This is an automated email from the ASF dual-hosted git repository.

ssiddiqi pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/systemds.git


The following commit(s) were added to refs/heads/main by this push:
     new 47533e2  [SYSTEMDS-3150] Outlier Detection via DBSCAN   - This commit 
introduces dbscanApply() method to find the cluster membership     of unseen 
(test) data. Closes #1497.
47533e2 is described below

commit 47533e2a83a31828fd9f13145dc66de99252f5cb
Author: Patrick Ratschiller <[email protected]>
AuthorDate: Mon Jan 17 10:44:37 2022 +0100

    [SYSTEMDS-3150] Outlier Detection via DBSCAN
      - This commit introduces dbscanApply() method to find the cluster 
membership
        of unseen (test) data.
    Closes #1497.
---
 docs/site/builtins-reference.md                    |  38 ++++++-
 scripts/builtin/dbscan.dml                         |  57 ++++++-----
 scripts/builtin/dbscanApply.dml                    |  58 +++++++++++
 .../java/org/apache/sysds/common/Builtins.java     |   1 +
 .../builtin/part1/BuiltinDbscanApplyTest.java      | 113 +++++++++++++++++++++
 src/test/scripts/functions/builtin/dbscan.dml      |   2 +-
 .../builtin/{dbscan.dml => dbscanApply.R}          |  29 +++++-
 .../builtin/{dbscan.dml => dbscanApply.dml}        |   9 +-
 8 files changed, 269 insertions(+), 38 deletions(-)

diff --git a/docs/site/builtins-reference.md b/docs/site/builtins-reference.md
index 9c9bb32..5fa8a2f 100644
--- a/docs/site/builtins-reference.md
+++ b/docs/site/builtins-reference.md
@@ -69,6 +69,7 @@ limitations under the License.
     * [`naiveBayesPredict`-Function](#naiveBayesPredict-function)
     * [`normalize`-Function](#normalize-function)
     * [`outlier`-Function](#outlier-function)
+    * [`outlierByDB`-Function](#outlierByDB-function)
     * [`pnmf`-Function](#pnmf-function)
     * [`scale`-Function](#scale-function)
     * [`setdiff`-Function](#setdiff-function)
@@ -422,12 +423,13 @@ Y = dbscan(X = X, eps = 2.5, minPts = 5)
 | Type        | Description |
 | :-----------| :---------- |
 | Matrix[Integer] | The mapping of records to clusters |
+| Matrix[Double]  | The coordinates of all points considered part of a cluster 
|
 
 ### Example
 
 ```r
 X = rand(rows=1780, cols=180, min=1, max=20) 
-dbscan(X = X, eps = 2.5, minPts = 360)
+[indices, model] = dbscan(X = X, eps = 2.5, minPts = 360)
 ```
 
 
@@ -1756,6 +1758,40 @@ X = rand (rows = 50, cols = 10)
 outlier(X=X, opposite=1)
 ```
 
+## `outlierByDB`-Function
+
+The `outlierByDB`-function implements an outlier prediction for a trained 
dbscan model. The points in the `Xtest` matrix are checked against the model 
and are considered part of the cluster if at least one member is within `eps` 
distance. 
