This is an automated email from the ASF dual-hosted git repository.
mboehm7 pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/systemds.git
The following commit(s) were added to refs/heads/main by this push:
new 8d6a1cbdba [SYSTEMDS-3505] Rework randomForest builtin function and
tests
8d6a1cbdba is described below
commit 8d6a1cbdba151d8f3f5fca14d57c2e7a6044728a
Author: Matthias Boehm <[email protected]>
AuthorDate: Sun Mar 12 19:24:25 2023 +0100
[SYSTEMDS-3505] Rework randomForest builtin function and tests
The randomForest builtin function and related algorithms are broken
for a long time. Originally, these algorithms were written to leverage
similar ideas like PLANET (with queues for large and small scans). As
part of a general overhaul of the randomForest and decisionTree builtins
this patch reworks the randomForest function by several improvements:
* transform encode outside randomForest/decisionTree
* simple data and feature sampling
* calls to the existing decision tree builtin
* simpler data representation of trained decision trees
* working tests and improved documentation
---
scripts/builtin/randomForest.dml | 1333 ++------------------
scripts/builtin/slicefinder.dml | 4 +-
.../builtin/part2/BuiltinRandomForestTest.java | 22 +-
.../scripts/functions/builtin/randomForest.dml | 29 +-
4 files changed, 117 insertions(+), 1271 deletions(-)
diff --git a/scripts/builtin/randomForest.dml b/scripts/builtin/randomForest.dml
index bf26703508..df130d3c80 100644
--- a/scripts/builtin/randomForest.dml
+++ b/scripts/builtin/randomForest.dml
@@ -19,1268 +19,111 @@
#
#-------------------------------------------------------------
-# This script implement classification random forest with both scale and
categorical features.
+# This script implements random forest for recoded and binned categorical and
+# numerical input features. In detail, we train multiple CART (classification
+# and regression trees) decision trees in parallel and use them as an ensemble.
+# classifier/regressor. Each tree is trained on a sample of observations (rows)
+# and optionally subset of features (columns). During tree construction, split
+# candidates are additionally chosen on a sample of remaining features.
#
# INPUT:
-#
----------------------------------------------------------------------------------------
-# X Feature matrix X; note that X needs to be both recoded and
dummy coded
-# Y Label matrix Y; note that Y needs to be both recoded and
dummy coded
-# R Matrix which for each feature in X contains the following
information
-# - R[,1]: column ids TODO pass recorded and binned
-# - R[,2]: start indices
-# - R[,3]: end indices
-# If R is not provided by default all variables are assumed to
be scale
-# bins Number of equiheight bins per scale feature to choose
thresholds
-# depth Maximum depth of the learned tree
-# num_leaf Number of samples when splitting stops and a leaf node is
added
-# num_samples Number of samples at which point we switch to in-memory
subtree building
+#
------------------------------------------------------------------------------
+# X Feature matrix in recoded/binned representation
+# y Label matrix in recoded/binned representation
+# ctypes Row-Vector of column types [1 scale/ordinal, 2 categorical]
# num_trees Number of trees to be learned in the random forest model
-# subsamp_rate Parameter controlling the size of each tree in the forest;
samples are selected from a
-# Poisson distribution with parameter subsamp_rate (the
default value is 1.0)
-# feature_subset Parameter that controls the number of feature used as
candidates for splitting at each tree node
-# as a power of number of features in the dataset;
-# by default square root of features (i.e., feature_subset =
0.5) are used at each tree node
-# impurity Impurity measure: entropy or Gini (the default)
-#
----------------------------------------------------------------------------------------
+# sample_frac Sample fraction of examples for each tree in the forest
+# feature_frac Sample fraction of features for each tree in the forest
