This is an automated email from the ASF dual-hosted git repository.
mboehm7 pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/systemds.git
The following commit(s) were added to refs/heads/master by this push:
new 2ab37ae [SYSTEMDS-3155] Add missing glmPredict builtin function
2ab37ae is described below
commit 2ab37aeedcad490085dabde88c10948fb76fa95c
Author: Matthias Boehm <[email protected]>
AuthorDate: Sun Oct 10 21:42:48 2021 +0200
[SYSTEMDS-3155] Add missing glmPredict builtin function
This patch adds the missing glmPredict builtin function (by conversion
from the existing algorithm script), adds a test, and changes the
perftest scripts accordingly.
---
scripts/builtin/glmPredict.dml | 419 +++++++++++++++++++++
scripts/builtin/msvm.dml | 2 +-
scripts/perftest/runAll.sh | 2 +-
scripts/perftest/runGLM_binomial_probit.sh | 2 +-
scripts/perftest/runGLM_gamma_log.sh | 2 +-
scripts/perftest/runGLM_poisson_log.sh | 2 +-
scripts/perftest/runLinearRegCG.sh | 2 +-
scripts/perftest/runLinearRegDS.sh | 2 +-
scripts/perftest/runMultiLogReg.sh | 2 +-
.../perftest/scripts/GLM-predict.dml | 24 +-
.../java/org/apache/sysds/common/Builtins.java | 1 +
src/test/scripts/functions/builtin/lmpredict.dml | 5 +
12 files changed, 451 insertions(+), 14 deletions(-)
diff --git a/scripts/builtin/glmPredict.dml b/scripts/builtin/glmPredict.dml
new file mode 100644
index 0000000..46b193d
--- /dev/null
+++ b/scripts/builtin/glmPredict.dml
@@ -0,0 +1,419 @@
+#-------------------------------------------------------------
+#
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements. See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership. The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied. See the License for the
+# specific language governing permissions and limitations
+# under the License.
+#
+#-------------------------------------------------------------
+
+# THIS SCRIPT APPLIES THE ESTIMATED PARAMETERS OF A GLM-TYPE REGRESSION TO A
NEW (TEST) DATASET
+
+# INPUTS PARAMETERS:
+#
---------------------------------------------------------------------------------------------
+# NAME TYPE DEFAULT MEANING
+#
---------------------------------------------------------------------------------------------
+# X Matrix --- Matrix X of records (feature vectors)
+# B Matrix --- GLM regression parameters (the betas), with dimensions
+# ncol(X) x k: do not add intercept
+# ncol(X)+1 x k: add intercept as given by the last
B-row
+# if k > 1, use only B[, 1] unless it is Multinomial
Logit (dfam=3)
+# ytest Matrix " " Response matrix Y, with the following dimensions:
+# nrow(X) x 1 : for all distributions (dfam=1 or 2
or 3)
+# nrow(X) x 2 : for Binomial (dfam=2) given by
(#pos, #neg) counts
+# nrow(X) x k+1: for Multinomial (dfam=3) given by
category counts
+# dfam Int 1 GLM distribution family: 1 = Power, 2 = Binomial, 3 =
Multinomial Logit
+# vpow Double 0.0 Power for Variance defined as (mean)^power (ignored
if dfam != 1):
+# 0.0 = Gaussian, 1.0 = Poisson, 2.0 = Gamma, 3.0 =
Inverse Gaussian
+# link Int 0 Link function code: 0 = canonical (depends on
distribution), 1 = Power,
+# 2 = Logit, 3 = Probit, 4 = Cloglog, 5 = Cauchit;
ignored if Multinomial
+# lpow Double 1.0 Power for Link function defined as (mean)^power
(ignored if link != 1):
+# -2.0 = 1/mu^2, -1.0 = reciprocal, 0.0 = log, 0.5 =
sqrt, 1.0 = identity
+# disp Double 1.0 Dispersion value, when available
+# verbose Boolean TRUE Print statistics to stdout
+#
---------------------------------------------------------------------------------------------
+
+# OUTPUTS:
+#
---------------------------------------------------------------------------------------------
+# M Matrix " " Matrix M of predicted means/probabilities:
+# nrow(X) x 1 : for Power-type distributions
(dfam=1)
+# nrow(X) x 2 : for Binomial distribution (dfam=2),
column 2 is "No"
+# nrow(X) x k+1: for Multinomial Logit (dfam=3),
col# k+1 is baseline
+#
---------------------------------------------------------------------------------------------
+# Additional statistics are printed one per each line, in the following
+# CSV format: NAME,[COLUMN],[SCALED],VALUE
+# ---
+# NAME is the string identifier for the statistic, see the table below.
