This is an automated email from the ASF dual-hosted git repository.

janardhan pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/systemds.git


The following commit(s) were added to refs/heads/master by this push:
     new 6807cca  [MINOR][DOC] Fix latex format and header
6807cca is described below

commit 6807cca3c64682c88464aefb972e995a246871de
Author: Janardhan Pulivarthi <[email protected]>
AuthorDate: Tue May 4 13:41:18 2021 +0530

    [MINOR][DOC] Fix latex format and header
---
 docs/_includes/header.html  |  1 +
 docs/site/dml-vs-r-guide.md | 10 ++++++----
 2 files changed, 7 insertions(+), 4 deletions(-)

diff --git a/docs/_includes/header.html b/docs/_includes/header.html
index 874d0cf..82506e1 100644
--- a/docs/_includes/header.html
+++ b/docs/_includes/header.html
@@ -47,6 +47,7 @@ limitations under the License.
                         <li><b>Language Guides:</b></li>
                         <li><a href=".{% if page.path contains 'site' %}/..{% 
endif %}/site/dml-language-reference.html">DML Language Reference</a></li>
                         <li><a href=".{% if page.path contains 'site' %}/..{% 
endif %}/site/builtins-reference.html">Built-in Functions Reference</a></li>
+                        <li><a href=".{% if page.path contains 'site' %}/..{% 
endif %}/site/dml-vs-r-guide.html">DML vs R guide</a></li>
                         <li class="divider"></li>
                         <li><b>ML Algorithms:</b></li>
                         <li><a href=".{% if page.path contains 'site' %}/..{% 
endif %}/site/algorithms-reference.html">Algorithms Reference</a></li>
diff --git a/docs/site/dml-vs-r-guide.md b/docs/site/dml-vs-r-guide.md
index 4b8664d..dbf62e6 100644
--- a/docs/site/dml-vs-r-guide.md
+++ b/docs/site/dml-vs-r-guide.md
@@ -217,6 +217,7 @@ Given lower triangular matrix L, we compute its inverse X 
which is also lower tr
 both matrices in the middle into 4 blocks (in a 2x2 fashion), and multiplying 
them together to get
 the identity matrix:
 
+$$
 \begin{equation}
 L \text{ %*% } X = \left(\begin{matrix} L_1 & 0 \\ L_2 & L_3 
\end{matrix}\right)
 \text{ %*% } \left(\begin{matrix} X_1 & 0 \\ X_2 & X_3 \end{matrix}\right)
@@ -224,26 +225,27 @@ L \text{ %*% } X = \left(\begin{matrix} L_1 & 0 \\ L_2 & 
L_3 \end{matrix}\right)
 = \left(\begin{matrix} I & 0 \\ 0 & I \end{matrix}\right)
 \nonumber
 \end{equation}
+$$
 
 If we multiply blockwise, we get three equations: 
 
-$
+$$
 \begin{equation}
 L1 \text{ %*% } X1 = 1\\ 
 L3 \text{ %*% } X3 = 1\\
 L2 \text{ %*% } X1 + L3 \text{ %*% } X2 = 0\\
 \end{equation}
-$
+$$
 
 Solving these equation gives the following formulas for X:
 
-$
+$$
 \begin{equation}
 X1 = inv(L1) \\
 X3 = inv(L3) \\
 X2 = - X3 \text{ %*% } L2 \text{ %*% } X1 \\
 \end{equation}
-$
+$$
 
 If we already recursively inverted L1 and L3, we can invert L2.  This suggests 
an algorithm
 that starts at the diagonal and iterates away from the diagonal, involving 
bigger and bigger

Reply via email to