This is an automated email from the ASF dual-hosted git repository.

baunsgaard pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/systemds.git

commit 7d354ac0f63b2156b099c14f6bf99658c690b650
Author: baunsgaard <[email protected]>
AuthorDate: Tue Sep 14 14:37:49 2021 +0200

    [SYSTEMDS-3130] Remove old algorithm definitions in PythonAPI
---
 src/main/python/systemds/operator/algorithm.py | 198 -------------------------
 1 file changed, 198 deletions(-)

diff --git a/src/main/python/systemds/operator/algorithm.py 
b/src/main/python/systemds/operator/algorithm.py
deleted file mode 100644
index 7833030..0000000
--- a/src/main/python/systemds/operator/algorithm.py
+++ /dev/null
@@ -1,198 +0,0 @@
-# -------------------------------------------------------------
-#
-# Licensed to the Apache Software Foundation (ASF) under one
-# or more contributor license agreements.  See the NOTICE file
-# distributed with this work for additional information
-# regarding copyright ownership.  The ASF licenses this file
-# to you under the Apache License, Version 2.0 (the
-# "License"); you may not use this file except in compliance
-# with the License.  You may obtain a copy of the License at
-#
-#   http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing,
-# software distributed under the License is distributed on an
-# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-# KIND, either express or implied.  See the License for the
-# specific language governing permissions and limitations
-# under the License.
-#
-# -------------------------------------------------------------
-
-from typing import Dict
-
-from systemds.operator import OperationNode
-from systemds.script_building.dag import OutputType
-from systemds.utils.consts import VALID_INPUT_TYPES
-
-__all__ = ['l2svm', 'lm', 'kmeans', 'pca', 'multiLogReg', 'multiLogRegPredict']
-
-
-def l2svm(x: OperationNode, y: OperationNode, **kwargs: Dict[str, 
VALID_INPUT_TYPES]) -> OperationNode:
-    """
-    Perform L2SVM on matrix with labels given.
-
-    :param x: Input dataset
-    :param y: Input labels in shape of one column
-    :param kwargs: Dictionary of extra arguments 
-    :return: `OperationNode` containing the model fit.
-    """
-    x._check_matrix_op()
-    params_dict = {'X': x, 'Y': y}
-    params_dict.update(kwargs)
-    return OperationNode(x.sds_context, 'l2svm', named_input_nodes=params_dict)
-
-
-def lm(x: OperationNode, y: OperationNode, **kwargs: Dict[str, 
VALID_INPUT_TYPES]) -> OperationNode:
-    """
-    Performs LM on matrix with labels given.
-
-    :param x: Input dataset
-    :param y: Input labels in shape of one column
-    :param kwargs: Dictionary of extra arguments 
-    :return: `OperationNode` containing the model fit.
-    """
-
-    if x.shape[0] == 0:
-        raise ValueError("Found array with 0 feature(s) (shape={s}) while a 
minimum of 1 is required."
-                         .format(s=x.shape))
-    if y.shape[0] == 0:
-        raise ValueError("Found array with 0 feature(s) (shape={s}) while a 
minimum of 1 is required."
-                         .format(s=y.shape))
-
-    params_dict = {'X': x, 'y': y}
-    params_dict.update(kwargs)
-    return OperationNode(x.sds_context, 'lm', named_input_nodes=params_dict)
-
-
-def kmeans(x: OperationNode, **kwargs: Dict[str, VALID_INPUT_TYPES]) -> 
OperationNode:
-    """
-    Performs KMeans on matrix input.
-
-    :param x: Input dataset to perform K-Means on.
-    :param k: The number of centroids to use for the algorithm.
-    :param runs: The number of concurrent instances of K-Means to run (with 
different initial centroids).
-    :param max_iter: The maximum number of iterations to run the K-Means 
algorithm for.
-    :param eps: Tolerance for the algorithm to declare convergence using WCSS 
change ratio.
-    :param is_verbose: Boolean flag if the algorithm should be run in a 
verbose manner.
-    :param avg_sample_size_per_centroid: The average number of records per 
centroid in the data samples.
-    :return: `OperationNode` List containing two outputs 1. the clusters, 2 
the cluster ID associated with each row in x.
-    """
-
-    x._check_matrix_op()
-    if x.shape[0] == 0:
-        raise ValueError("Found array with 0 feature(s) (shape={s}) while a 
minimum of 1 is required."
-                         .format(s=x.shape))
-
-    if 'k' in kwargs.keys() and kwargs.get('k') < 1:
-        raise ValueError(
-            "Invalid number of clusters in K-Means, number must be integer 
above 0")
-
-    params_dict = {'X': x}
-    params_dict.update(kwargs)
-    return OperationNode(x.sds_context, 'kmeans', 
named_input_nodes=params_dict, output_type=OutputType.LIST, number_of_outputs=2)
-
-def kmeansPredict(X: OperationNode, C: OperationNode) -> OperationNode:
-    """
-    Perform Kmeans Predict, note that the Ids returned are 1 indexed.
-    
-    :param X: The matrix to classify.