+# COLUMN is an optional integer value that specifies the Y-column for
per-column statistics;
+# note that a Binomial/Multinomial one-column Y input is converted into
multi-column.
+# SCALED is an optional Boolean value (TRUE or FALSE) that tells us whether or
not the input
+# dispersion parameter (disp) scaling has been applied to this
statistic.
+# VALUE is the value of the statistic.
+# ---
+# NAME COLUMN SCALED MEANING
+#
---------------------------------------------------------------------------------------------
+# LOGLHOOD_Z + Log-Likelihood Z-score (in st.dev's
from mean)
+# LOGLHOOD_Z_PVAL + Log-Likelihood Z-score p-value
+# PEARSON_X2 + Pearson residual X^2 statistic
+# PEARSON_X2_BY_DF + Pearson X^2 divided by degrees of
freedom
+# PEARSON_X2_PVAL + Pearson X^2 p-value
+# DEVIANCE_G2 + Deviance from saturated model G^2
statistic
+# DEVIANCE_G2_BY_DF + Deviance G^2 divided by degrees of
freedom
+# DEVIANCE_G2_PVAL + Deviance G^2 p-value
+# AVG_TOT_Y + Average of Y column for a single
response value
+# STDEV_TOT_Y + St.Dev. of Y column for a single
response value
+# AVG_RES_Y + Average of column residual, i.e. of Y
- mean(Y|X)
+# STDEV_RES_Y + St.Dev. of column residual, i.e. of Y
- mean(Y|X)
+# PRED_STDEV_RES + + Model-predicted St.Dev. of column
residual
+# R2 + R^2 of Y column residual with bias
included
+# ADJUSTED_R2 + Adjusted R^2 of Y column residual with
bias included
+# R2_NOBIAS + R^2 of Y column residual with bias
subtracted
+# ADJUSTED_R2_NOBIAS + Adjusted R^2 of Y column residual with
bias subtracted
+#
---------------------------------------------------------------------------------------------
+
+
+
+m_glmPredict = function(Matrix[Double] X, Matrix[Double] B, Matrix[Double]
ytest=matrix(0,0,0),
+ Boolean intercept = FALSE, Integer dfam=1, Double vpow=0.0, Integer link=0,
Double lpow=1.0,
+ Double disp=1.0, Boolean verbose=TRUE)
+ return(Matrix[Double] M)
+{
+ dist_type = dfam;
+ link_type = link;
+ link_power = as.double(lpow);
+ var_power = as.double(vpow);
+ dispersion = as.double(disp);
+
+ if (dist_type == 3)
+ link_type = 2;
+ else if (link_type == 0) { # Canonical Link
+ if (dist_type == 1) {
+ link_type = 1;
+ link_power = 1.0 - var_power;
+ }
+ else if (dist_type == 2)
+ link_type = 2;
+ }
+
+ num_records = nrow (X);
+ num_features = ncol (X);
+ B_full = B;
+ if (dist_type == 3) {
+ beta = B_full [1 : ncol (X), ];
+ intercept = B_full [nrow(B_full), ];
+ } else {
+ beta = B_full [1 : ncol (X), 1];
+ intercept = B_full [nrow(B_full), 1];
+ }
+ if (nrow (B_full) == ncol (X)) {
+ intercept = 0.0 * intercept;
+ is_intercept = FALSE;
+ } else {
+ num_features = num_features + 1;
+ is_intercept = TRUE;
+ }
+
+ ones_rec = matrix (1, rows = num_records, cols = 1);
+ linear_terms = X %*% beta + ones_rec %*% intercept;
+ [means, vars] =
+ glm_means_and_vars (linear_terms, dist_type, var_power, link_type,
link_power);
+
+ M = means;
+
+ if (nrow(ytest) > 0)
+ {
+ Y = ytest;
+ ones_ctg = matrix (1, rows = ncol(Y), cols = 1);
+
+ # Statistics To Compute:
+ Z_logl = NaN;
+ Z_logl_pValue = NaN;
+ X2_pearson = NaN;
+ df_pearson = -1;
+ G2_deviance = NaN;
+ df_deviance = -1;
+ X2_pearson_pValue = NaN;
+ G2_deviance_pValue = NaN;
+ Z_logl_scaled = NaN;
+ Z_logl_scaled_pValue = NaN;
+ X2_scaled = NaN;
+ X2_scaled_pValue = NaN;
+ G2_scaled = NaN;
+ G2_scaled_pValue = NaN;
+
+ # set Y_counts to avoid 'Initialization of Y_counts depends on if-else
execution' warning
+ Y_counts = matrix(0.0, rows=1, cols=1);
+
+ if (dist_type == 1 & link_type == 1) {
+ # POWER DISTRIBUTIONS (GAUSSIAN, POISSON, GAMMA, ETC.)