+
+### Usage
+
+```r
+outlierByDB(X, model, eps)
+```
+
+### Arguments
+
+| Name     | Type           | Default  | Description |
+| :------- | :------------- | -------- | :---------- |
+| Xtest    | Matrix[Double] | required | Matrix of points for outlier testing |
+| model    | Matrix[Double] | required | Matrix model of the clusters, 
containing all points that are considered members, returned by the [`dbscan 
builtin`](#DBSCAN-function) |
+| eps      | Double         | 0.5      | Epsilon distance between points to be 
considered in their neighborhood |
+
+### Returns
+
+| Type           | Description |
+| :------------- | :---------- |
+| Matrix[Double] | Matrix indicating outlier values of the points in Xtest, 0 
suggests it being an outlier |
+
+### Example
+
+```r
+eps = 1
+minPts = 5
+X = rand(rows=1780, cols=180, min=1, max=20)
+[indices, model] = dbscan(X=X, eps=eps, minPts=minPts)
+Y = rand(rows=500, cols=180, min=1, max=20)
+Z = outlierByDB(Xtest=Y, clusterModel = model, eps = eps)
+```
 
 ## `pnmf`-Function
 
diff --git a/scripts/builtin/dbscan.dml b/scripts/builtin/dbscan.dml
index 4eb6f83..ecb414d 100644
--- a/scripts/builtin/dbscan.dml
+++ b/scripts/builtin/dbscan.dml
@@ -39,42 +39,43 @@
 # 
----------------------------------------------------------------------------------------------------------------------
 
 m_dbscan = function (Matrix[Double] X, Double eps = 0.5, Integer minPts = 5)
-    return (Matrix[Double] clusterMembers)
+    return (Matrix[Double] clusterMembers, Matrix[Double] clusterModel)
 {
-    #check input parameter assertions
-    if(minPts < 0) { stop("DBSCAN: Stopping due to invalid inputs: minPts 
should be greater than 0"); }
-    if(eps < 0) { stop("DBSCAN: Stopping due to invalid inputs: Epsilon (eps) 
should be greater than 0"); }
+  #check input parameter assertions
+  if(minPts < 0) { stop("DBSCAN: Stopping due to invalid inputs: minPts should 
be greater than 0"); }
+  if(eps < 0) { stop("DBSCAN: Stopping due to invalid inputs: Epsilon (eps) 
should be greater than 0"); }
 
-    UNASSIGNED = 0;
+  UNASSIGNED = 0;
 
-    num_records = nrow(X);
-    num_features = ncol(X);
+  num_records = nrow(X);
+  num_features = ncol(X);
 
-    neighbors = dist(X);
+  neighbors = dist(X);
 
-    #find same pts and set their distance to the smallest double representation
-    neighbors = replace(target = neighbors, pattern = 0, replacement = 
2.225e-307)
-    neighbors = neighbors - diag(diag(neighbors));
+  #find same pts and set their distance to the smallest double representation
+  neighbors = replace(target = neighbors, pattern = 0, replacement = 
2.225e-307)
+  neighbors = neighbors - diag(diag(neighbors));
 
-    # neighbors within eps
-    withinEps = ((neighbors <= eps) * (0 < neighbors));
-    corePts = rowSums(withinEps) + 1 >= minPts;
+  # neighbors within eps
+  withinEps = ((neighbors <= eps) * (0 < neighbors));
+  corePts = rowSums(withinEps) + 1 >= minPts;
 
-    clusterMembers = matrix(UNASSIGNED, num_records, 1);
+  clusterMembers = matrix(UNASSIGNED, num_records, 1);
+  clusterModel = matrix(UNASSIGNED, 0, num_features);
 
-    if (sum(corePts) != 0) {
-        # leave only density reachable pts
-        neighbors = (neighbors * corePts * withinEps) > 0;
+  if (sum(corePts) != 0) {
+    # leave only density reachable pts
+    neighbors = (neighbors * corePts * withinEps) > 0;
+    # border pts of multiple clusters
+    border = neighbors * (t(corePts) == 0 & colSums(neighbors) > 1) * 
seq(num_records, 1);
+    border = (border - colMaxs(border)) == 0;
+    neighbors = neighbors * border;
 
-        # border pts of multiple clusters
-        border = neighbors * (t(corePts) == 0 & colSums(neighbors) > 1) * 
seq(num_records, 1);
-        border = (border - colMaxs(border)) == 0;
-        neighbors = neighbors * border;
+    adjacency = (neighbors + t(neighbors)) > 0;
 
-        adjacency = (neighbors + t(neighbors)) > 0;
-
-        clusterMembers = components(G=adjacency, verbose=FALSE);
-        # noise to 0
-        clusterMembers = clusterMembers * (rowSums(adjacency) > 0);
-    }
+    clusterMembers = components(G=adjacency, verbose=FALSE);
+    # noise to 0
+    clusterMembers = clusterMembers * (rowSums(adjacency) > 0);
+    clusterModel = removeEmpty(target=X, margin="rows", select = 
(clusterMembers > 0))     
+  }
 }
diff --git a/scripts/builtin/dbscanApply.dml b/scripts/builtin/dbscanApply.dml
new file mode 100644
index 0000000..08ec109
--- /dev/null
+++ b/scripts/builtin/dbscanApply.dml
@@ -0,0 +1,58 @@
+#-------------------------------------------------------------
+#
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements.  See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership.  The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License.  You may obtain a copy of the License at
+#
+#   http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied.  See the License for the
+# specific language governing permissions and limitations
+# under the License.
