchema(dataset.schema, logging = true)
- val handlePersistence = dataset.storageLevel == StorageLevel.NONE
- val w = if (isDefined(weightCol) && $(weightCol).nonEmpty) {
- checkNonNegativeWeight(col($(weightCol)).cast(DoubleType))
- } else {
- lit(1.0)
- }
-
- val instances: RDD[(OldVector, Double)] = dataset
- .select(DatasetUtils.columnToVector(dataset, getFeaturesCol), w).rdd.map
{
- case Row(point: Vector, weight: Double) => (OldVectors.fromML(point),
weight)
- }
- if (handlePersistence) {
- instances.persist(StorageLevel.MEMORY_AND_DISK)
- }
-
instr.logPipelineStage(this)
instr.logDataset(dataset)
instr.logParams(this, featuresCol, predictionCol, k, maxIter, seed,
@@ -302,11 +286,18 @@ class BisectingKMeans @Since("2.0.0") (
.setMinDivisibleClusterSize($(minDivisibleClusterSize))
.setSeed($(seed))
.setDistanceMeasure($(distanceMeasure))
- val parentModel = bkm.runWithWeight(instances, Some(instr))
- val model = copyValues(new BisectingKMeansModel(uid,
parentModel).setParent(this))
- if (handlePersistence) {
- instances.unpersist()
+
+ val w = if (isDefined(weightCol) && $(weightCol).nonEmpty) {
+ checkNonNegativeWeight(col($(weightCol)).cast(DoubleType))
+ } else {
+ lit(1.0)
}
+ val instances = dataset.select(DatasetUtils.columnToVector(dataset,
getFeaturesCol), w)
+ .rdd.map { case Row(point: Vector, weight: Double) =>
(OldVectors.fromML(point), weight) }
+
+ val handlePersistence = dataset.storageLevel == StorageLevel.NONE
+ val parentModel = bkm.runWithWeight(instances, handlePersistence,
Some(instr))
+ val model = copyValues(new BisectingKMeansModel(uid,
parentModel).setParent(this))
val summary = new BisectingKMeansSummary(
model.transform(dataset),
diff --git a/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala
b/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala
index 5c06973..f6f6eb7 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala
@@ -32,7 +32,6 @@ import org.apache.spark.ml.util.Instrumentation.instrumented
import org.apache.spark.mllib.clustering.{DistanceMeasure, KMeans =>
MLlibKMeans, KMeansModel => MLlibKMeansModel}
import org.apache.spark.mllib.linalg.{Vector => OldVector, Vectors =>
OldVectors}
import org.apache.spark.mllib.linalg.VectorImplicits._
-import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{DoubleType, IntegerType, StructType}
@@ -330,22 +329,6 @@ class KMeans @Since("1.5.0") (
override def fit(dataset: Dataset[_]): KMeansModel = instrumented { instr =>
transformSchema(dataset.schema, logging = true)
- val handlePersistence = dataset.storageLevel == StorageLevel.NONE
- val w = if (isDefined(weightCol) && $(weightCol).nonEmpty) {
- checkNonNegativeWeight(col($(weightCol)).cast(DoubleType))
- } else {
- lit(1.0)
- }
-
- val instances: RDD[(OldVector, Double)] = dataset
- .select(DatasetUtils.columnToVector(dataset, getFeaturesCol), w).rdd.map
{
- case Row(point: Vector, weight: Double) => (OldVectors.fromML(point),
weight)
- }
-
- if (handlePersistence) {
- instances.persist(StorageLevel.MEMORY_AND_DISK)
- }
-
instr.logPipelineStage(this)
instr.logDataset(dataset)
instr.logParams(this, featuresCol, predictionCol, k, initMode, initSteps,
distanceMeasure,
@@ -358,8 +341,19 @@ class KMeans @Since("1.5.0") (
.setSeed($(seed))
.setEpsilon($(tol))
.setDistanceMeasure($(distanceMeasure))
- val parentModel = algo.runWithWeight(instances, Option(instr))
+
+ val w = if (isDefined(weightCol) && $(weightCol).nonEmpty) {
+ checkNonNegativeWeight(col($(weightCol)).cast(DoubleType))
+ } else {
+ lit(1.0)
+ }
+ val instances = dataset.select(DatasetUtils.columnToVector(dataset,
getFeaturesCol), w)
+ .rdd.map { case Row(point: Vector, weight: Double) =>
(OldVectors.fromML(point), weight) }
+
+ val handlePersistence = dataset.storageLevel == StorageLevel.NONE
+ val parentModel = algo.runWithWeight(instances, handlePersistence,
Some(instr))
val model = copyValues(new KMeansModel(uid, parentModel).setParent(this))
+
val summary = new KMeansSummary(
model.transform(dataset),
$(predictionCol),
@@ -370,9 +364,6 @@ class KMeans @Since("1.5.0") (
model.setSummary(Some(summary))
instr.logNamedValue("clusterSizes", summary.clusterSizes)
- if (handlePersistence) {
- instances.unpersist()
- }
model
}
diff --git
a/mllib/src/main/scala/org/apache/spark/mllib/clustering/BisectingKMeans.scala
b/mllib/src/main/scala/org/apache/spark/mllib/clustering/BisectingKMeans.scala
index 99c6e8b..6be32ab 100644
---
a/mllib/src/main/scala/org/apache/spark/mllib/clustering/BisectingKMeans.scala
+++
b/mllib/src/main/scala/org/apache/spark/mllib/clustering/BisectingKMeans.scala
@@ -153,30 +153,25 @@ class BisectingKMeans private (
this
}
- private[spark] def run(
- input: RDD[Vector],
- instr: Option[Instrumentation]): BisectingKMeansModel = {
- val instances: RDD[(Vector, Double)] = input.map {
- case (point) => (point, 1.0)
- }
- runWithWeight(instances, None)
- }
-
private[spark] def runWithWeight(
- input: RDD[(Vector, Double)],
+ instances: RDD[(Vector, Double)],
+ handlePersistence: Boolean,
instr: Option[Instrumentation]): BisectingKMeansModel = {
- val d = input.map(_._1.size).first
+ val d = instances.map(_._1.size).first
logInfo(s"Feature dimension: $d.")
