Updated Branches:
  refs/heads/master 7b3ae04ea -> 7827efc87

Fix PySpark docs and an overly long line of code after fdbae41e


Project: http://git-wip-us.apache.org/repos/asf/incubator-spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/incubator-spark/commit/478b2b7e
Tree: http://git-wip-us.apache.org/repos/asf/incubator-spark/tree/478b2b7e
Diff: http://git-wip-us.apache.org/repos/asf/incubator-spark/diff/478b2b7e

Branch: refs/heads/master
Commit: 478b2b7edcf42fa3e16f625d4b8676f2bb31f8dc
Parents: b4fa11f
Author: Matei Zaharia <ma...@eecs.berkeley.edu>
Authored: Wed Oct 9 12:08:04 2013 -0700
Committer: Matei Zaharia <ma...@eecs.berkeley.edu>
Committed: Wed Oct 9 12:08:04 2013 -0700

----------------------------------------------------------------------
 docs/python-programming-guide.md |  2 +-
 python/pyspark/rdd.py            | 16 ++++++++--------
 2 files changed, 9 insertions(+), 9 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/incubator-spark/blob/478b2b7e/docs/python-programming-guide.md
----------------------------------------------------------------------
diff --git a/docs/python-programming-guide.md b/docs/python-programming-guide.md
index f67a1cc..6c2336a 100644
--- a/docs/python-programming-guide.md
+++ b/docs/python-programming-guide.md
@@ -16,7 +16,7 @@ This guide will show how to use the Spark features described 
there in Python.
 There are a few key differences between the Python and Scala APIs:
 
 * Python is dynamically typed, so RDDs can hold objects of multiple types.
-* PySpark does not yet support a few API calls, such as `lookup`, `sort`, and 
non-text input files, though these will be added in future releases.
+* PySpark does not yet support a few API calls, such as `lookup` and non-text 
input files, though these will be added in future releases.
 
 In PySpark, RDDs support the same methods as their Scala counterparts but take 
Python functions and return Python collection types.
 Short functions can be passed to RDD methods using Python's 
[`lambda`](http://www.diveintopython.net/power_of_introspection/lambda_functions.html)
 syntax:

http://git-wip-us.apache.org/repos/asf/incubator-spark/blob/478b2b7e/python/pyspark/rdd.py
----------------------------------------------------------------------
diff --git a/python/pyspark/rdd.py b/python/pyspark/rdd.py
index 7dfabb0..7019fb8 100644
--- a/python/pyspark/rdd.py
+++ b/python/pyspark/rdd.py
@@ -117,8 +117,6 @@ class RDD(object):
         else:
             return None
 
-    # TODO persist(self, storageLevel)
-
     def map(self, f, preservesPartitioning=False):
         """
         Return a new RDD containing the distinct elements in this RDD.
@@ -227,7 +225,7 @@ class RDD(object):
             total = num
 
         samples = self.sample(withReplacement, fraction, seed).collect()
-    
+
         # If the first sample didn't turn out large enough, keep trying to 
take samples;
         # this shouldn't happen often because we use a big multiplier for 
their initial size.
         # See: scala/spark/RDD.scala
@@ -288,7 +286,7 @@ class RDD(object):
             maxSampleSize = numPartitions * 20.0 # constant from Spark's 
RangePartitioner
             fraction = min(maxSampleSize / max(rddSize, 1), 1.0)
 
-            samples = self.sample(False, fraction, 1).map(lambda (k, v): 
k).collect()        
+            samples = self.sample(False, fraction, 1).map(lambda (k, v): 
k).collect()
             samples = sorted(samples, reverse=(not ascending), key=keyfunc)
 
             # we have numPartitions many parts but one of the them has
@@ -309,7 +307,9 @@ class RDD(object):
         def mapFunc(iterator):
             yield sorted(iterator, reverse=(not ascending), key=lambda (k, v): 
keyfunc(k))
 
-        return self.partitionBy(numPartitions, 
partitionFunc=rangePartitionFunc).mapPartitions(mapFunc,preservesPartitioning=True).flatMap(lambda
 x: x, preservesPartitioning=True)
+        return (self.partitionBy(numPartitions, 
partitionFunc=rangePartitionFunc)
+                    .mapPartitions(mapFunc,preservesPartitioning=True)
+                    .flatMap(lambda x: x, preservesPartitioning=True))
 
     def glom(self):
         """
@@ -471,7 +471,7 @@ class RDD(object):
         3
         """
         return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
-    
+
     def stats(self):
         """
         Return a L{StatCounter} object that captures the mean, variance
@@ -508,7 +508,7 @@ class RDD(object):
         0.816...
         """
         return self.stats().stdev()
-  
+
     def sampleStdev(self):
         """
         Compute the sample standard deviation of this RDD's elements (which 
corrects for bias in
@@ -878,7 +878,7 @@ class RDD(object):
         >>> y = sc.parallelize([("a", 3), ("c", None)])
         >>> sorted(x.subtractByKey(y).collect())
         [('b', 4), ('b', 5)]
-        """ 
+        """
         filter_func = lambda (key, vals): len(vals[0]) > 0 and len(vals[1]) == 0
         map_func = lambda (key, vals): [(key, val) for val in vals[0]]
         return self.cogroup(other, 
numPartitions).filter(filter_func).flatMap(map_func)

Reply via email to