+# max_depth Maximum depth of the learned tree (stopping criterion)
+# min_leaf Minimum number of samples in leaf nodes (stopping criterion)
+# max_features Parameter controlling the number of features used as split
+# candidates at tree nodes: m = ceil(num_features^max_features)
+# impurity Impurity measure: entropy, gini (default)
+# seed Fixed seed for randomization of samples and split candidates
+# verbose Flag indicating verbose debug output
+#
------------------------------------------------------------------------------
#
# OUTPUT:
-#
--------------------------------------------------------------------------------------------
-# M Matrix M containing the learned tree, where each column corresponds
to a node
-# in the learned tree and each row contains the following information:
-# M[1,j]: id of node j (in a complete binary tree)
-# M[2,j]: tree id to which node j belongs
-# M[3,j]: Offset (no. of columns) to left child of j
-# M[4,j]: Feature index of the feature that node j looks at if j is
an internal node, otherwise 0
-# M[5,j]: Type of the feature that node j looks at if j is an
internal node: 1 for scale and 2
-# for categorical features,
-# otherwise the label that leaf node j is supposed to predict
-# M[6,j]: 1 if j is an internal node and the feature chosen for j is
scale, otherwise the
-# size of the subset of values
-# stored in rows 7,8,... if j is categorical
-# M[7:,j]: Only applicable for internal nodes. Threshold the
example's feature value is
-# compared to is stored at M[7,j] if the feature chosen for j is
scale;
-# If the feature chosen for j is categorical rows 7,8,... depict the
value subset chosen for j
-# C Matrix C containing the number of times samples are chosen in each
tree of the random forest
-# S_map Mappings from scale feature ids to global feature ids
-# C_map Mappings from categorical feature ids to global feature ids
-#
--------------------------------------------------------------------------------------------
+#
------------------------------------------------------------------------------
+# M Matrix M containing the learned trees, in linearized form
+# For example, give a feature matrix with features [a,b,c,d]
+# and the following two trees, M would look as follows:
+#
+# (L1) |a<7| |d<5|
+# / \ / \
+# (L2) |c<3| |b<4| |a<7| P3:2
+# / \ / \ / \
+# (L3) P1:2 P2:1 P3:1 P4:2 P1:2 P2:1
+#
+# --> M :=
+# [[1, 7, 3, 3, 2, 4, 0, 2, 0, 1, 0, 1, 0, 2], (1st tree)
+# [4, 5, 1, 7, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0]] (2nd tree)
+# |(L1)| | (L2) | | (L3) |
+#
+# With feature sampling (feature_frac < 1), each tree is
+# prefixed by a one-hot vector of sampled features
+# (e.g., [1,1,1,0] if we sampled a,b,c of the four features)
+#
------------------------------------------------------------------------------
-m_randomForest = function(Matrix[Double] X, Matrix[Double] Y, Matrix[Double]
R,
- Integer bins = 20, Integer depth = 25, Integer num_leaf = 10, Integer
num_samples = 3000,
- Integer num_trees = 1, Double subsamp_rate = 1.0, Double feature_subset =
0.5, String impurity = "Gini")
- return(Matrix[Double] M, Matrix[Double] C, Matrix[Double] S_map,
Matrix[Double] C_map)
+m_randomForest = function(Matrix[Double] X, Matrix[Double] y, Matrix[Double]
ctypes,
+ Int num_trees = 16, Double sample_frac = 0.1, Double feature_frac = 1.0,
+ Int max_depth = 10, Int min_leaf = 20, Double max_features = 0.5,
+ String impurity = "gini", Int seed = -1, Boolean verbose = FALSE)
+ return(Matrix[Double] M)
{
- print("started random-forest ...")
-
- num_bins = bins;
- threshold = num_samples;
- imp = impurity;
- fpow = feature_subset;
- rate = subsamp_rate;
-
- M = matrix(0, rows = 10, cols = 10);
-
- Y_bin = Y;
- num_records = nrow (X);
- num_classes = ncol (Y_bin);
-
- # check if there is only one class label
- Y_bin_sum = sum (colSums (Y_bin) == num_records);
- if (Y_bin_sum == 1)
- stop ("Y contains only one class label. No model will be learned!");
- else if (Y_bin_sum > 1)
- stop ("Y is not properly dummy coded. Multiple columns of Y contain only
ones!")