- val dMeasure: DistanceMeasure =
DistanceMeasure.decodeFromString(this.distanceMeasure)
- // Compute and cache vector norms for fast distance computation.
- val norms = input.map(d => Vectors.norm(d._1, 2.0))
- val vectors = input.zip(norms).map {
- case ((x, weight), norm) => new VectorWithNorm(x, norm, weight)
- }
- if (input.getStorageLevel == StorageLevel.NONE) {
+ val dMeasure = DistanceMeasure.decodeFromString(this.distanceMeasure)
+ val norms = instances.map(d => Vectors.norm(d._1, 2.0))
+ val vectors = instances.zip(norms)
+ .map { case ((x, weight), norm) => new VectorWithNorm(x, norm, weight) }
+
+ if (handlePersistence) {
vectors.persist(StorageLevel.MEMORY_AND_DISK)
+ } else {
+ // Compute and cache vector norms for fast distance computation.
+ norms.persist(StorageLevel.MEMORY_AND_DISK)
}
+
var assignments = vectors.map(v => (ROOT_INDEX, v))
var activeClusters = summarize(d, assignments, dMeasure)
instr.foreach(_.logNumExamples(activeClusters.values.map(_.size).sum))
@@ -244,13 +239,11 @@ class BisectingKMeans private (
}
level += 1
}
- if (preIndices != null) {
- preIndices.unpersist()
- }
- if (indices != null) {
- indices.unpersist()
- }
- vectors.unpersist()
+
+ if (preIndices != null) { preIndices.unpersist() }
+ if (indices != null) { indices.unpersist() }
+ if (handlePersistence) { vectors.unpersist() } else { norms.unpersist() }
+
val clusters = activeClusters ++ inactiveClusters
val root = buildTree(clusters, dMeasure)
val totalCost = root.leafNodes.map(_.cost).sum
@@ -264,7 +257,9 @@ class BisectingKMeans private (
*/
@Since("1.6.0")
def run(input: RDD[Vector]): BisectingKMeansModel = {
- run(input, None)
+ val instances = input.map(point => (point, 1.0))
+ val handlePersistence = input.getStorageLevel == StorageLevel.NONE
+ runWithWeight(instances, handlePersistence, None)
}
/**
diff --git
a/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
b/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
index 1c5de5a..76e2928 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
@@ -210,27 +210,26 @@ class KMeans private (
@Since("0.8.0")
def run(data: RDD[Vector]): KMeansModel = {
val instances = data.map(point => (point, 1.0))
- runWithWeight(instances, None)
+ val handlePersistence = data.getStorageLevel == StorageLevel.NONE
+ runWithWeight(instances, handlePersistence, None)
}
private[spark] def runWithWeight(
- data: RDD[(Vector, Double)],
+ instances: RDD[(Vector, Double)],
+ handlePersistence: Boolean,
instr: Option[Instrumentation]): KMeansModel = {
+ val norms = instances.map { case (v, _) => Vectors.norm(v, 2.0) }
+ val vectors = instances.zip(norms)
+ .map { case ((v, w), norm) => new VectorWithNorm(v, norm, w) }
- // Compute squared norms and cache them.
- val norms = data.map { case (v, _) =>
- Vectors.norm(v, 2.0)
- }
-
- val zippedData = data.zip(norms).map { case ((v, w), norm) =>
- new VectorWithNorm(v, norm, w)
- }
-
- if (data.getStorageLevel == StorageLevel.NONE) {
- zippedData.persist(StorageLevel.MEMORY_AND_DISK)
+ if (handlePersistence) {
+ vectors.persist(StorageLevel.MEMORY_AND_DISK)
+ } else {
+ // Compute squared norms and cache them.
+ norms.persist(StorageLevel.MEMORY_AND_DISK)
}
- val model = runAlgorithmWithWeight(zippedData, instr)
- zippedData.unpersist()
+ val model = runAlgorithmWithWeight(vectors, instr)
+ if (handlePersistence) { vectors.unpersist() } else { norms.unpersist() }
model
}
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]