+ if (link_power == 0) {
+ is_zero_Y = (Y == 0);
+ lt_saturated = log (Y + is_zero_Y) - is_zero_Y / (1.0 - is_zero_Y);
+ }
+ else
+ lt_saturated = Y ^ link_power;
+ Y_counts = ones_rec;
+
+ X2_pearson = sum ((Y - means) ^ 2 / vars);
+ df_pearson = num_records - num_features;
+
+ log_l_part = glm_partial_loglikelihood_for_power_dist_and_link
(linear_terms, Y, var_power, link_power);
+ log_l_part_saturated = glm_partial_loglikelihood_for_power_dist_and_link
(lt_saturated, Y, var_power, link_power);
+
+ G2_deviance = 2 * sum (log_l_part_saturated) - 2 * sum (log_l_part);
+ df_deviance = num_records - num_features;
+ }
+ else {
+ if (dist_type >= 2) {
+ # BINOMIAL AND MULTINOMIAL DISTRIBUTIONS
+ if (ncol (Y) == 1) {
+ num_categories = ncol (beta) + 1;
+ if (min (Y) <= 0) {
+ # Category labels "0", "-1" etc. are converted into the baseline
label
+ Y = Y + (- Y + num_categories) * (Y <= 0);
+ }
+ Y_size = min (num_categories, max(Y));
+ Y_unsized = table (seq (1, num_records, 1), Y);
+ Y = matrix (0, rows = num_records, cols = num_categories);
+ Y [, 1 : Y_size] = Y_unsized [, 1 : Y_size];
+ Y_counts = ones_rec;
+ } else {
+ Y_counts = rowSums (Y);
+ }
+
+ P = means;
+ zero_Y = (Y == 0);
+ zero_P = (P == 0);
+ ones_ctg = matrix (1, rows = ncol(Y), cols = 1);
+
+ logl_vec = rowSums (Y * log (P + zero_Y) );
+ ent1_vec = rowSums (P * log (P + zero_P) );
+ ent2_vec = rowSums (P * (log (P + zero_P))^2);
+ E_logl = sum (Y_counts * ent1_vec);
+ V_logl = sum (Y_counts * (ent2_vec - ent1_vec ^ 2));
+ Z_logl = (sum (logl_vec) - E_logl) / sqrt (V_logl);
+
+ means = means * (Y_counts %*% t(ones_ctg));
+ vars = vars * (Y_counts %*% t(ones_ctg));
+
+ frac_below_5 = sum (means < 5) / (nrow (means) * ncol (means));
+ frac_below_1 = sum (means < 1) / (nrow (means) * ncol (means));
+
+ if (frac_below_5 > 0.2 | frac_below_1 > 0)
+ print ("WARNING: residual statistics are inaccurate here due to
low cell means.");
+
+ X2_pearson = sum ((Y - means) ^ 2 / means);
+ df_pearson = (num_records - num_features) * (ncol(Y) - 1);
+ G2_deviance = 2 * sum (Y * log ((Y + zero_Y) / (means + zero_Y)));
+ df_deviance = (num_records - num_features) * (ncol(Y) - 1);
+ }}
+
+ if (Z_logl == Z_logl) {
+ Z_logl_absneg = - abs (Z_logl);
+ Z_logl_pValue = 2.0 * pnorm(target = Z_logl_absneg);
+ }
+ if (X2_pearson == X2_pearson & df_pearson > 0)
+ X2_pearson_pValue = pchisq(target = X2_pearson, df = df_pearson,
lower.tail=FALSE);
+ if (G2_deviance == G2_deviance & df_deviance > 0)
+ G2_deviance_pValue = pchisq(target = G2_deviance, df = df_deviance,
lower.tail=FALSE);
+
+ Z_logl_scaled = Z_logl / sqrt (dispersion);
+ X2_scaled = X2_pearson / dispersion;
+ G2_scaled = G2_deviance / dispersion;
+
+ if (Z_logl_scaled == Z_logl_scaled) {
+ Z_logl_scaled_absneg = - abs (Z_logl_scaled);
+ Z_logl_scaled_pValue = 2.0 * pnorm(target = Z_logl_scaled_absneg);
+ }