+#
+#-------------------------------------------------------------
+#
+# Implements the outlier detection/prediction algorithm using a DBScan model
+#
+# INPUT PARAMETERS:
+# ----------------------------------------------------------------------------
+# NAME              TYPE             DEFAULT    MEANING
+# ----------------------------------------------------------------------------
+# Xtest             Matrix[Double]   ---        The input Matrix to do outlier 
detection on.
+# clusterModel      Matrix[Double]   ---        Model of clusters to predict 
outliers against.
+# eps               Double           0.5        Maximum distance between two 
points for one to be considered reachable for the other.
+
+# OUTPUT PARAMETERS:
+# ----------------------------------------------------------------------------
+# NAME              TYPE             DEFAULT    MEANING
+# ----------------------------------------------------------------------------
+# outlierPoints     Matrix[Double]   ---        Predicted outliers
+
+
+m_dbscanApply = function (Matrix[Double] Xtest, Matrix[Double] clusterModel, 
Double eps = 0.5)
+    return (Matrix[double] outlierPoints)
+{
+  num_features_Xtest = ncol(Xtest);
+  num_rows_Xtest = nrow(Xtest);
+  num_features_model = ncol(clusterModel);
+  num_rows_model = nrow(clusterModel);
+
+  if(num_features_Xtest != num_features_model) {stop("DBSCAN Outlier: Stopping 
due to invalid inputs: features need to match");}
+  if(eps < 0) { stop("DBSCAN Outlier: Stopping due to invalid inputs: Epsilon 
(eps) should be greater than 0"); }
+  if(num_rows_model <= 0) { stop("DBSCAN Outlier: Stopping due to invalid 
inputs: Model is empty"); }
+    
+  X = rbind(clusterModel, Xtest);
+  neighbors = dist(X);
+  neighbors = replace(target = neighbors, pattern = 0, replacement = 
2.225e-307);
+  neighbors = neighbors - diag(diag(neighbors));
+  Xtest_dists = neighbors[(num_rows_model+1):nrow(X), 1:num_rows_model];
+  withinEps = ((Xtest_dists <= eps) * (0 < Xtest_dists));
+  outlierPoints = rowSums(withinEps) >= 1;
+}
diff --git a/src/main/java/org/apache/sysds/common/Builtins.java 
b/src/main/java/org/apache/sysds/common/Builtins.java
index aa9c58c..a124220 100644
--- a/src/main/java/org/apache/sysds/common/Builtins.java
+++ b/src/main/java/org/apache/sysds/common/Builtins.java
@@ -105,6 +105,7 @@ public enum Builtins {
        CUMSUM("cumsum", false),
        CUMSUMPROD("cumsumprod", false),
        DBSCAN("dbscan", true),
+       DBSCANAPPLY("dbscanApply", true),
        DECISIONTREE("decisionTree", true),
        DECOMPRESS("decompress", false),
        DEEPWALK("deepWalk", true),
diff --git 
a/src/test/java/org/apache/sysds/test/functions/builtin/part1/BuiltinDbscanApplyTest.java
 
b/src/test/java/org/apache/sysds/test/functions/builtin/part1/BuiltinDbscanApplyTest.java
new file mode 100644
index 0000000..4ec2271
--- /dev/null
+++ 
b/src/test/java/org/apache/sysds/test/functions/builtin/part1/BuiltinDbscanApplyTest.java
@@ -0,0 +1,113 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *   http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+package org.apache.sysds.test.functions.builtin.part1;