-    :param Y: The Clusters to use for classification into.
-    :return: `OperationNode` containing a matrix of classifications of Id's of 
specific clusters in C.
-    """
-    X._check_matrix_op()
-    C._check_matrix_op()
-
-    params_dict = {'X' : X, 'C' : C}
-    return OperationNode(X.sds_context, 'kmeansPredict', 
named_input_nodes=params_dict, output_type=OutputType.MATRIX, shape=(1, 
X.shape[0]))
-
-
-
-def pca(x: OperationNode, **kwargs: Dict[str, VALID_INPUT_TYPES]) -> 
OperationNode:
-    """
-    Performs PCA on the matrix input
-
-    :param x: Input dataset to perform Principal Componenet Analysis (PCA) on.
-    :param K: The number of reduced dimensions.
-    :param center: Boolean specifying if the input values should be centered.
-    :param scale: Boolean specifying if the input values should be scaled.
-     :return: `OperationNode` List containing two outputs 1. The 
dimensionality reduced X input, 2. A matrix to reduce dimensionality similarly 
on unseen data.
-    """
-
-    x._check_matrix_op()
-    if x.shape[0] == 0:
-        raise ValueError("Found array with 0 feature(s) (shape={s}) while a 
minimum of 1 is required."
-                         .format(s=x.shape))
-
-    if 'K' in kwargs.keys() and kwargs.get('K') < 1:
-        raise ValueError(
-            "Invalid number of dimensions in PCA, number must be integer above 
0")
-
-    params_dict = {'X': x}
-    params_dict.update(kwargs)
-    return OperationNode(x.sds_context, 'pca', named_input_nodes=params_dict,  
output_type=OutputType.LIST, number_of_outputs=2)
-
-
-def multiLogReg(x: OperationNode, y: OperationNode, **kwargs: Dict[str, 
VALID_INPUT_TYPES]) -> OperationNode:
-    """
-    Performs Multiclass Logistic Regression on the matrix input
-    using Trust Region method.
-
-    See: Trust Region Newton Method for Logistic Regression, Lin, Weng and 
Keerthi, JMLR 9 (2008) 627-650)
-
-    :param x: Input dataset to perform logstic regression on
-    :param y: Labels rowaligned with the input dataset
-    :param icpt: Intercept, default 2, Intercept presence, shifting and 
rescaling X columns:
-        0 = no intercept, no shifting, no rescaling;
-        1 = add intercept, but neither shift nor rescale X;
-        2 = add intercept, shift & rescale X columns to mean = 0, variance = 1
-    :param tol: float tolerance for the algorithm.
-    :param reg: Regularization parameter (lambda = 1/C); intercept settings 
are not regularized.
-    :param maxi: Maximum outer iterations of the algorithm
-    :param maxii: Maximum inner iterations of the algorithm
-     :return: `OperationNode` of a matrix containing the regression parameters 
trained.
-    """
-    
-    if x.shape[0] == 0:
-        raise ValueError("Found array with 0 feature(s) (shape={s}) while a 
minimum of 1 is required."
-                         .format(s=x.shape))
-    if y.shape[0] == 0:
-        raise ValueError("Found array with 0 feature(s) (shape={s}) while a 
minimum of 1 is required."
-                         .format(s=y.shape))
-    if -1 in x.shape:
-        output_shape = (-1,)
-    else:
-        output_shape = (x.shape[1],)
-        
-    params_dict = {'X': x, 'Y': y}
-    params_dict.update(kwargs)
-    return OperationNode(x.sds_context, 'multiLogReg', 
named_input_nodes=params_dict, shape = output_shape)
-
-
-def multiLogRegPredict(x: OperationNode, b: OperationNode, y: OperationNode, 
**kwargs: Dict[str, VALID_INPUT_TYPES]) -> OperationNode:
-    """
-    Performs prediction on input data x using the model trained, b.
-
-    :param x: The data to perform classification on.
-    :param b: The regression parameters trained from multiLogReg.
-    :param y: The Labels expected to be contained in the X dataset, to 
calculate accuracy.
-    :param verbose: Boolean specifying if the prediction should be verbose.
-    :return: `OperationNode` List containing three outputs. 
-        1. The predicted means / probabilities
-        2. The predicted response vector
-        3. The scalar value of accuracy
-    """
-
-    if x.shape[0] == 0:
-        raise ValueError("Found array with 0 feature(s) (shape={s}) while a 
minimum of 1 is required."
-                         .format(s=x.shape))
-    if b.shape[0] == 0:
-        raise ValueError("Found array with 0 feature(s) (shape={s}) while a 
minimum of 1 is required."
-                         .format(s=y.shape))
-    if y.shape[0] == 0:
-        raise ValueError("Found array with 0 feature(s) (shape={s}) while a 
minimum of 1 is required."
-                         .format(s=y.shape))
-
-    params_dict = {'X': x, 'B': b, 'Y': y}
-    params_dict.update(kwargs)
-    return OperationNode(x.sds_context, 'multiLogRegPredict', 
named_input_nodes=params_dict,  output_type=OutputType.LIST, 
number_of_outputs=3, 
output_types=[OutputType.MATRIX,OutputType.MATRIX,OutputType.DOUBLE])

Reply via email to