+ if (X2_scaled == X2_scaled & df_pearson > 0)
+ X2_scaled_pValue = pchisq(target = X2_scaled, df = df_pearson,
lower.tail=FALSE);
+ if (G2_scaled == G2_scaled & df_deviance > 0)
+ G2_scaled_pValue = pchisq(target = G2_scaled, df = df_deviance,
lower.tail=FALSE);
+
+ avg_tot_Y = colSums ( Y ) / sum (Y_counts);
+ avg_res_Y = colSums (Y - means) / sum (Y_counts);
+ ss_avg_tot_Y = colSums (( Y - Y_counts %*% avg_tot_Y) ^ 2);
+ ss_res_Y = colSums ((Y - means) ^ 2);
+ ss_avg_res_Y = colSums ((Y - means - Y_counts %*% avg_res_Y) ^ 2);
+ df_ss_res_Y = sum (Y_counts) - num_features;
+ df_ss_avg_res_Y = ifelse(is_intercept, df_ss_res_Y, df_ss_res_Y - 1);
+
+ var_tot_Y = ss_avg_tot_Y / (sum (Y_counts) - 1);
+ if (df_ss_avg_res_Y > 0)
+ var_res_Y = ss_avg_res_Y / df_ss_avg_res_Y;
+ else
+ var_res_Y = matrix (0.0, rows = 1, cols = ncol (Y)) / 0.0;
+ R2_nobias = 1 - ss_avg_res_Y / ss_avg_tot_Y;
+ adjust_R2_nobias = 1 - var_res_Y / var_tot_Y;
+ R2 = 1 - ss_res_Y / ss_avg_tot_Y;
+ if (df_ss_res_Y > 0)
+ adjust_R2 = 1 - (ss_res_Y / df_ss_res_Y) / var_tot_Y;
+ else
+ adjust_R2 = matrix (0.0, rows = 1, cols = ncol (Y)) / 0.0;
+ predicted_avg_var_res_Y = dispersion * colSums (vars) / sum (Y_counts);
+
+ # PREPARING THE OUTPUT CSV STATISTICS FILE
+
+ str = "LOGLHOOD_Z,,FALSE," + Z_logl;
+ str = append (str, "LOGLHOOD_Z_PVAL,,FALSE," + Z_logl_pValue);
+ str = append (str, "PEARSON_X2,,FALSE," + X2_pearson);
+ str = append (str, "PEARSON_X2_BY_DF,,FALSE," + (X2_pearson / df_pearson));
+ str = append (str, "PEARSON_X2_PVAL,,FALSE," + X2_pearson_pValue);
+ str = append (str, "DEVIANCE_G2,,FALSE," + G2_deviance);
+ str = append (str, "DEVIANCE_G2_BY_DF,,FALSE," + (G2_deviance /
df_deviance));
+ str = append (str, "DEVIANCE_G2_PVAL,,FALSE," + G2_deviance_pValue);
+ str = append (str, "LOGLHOOD_Z,,TRUE," + Z_logl_scaled);
+ str = append (str, "LOGLHOOD_Z_PVAL,,TRUE," + Z_logl_scaled_pValue);
+ str = append (str, "PEARSON_X2,,TRUE," + X2_scaled);
+ str = append (str, "PEARSON_X2_BY_DF,,TRUE," + (X2_scaled / df_pearson));
+ str = append (str, "PEARSON_X2_PVAL,,TRUE," + X2_scaled_pValue);
+ str = append (str, "DEVIANCE_G2,,TRUE," + G2_scaled);
+ str = append (str, "DEVIANCE_G2_BY_DF,,TRUE," + (G2_scaled / df_deviance));
+ str = append (str, "DEVIANCE_G2_PVAL,,TRUE," + G2_scaled_pValue);
+
+ for (i in 1:ncol(Y)) {
+ str = append (str, "AVG_TOT_Y," + i + ",," + as.scalar (avg_tot_Y [1,
i]));
+ str = append (str, "STDEV_TOT_Y," + i + ",," + as.scalar (sqrt
(var_tot_Y [1, i])));
+ str = append (str, "AVG_RES_Y," + i + ",," + as.scalar (avg_res_Y [1,
i]));
+ str = append (str, "STDEV_RES_Y," + i + ",," + as.scalar (sqrt
(var_res_Y [1, i])));
+ str = append (str, "PRED_STDEV_RES," + i + ",TRUE," + as.scalar (sqrt
(predicted_avg_var_res_Y [1, i])));
+ str = append (str, "R2," + i + ",," + as.scalar (R2 [1, i]));
+ str = append (str, "ADJUSTED_R2," + i + ",," + as.scalar (adjust_R2 [1,