+import org.apache.sysds.common.Types.ExecMode;
+import org.apache.sysds.common.Types.ExecType;
+import org.apache.sysds.runtime.matrix.data.MatrixValue.CellIndex;
+import org.apache.sysds.test.AutomatedTestBase;
+import org.apache.sysds.test.TestConfiguration;
+import org.apache.sysds.test.TestUtils;
+import org.junit.Test;
+import java.util.HashMap;
+
+public class BuiltinDbscanApplyTest extends AutomatedTestBase
+{
+       private final static String TEST_NAME = "dbscanApply";
+       private final static String TEST_DIR = "functions/builtin/";
+       private static final String TEST_CLASS_DIR = TEST_DIR + 
BuiltinDbscanApplyTest.class.getSimpleName() + "/";
+
+       private final static double eps = 1e-9;
+       private final static int rows = 1700;
+       private final static int cols = 3;
+       private final static int min = -10;
+       private final static int max = 10;
+
+       private final static int minPts = 5;
+
+       @Override
+       public void setUp() { 
+               addTestConfiguration(TEST_NAME,new 
TestConfiguration(TEST_CLASS_DIR, TEST_NAME,new String[]{"B"}));
+       }
+
+       @Test
+       public void testDBSCANOutlierDefault0CP() {
+               runOutlierByDBSCAN(true, 6, 18, 1, ExecType.CP);
+       }
+
+       @Test
+       public void testDBSCANOutlierDefault0SP() {
+               runOutlierByDBSCAN(true, 6, 18, 1, ExecType.SPARK);
+       }
+
+       @Test
+       public void testDBSCANOutlierDefault1CP() {
+               runOutlierByDBSCAN(true, 5, 15, 1, ExecType.CP);
+       }
+
+       @Test
+       public void testDBSCANOutlierDefault1SP() {
+               runOutlierByDBSCAN(true, 5, 15, 1, ExecType.SPARK);
+       }
+
+       @Test
+       public void testDBSCANOutlierDefault2CP() {
+               runOutlierByDBSCAN(true, 12, 77, 1, ExecType.CP);
+       }
+
+       @Test
+       public void testDBSCANOutlierDefault2SP() {
+               runOutlierByDBSCAN(true, 12, 77, 1, ExecType.SPARK);
+       }
+
+       private void runOutlierByDBSCAN(boolean defaultProb, int seedA, int 
seedB, double epsDB, ExecType instType)
+       {
+               ExecMode platformOld = setExecMode(instType);
+
+               try
+               {
+                       loadTestConfiguration(getTestConfiguration(TEST_NAME));
+                       String HOME = SCRIPT_DIR + TEST_DIR;
+
+                       fullDMLScriptName = HOME + TEST_NAME + ".dml";
+                       programArgs = new String[]{"-explain","-nvargs",
+                               "X=" + input("A"), "Y=" + input("B"),"Z=" + 
output("C"), "eps=" + epsDB, "minPts=" + minPts};
+                       fullRScriptName = HOME + TEST_NAME + ".R";
+                       rCmd = getRCmd(inputDir(), inputDir(), 
Double.toString(epsDB), Integer.toString(minPts), expectedDir());
+
+                       //generate actual dataset
+                       double[][] A = getNonZeroRandomMatrix(rows, cols, min, 
max, seedA);
+                       writeInputMatrixWithMTD("A", A, true);
+                       double[][] B = getNonZeroRandomMatrix(rows, cols, min, 
max, seedB);