i]));
+ str = append (str, "R2_NOBIAS," + i + ",," + as.scalar (R2_nobias [1,
i]));
+ str = append (str, "ADJUSTED_R2_NOBIAS," + i + ",," + as.scalar
(adjust_R2_nobias [1, i]));
+ }
+
+ if( verbose )
+ print(str);
+ }
+}
+
+glm_means_and_vars =
+ function (Matrix[double] linear_terms, int dist_type, double var_power, int
link_type, double link_power)
+ return (Matrix[double] means, Matrix[double] vars)
+ # NOTE: "vars" represents the variance without dispersion, i.e. the V(mu)
function.
+{
+ num_points = nrow (linear_terms);
+ if (dist_type == 1 & link_type == 1) {
+ # POWER DISTRIBUTION
+ if (link_power == 0)
+ y_mean = exp (linear_terms);
+ else if (link_power == 1.0)
+ y_mean = linear_terms;
+ else if (link_power == -1.0)
+ y_mean = 1.0 / linear_terms;
+ else
+ y_mean = linear_terms ^ (1.0 / link_power);
+ if (var_power == 0)
+ var_function = matrix (1.0, rows = num_points, cols = 1);
+ else if (var_power == 1.0)
+ var_function = y_mean;
+ else
+ var_function = y_mean ^ var_power;
+ means = y_mean;
+ vars = var_function;
+ }
+ else if (dist_type == 2 & link_type >= 1 & link_type <= 5) {
+ # BINOMIAL/BERNOULLI DISTRIBUTION
+ y_prob = matrix (0.0, rows = num_points, cols = 2);
+ if(link_type == 1 & link_power == 0) { # Binomial.log
+ y_prob [, 1] = exp (linear_terms);
+ y_prob [, 2] = 1.0 - y_prob [, 1];
+ } else if (link_type == 1 & link_power != 0) { # Binomial.power_nonlog
+ y_prob [, 1] = linear_terms ^ (1.0 / link_power);
+ y_prob [, 2] = 1.0 - y_prob [, 1];
+ } else if (link_type == 2) { # Binomial.logit
+ elt = exp (linear_terms);
+ y_prob [, 1] = elt / (1.0 + elt);
+ y_prob [, 2] = 1.0 / (1.0 + elt);
+ } else if (link_type == 3) { # Binomial.probit
+ sign_lt = 2 * (linear_terms >= 0) - 1;
+ t_gp = 1.0 / (1.0 + abs (linear_terms) * 0.231641888); # 0.231641888 =
0.3275911 / sqrt (2.0)
+ erf_corr =
+ t_gp * ( 0.254829592
+ + t_gp * (-0.284496736 # "Handbook of Mathematical Functions", ed. by
M. Abramowitz and I.A. Stegun,
+ + t_gp * ( 1.421413741 # U.S. Nat-l Bureau of Standards, 10th print
(Dec 1972), Sec. 7.1.26, p. 299
+ + t_gp * (-1.453152027
+ + t_gp * 1.061405429)))) * sign_lt * exp (- (linear_terms ^ 2) /
2.0);
+ y_prob [, 1] = (1 + sign_lt) - erf_corr;
+ y_prob [, 2] = (1 - sign_lt) + erf_corr;
+ y_prob = y_prob / 2;
+ } else if (link_type == 4) { # Binomial.cloglog
+ elt = exp (linear_terms);
+ is_too_small = ((10000000 + elt) == 10000000);
+ y_prob [, 2] = exp (- elt);
+ y_prob [, 1] = (1 - is_too_small) * (1.0 - y_prob [, 2]) + is_too_small
* elt * (1.0 - elt / 2);
+ } else if (link_type == 5) { # Binomial.cauchit
+ atan_linear_terms = atan (linear_terms);
+ y_prob [, 1] = 0.5 + atan_linear_terms / pi;
+ y_prob [, 2] = 0.5 - atan_linear_terms / pi;
+ }
+ means = y_prob;
+ ones_ctg = matrix (1, rows = 2, cols = 1);
+ vars = means * (means %*% (1 - diag (ones_ctg)));
+ } else if (dist_type == 3) {
+ # MULTINOMIAL LOGIT DISTRIBUTION
+ elt = exp (linear_terms);
+ ones_pts = matrix (1, rows = num_points, cols = 1);
+ elt = cbind (elt, ones_pts);
+ ones_ctg = matrix (1, rows = ncol (elt), cols = 1);
+ means = elt / (rowSums (elt) %*% t(ones_ctg));
+ vars = means * (means %*% (1 - diag (ones_ctg)));
+ } else {
+ means = matrix (0.0, rows = num_points, cols = 1);
+ vars = matrix (0.0, rows = num_points, cols = 1);
+ }
+}
+
+glm_partial_loglikelihood_for_power_dist_and_link = # Assumes: dist_type ==
1 & link_type == 1
+ function (Matrix[double] linear_terms, Matrix[double] Y, double var_power,
double link_power)
+ return (Matrix[double] log_l_part)
+{
+ num_records = nrow (Y);
+ if (var_power == 1.0) { # Poisson
+ if (link_power == 0) { # Poisson.log
+ is_natural_parameter_log_zero = (linear_terms == -Inf);
+ natural_parameters = replace (target = linear_terms, pattern = -Inf,
replacement = 0);
+ b_cumulant = exp (linear_terms);
+ } else { # Poisson.power_nonlog
+ is_natural_parameter_log_zero = (linear_terms == 0);
+ natural_parameters = log (linear_terms + is_natural_parameter_log_zero)
/ link_power;
+ b_cumulant = (linear_terms + is_natural_parameter_log_zero) ^ (1.0 /
link_power) - is_natural_parameter_log_zero;
+ }
+ is_minus_infinity = (Y > 0) * is_natural_parameter_log_zero;
+ log_l_part = Y * natural_parameters - b_cumulant - is_minus_infinity / (1
- is_minus_infinity);
+ }
+ else {
+ if (var_power == 2.0 & link_power == 0) { # Gamma.log
+ natural_parameters = - exp (- linear_terms);
+ b_cumulant = linear_terms;
+ }
+ else if (var_power == 2.0) { # Gamma.power_nonlog
+ natural_parameters = - linear_terms ^ (- 1.0 / link_power);
+ b_cumulant = log (linear_terms) / link_power;
+ }
+ else if (link_power == 0) { # PowerDist.log
+ natural_parameters = exp (linear_terms * (1.0 - var_power)) / (1.0 -
var_power);
+ b_cumulant = exp (linear_terms * (2.0 - var_power)) / (2.0 - var_power);
+ }
+ else { # PowerDist.power_nonlog
+ power_np = (1.0 - var_power) / link_power;
+ natural_parameters = (linear_terms ^ power_np) / (1.0 - var_power);
+ power_cu = (2.0 - var_power) / link_power;
+ b_cumulant = (linear_terms ^ power_cu) / (2.0 - var_power);
+ }
+ log_l_part = Y * natural_parameters - b_cumulant;
+ }
+}
diff --git a/scripts/builtin/msvm.dml b/scripts/builtin/msvm.dml
index d8dbc37..88f26de 100644
--- a/scripts/builtin/msvm.dml
+++ b/scripts/builtin/msvm.dml
@@ -45,7 +45,7 @@
m_msvm = function(Matrix[Double] X, Matrix[Double] Y, Boolean intercept =
FALSE,
Double epsilon = 0.001, Double lambda = 1.0, Integer maxIterations = 100,
-Boolean verbose = FALSE)
+ Boolean verbose = FALSE)
return(Matrix[Double] model)
{
if(min(Y) < 0)
diff --git a/scripts/perftest/runAll.sh b/scripts/perftest/runAll.sh
index 22693b7..9886523 100755
--- a/scripts/perftest/runAll.sh
+++ b/scripts/perftest/runAll.sh