+                       writeInputMatrixWithMTD("B", B, true);
+                       
+                       runTest(true, false, null, -1);
+                       runRScript(true);
+
+                       //compare matrices
+                       HashMap<CellIndex, Double> dmlfile = 
readDMLMatrixFromOutputDir("C");
+                       HashMap<CellIndex, Double> rfile  = 
readRMatrixFromExpectedDir("C");
+
+                       TestUtils.compareMatrices(dmlfile, rfile, eps, 
"Stat-DML", "Stat-R");
+               }
+               finally {
+                       rtplatform = platformOld;
+               }
+       }
+}
diff --git a/src/test/scripts/functions/builtin/dbscan.dml 
b/src/test/scripts/functions/builtin/dbscan.dml
index 6d5e1eb..bde15f5 100644
--- a/src/test/scripts/functions/builtin/dbscan.dml
+++ b/src/test/scripts/functions/builtin/dbscan.dml
@@ -22,5 +22,5 @@
 X = read($X);
 eps = as.double($eps);
 minPts = as.integer($minPts);
-Y = dbscan(X, eps, minPts);
+[Y, model] = dbscan(X, eps, minPts);
 write(Y, $Y);
\ No newline at end of file
diff --git a/src/test/scripts/functions/builtin/dbscan.dml 
b/src/test/scripts/functions/builtin/dbscanApply.R
similarity index 58%
copy from src/test/scripts/functions/builtin/dbscan.dml
copy to src/test/scripts/functions/builtin/dbscanApply.R
index 6d5e1eb..f3bdf34 100644
--- a/src/test/scripts/functions/builtin/dbscan.dml
+++ b/src/test/scripts/functions/builtin/dbscanApply.R
@@ -19,8 +19,27 @@
 #
 #-------------------------------------------------------------
 
-X = read($X);
-eps = as.double($eps);
-minPts = as.integer($minPts);
-Y = dbscan(X, eps, minPts);
-write(Y, $Y);
\ No newline at end of file
+args<-commandArgs(TRUE)
+library("Matrix")
+library("dbscan")
+
+X = as.matrix(readMM(paste(args[1], "A.mtx", sep="")));
+Y = as.matrix(readMM(paste(args[2], "B.mtx", sep="")));
+eps = as.double(args[3]);
+minPts = as.integer(args[4]);
+dbModel = dbscan(X, eps, minPts);
+
+cleanMatr = matrix(, nrow = nrow(X), ncol = 3)
+for(i in 1:nrow(X)) {
+  if(dbModel$cluster[i] > 0) {
+    cleanMatr[i,] = X[i,]
+  }
+}
+
+cleanMatr = cleanMatr[rowSums(is.na(cleanMatr)) != ncol(cleanMatr),]
+
+dbModelClean = dbscan(cleanMatr, eps, minPts);
+
+Z = predict(dbModelClean, Y, data = cleanMatr);
+Z[Z > 0] = 1;
+writeMM(as(Z, "CsparseMatrix"), paste(args[5], "C", sep=""));
diff --git a/src/test/scripts/functions/builtin/dbscan.dml 
b/src/test/scripts/functions/builtin/dbscanApply.dml
similarity index 84%
copy from src/test/scripts/functions/builtin/dbscan.dml
copy to src/test/scripts/functions/builtin/dbscanApply.dml
index 6d5e1eb..a784902 100644
--- a/src/test/scripts/functions/builtin/dbscan.dml
+++ b/src/test/scripts/functions/builtin/dbscanApply.dml
@@ -19,8 +19,11 @@
 #
 #-------------------------------------------------------------
 
-X = read($X);
+X = read($X)
+Y = read($Y)
 eps = as.double($eps);
 minPts = as.integer($minPts);
-Y = dbscan(X, eps, minPts);
-write(Y, $Y);
\ No newline at end of file
+
+[indices, clusterModel] = dbscan(X = X, eps = eps, minPts = minPts);
+Z = dbscanApply(Xtest=Y, clusterModel = clusterModel, eps = eps);
+write(Z, $Z);

Reply via email to