@@ -48,7 +48,7 @@ if [ ! -d results ]; then mkdir -p results ; fi
date >> results/times.txt
### Data Generation
-#echo "-- Generating binomial data: " >> results/times.txt;
+echo "-- Generating binomial data: " >> results/times.txt;
./genBinomialData.sh ${CMD} ${TEMPFOLDER} &>> logs/genBinomialData.out
echo "-- Generating multinomial data." >> results/times.txt;
./genMultinomialData.sh ${CMD} ${TEMPFOLDER} &>> logs/genMultinomialData.out
diff --git a/scripts/perftest/runGLM_binomial_probit.sh
b/scripts/perftest/runGLM_binomial_probit.sh
index 5068a57..e37872a 100755
--- a/scripts/perftest/runGLM_binomial_probit.sh
+++ b/scripts/perftest/runGLM_binomial_probit.sh
@@ -41,7 +41,7 @@ for i in 0 1 2; do
#predict
tstart=$(date +%s.%N)
- ${CMD} -f ./algorithms/GLM-predict.dml \
+ ${CMD} -f scripts/GLM-predict.dml \
--config conf/SystemDS-config.xml \
--stats \
--nvargs dfam=2 link=3 fmt=csv X=$1_test B=${BASE}/b Y=$2_test
M=${BASE}/m O=${BASE}/out.csv
diff --git a/scripts/perftest/runGLM_gamma_log.sh
b/scripts/perftest/runGLM_gamma_log.sh
index 787a6c7..6308a50 100755
--- a/scripts/perftest/runGLM_gamma_log.sh
+++ b/scripts/perftest/runGLM_gamma_log.sh
@@ -41,7 +41,7 @@ for i in 0 1 2; do
#predict
tstart=$(date +%s.%N)
- ${CMD} -f ./algorithms/GLM-predict.dml \
+ ${CMD} -f scripts/GLM-predict.dml \
--config conf/SystemDS-config.xml \
--stats \
--nvargs dfam=1 vpow=2.0 link=1 lpow=0.0 fmt=csv X=$1_test B=${BASE}/b
Y=$2_test M=${BASE}/m O=${BASE}/out.csv
diff --git a/scripts/perftest/runGLM_poisson_log.sh
b/scripts/perftest/runGLM_poisson_log.sh
index f8e1861..698ca65 100755
--- a/scripts/perftest/runGLM_poisson_log.sh
+++ b/scripts/perftest/runGLM_poisson_log.sh
@@ -41,7 +41,7 @@ for i in 0 1 2; do
#predict
tstart=$(date +%s.%N)
- ${CMD} -f ./algorithms/GLM-predict.dml \
+ ${CMD} -f scripts/GLM-predict.dml \
--config conf/SystemDS-config.xml \
--stats \
--nvargs dfam=1 vpow=1.0 link=1 lpow=0.0 fmt=csv X=$1_test B=${BASE}/b
Y=$2_test M=${BASE}/m O=${BASE}/out.csv
diff --git a/scripts/perftest/runLinearRegCG.sh
b/scripts/perftest/runLinearRegCG.sh
index ae22a12..e3c36b6 100755
--- a/scripts/perftest/runLinearRegCG.sh
+++ b/scripts/perftest/runLinearRegCG.sh
@@ -42,7 +42,7 @@ do
#predict
tstart=$(date +%s.%N)
- ${CMD} -f ./algorithms/GLM-predict.dml \
+ ${CMD} -f scripts/GLM-predict.dml \
--config conf/SystemDS-config.xml \
--stats \
--nvargs dfam=1 link=1 vpow=0.0 lpow=1.0 fmt=csv X=$1_test B=${BASE}/b
Y=$2_test M=${BASE}/m O=${BASE}/out.csv
diff --git a/scripts/perftest/runLinearRegDS.sh
b/scripts/perftest/runLinearRegDS.sh
index ad4617b..b285aff 100755
--- a/scripts/perftest/runLinearRegDS.sh
+++ b/scripts/perftest/runLinearRegDS.sh
@@ -42,7 +42,7 @@ do
#predict
tstart=$(date +%s.%N)
- ${CMD} -f ./algorithms/GLM-predict.dml \
+ ${CMD} -f scripts/GLM-predict.dml \
--config conf/SystemDS-config.xml \
--stats \
--nvargs dfam=1 link=1 vpow=0.0 lpow=1.0 fmt=csv X=$1_test B=${BASE}/b
Y=$2_test M=${BASE}/m O=${BASE}/out.csv
diff --git a/scripts/perftest/runMultiLogReg.sh
b/scripts/perftest/runMultiLogReg.sh
index 9cdbf36..b5503df 100755
--- a/scripts/perftest/runMultiLogReg.sh
+++ b/scripts/perftest/runMultiLogReg.sh
@@ -42,7 +42,7 @@ for i in 0 1 2; do
#predict
tstart=$(date +%s.%N)
- ${CMD} -f ./algorithms/GLM-predict.dml \
+ ${CMD} -f scripts/GLM-predict.dml \
--config conf/SystemDS-config.xml \
--stats \
--nvargs dfam=$DFAM vpow=-1 link=2 lpow=-1 fmt=csv X=$1_test B=${BASE}/b
Y=$2_test M=${BASE}/m O=${BASE}/out.csv
diff --git a/src/test/scripts/functions/builtin/lmpredict.dml
b/scripts/perftest/scripts/GLM-predict.dml
similarity index 67%
copy from src/test/scripts/functions/builtin/lmpredict.dml
copy to scripts/perftest/scripts/GLM-predict.dml
index d99e7e2..2064204 100644
--- a/src/test/scripts/functions/builtin/lmpredict.dml
+++ b/scripts/perftest/scripts/GLM-predict.dml
@@ -19,9 +19,21 @@
#
#-------------------------------------------------------------
-X = read($1) # Training data
-y = read($2) # response values
-p = read($3) # random data to predict
-w = lmDS(X = X, y = y, icpt = 1, reg = 1e-12)
-p = lmPredict(X = X, B = w, ytest=matrix(0,1,1), icpt = 1)
-write(p, $4)
+X = read($X);
+B = read($B);
+Y = matrix(0,0,0);
+if($Y != " ")
+ Y = read($Y);
+
+dfam = ifdef ($dfam, 1); # $dfam = 1;
+vpow = ifdef ($vpow, 0.0); # $vpow = 0.0;
+link = ifdef ($link, 0); # $link = 0;
+lpow = ifdef ($lpow, 1.0); # $lpow = 1.0;
+disp = ifdef ($disp, 1.0); # $disp = 1.0;
+
+
+[M] = glmPredict(X=X, B=B, ytest=Y,
+ dfam=dfam, vpow=vpow, link=link, lpow=lpow, disp=disp);
+
+if( $M != " " )
+ write(M, $M, format=$fmt);
diff --git a/src/main/java/org/apache/sysds/common/Builtins.java
b/src/main/java/org/apache/sysds/common/Builtins.java
index 7788b94..a5ad588 100644
--- a/src/main/java/org/apache/sysds/common/Builtins.java
+++ b/src/main/java/org/apache/sysds/common/Builtins.java
@@ -130,6 +130,7 @@ public enum Builtins {
GAUSSIAN_CLASSIFIER("gaussianClassifier", true),
GET_ACCURACY("getAccuracy", true),
GLM("glm", true),
+ GLM_PREDICT("glmPredict", true),
GMM("gmm", true),
GMM_PREDICT("gmmPredict", true),
GNMF("gnmf", true),
diff --git a/src/test/scripts/functions/builtin/lmpredict.dml
b/src/test/scripts/functions/builtin/lmpredict.dml
index d99e7e2..2105f6c 100644
--- a/src/test/scripts/functions/builtin/lmpredict.dml
+++ b/src/test/scripts/functions/builtin/lmpredict.dml
@@ -24,4 +24,9 @@ y = read($2) # response values
p = read($3) # random data to predict
w = lmDS(X = X, y = y, icpt = 1, reg = 1e-12)
p = lmPredict(X = X, B = w, ytest=matrix(0,1,1), icpt = 1)
+p2 = glmPredict(X = X, B = w, dfam=1, link=1, vpow=0.0, lpow=1.0);
+
+if( sum(abs(p2-p) > 1e8) !=0 )
+ stop("Mismatching lmPredict and glmPredict - no output written");
+
write(p, $4)