-
- # split data into X_scale and X_cat
-
- if (length(R) != 0) {
- R_tmp = order (target = R, by = 2); # sort by start indices
- dummy_coded = (R_tmp[,2] != R_tmp[,3]);
- R_scale = removeEmpty (target = R_tmp[,2:3] * (1 - dummy_coded), margin =
"rows");
- R_cat = removeEmpty (target = R_tmp[,2:3] * dummy_coded, margin = "rows");
- S_map = removeEmpty (target = (1 - dummy_coded) * seq (1, nrow (R_tmp)),
margin = "rows");
- C_map = removeEmpty (target = dummy_coded * seq (1, nrow (R_tmp)), margin
= "rows");
-
- sum_dummy = sum (dummy_coded);
- if (sum_dummy == nrow (R_tmp)) { # all features categorical
- print ("All features categorical");
- num_cat_features = nrow (R_cat);
- num_scale_features = 0;
- X_cat = X;
- distinct_values = t (R_cat[,2] - R_cat[,1] + 1);
- distinct_values_max = max (distinct_values);
- distinct_values_offset = cumsum (t (distinct_values));
- distinct_values_overall = sum (distinct_values);
- } else if (sum_dummy == 0) { # all features scale
- print ("All features scale");
- num_scale_features = ncol (X);
- num_cat_features = 0;
- X_scale = X;
- distinct_values_max = 1;
- } else { # some features scale some features categorical
- num_cat_features = nrow (R_cat);
- num_scale_features = nrow (R_scale);
- distinct_values = t (R_cat[,2] - R_cat[,1] + 1);
- distinct_values_max = max (distinct_values);
- distinct_values_offset = cumsum (t (distinct_values));
- distinct_values_overall = sum (distinct_values);
-
- W = matrix (1, rows = num_cat_features, cols = 1) %*% matrix ("1 -1",
rows = 1, cols = 2);
- W = matrix (W, rows = 2 * num_cat_features, cols = 1);
- if (as.scalar (R_cat[num_cat_features, 2]) == ncol (X))
- W[2 * num_cat_features,] = 0;
-
- last = (R_cat[,2] != ncol (X));
- R_cat1 = (R_cat[,2] + 1) * last;
- R_cat[,2] = (R_cat[,2] * (1 - last)) + R_cat1;
- R_cat_vec = matrix (R_cat, rows = 2 * num_cat_features, cols = 1);
-
- col_tab = table (R_cat_vec, 1, W, ncol (X), 1);
- col_ind = cumsum (col_tab);
-
- col_ind_cat = removeEmpty (target = col_ind * seq (1, ncol (X)), margin
= "rows");
- col_ind_scale = removeEmpty (target = (1 - col_ind) * seq (1, ncol (X)),
margin = "rows");
- X_cat = X %*% table (col_ind_cat, seq (1, nrow (col_ind_cat)), ncol (X),
nrow (col_ind_cat));
- X_scale = X %*% table (col_ind_scale, seq (1, nrow (col_ind_scale)),
ncol (X), nrow (col_ind_scale));
- }
- } else { # only scale features exist
- print ("All features scale");
- num_scale_features = ncol (X);
- num_cat_features = 0;
- X_scale = X;
- distinct_values_max = 1;
- }
-
- if (num_scale_features > 0) {
- print ("COMPUTING BINNING...");
- bin_size = max (as.integer (num_records / num_bins), 1);
- count_thresholds = matrix (0, rows = 1, cols = num_scale_features)
- thresholds = matrix (0, rows = num_bins+1, cols = num_scale_features)
- parfor(i1 in 1:num_scale_features) {
- #approximate equi-height binning
- bbin = seq(0, 1, 1/num_bins);
- col_bins = quantile(X_scale[,i1], bbin)
- count_thresholds[,i1] = num_bins; #TODO probe empty
- thresholds[,i1] = col_bins;
- }
+ t1 = time();
- print ("PREPROCESSING SCALE FEATURE MATRIX...");
- min_num_bins = min (count_thresholds);
- max_num_bins = max (count_thresholds);
- total_num_bins = sum (count_thresholds);
- cum_count_thresholds = t (cumsum (t (count_thresholds)));
- X_scale_ext = matrix (0, rows = num_records, cols = total_num_bins);
- parfor (i2 in 1:num_scale_features, check = 0) {
- Xi2 = X_scale[,i2];
- count_threshold = as.scalar (count_thresholds[,i2]);
- offset_feature = 1;
- if (i2 > 1)
- offset_feature = offset_feature + as.integer (as.scalar
(cum_count_thresholds[, (i2 - 1)]));
- ti2 = t(thresholds[1:count_threshold, i2]);
- X_scale_ext[,offset_feature:(offset_feature + count_threshold - 1)] =
outer (Xi2, ti2, "<");
- }
+ # validation and initialization of reproducible seeds
+ if(verbose) {
+ print("randomForest: initialize with num_trees=" + num_trees + ",
sample_frac=" + sample_frac
+ + ", feature_frac=" + feature_frac + ", impurity=" + impurity + ",
seed=" + seed + ".");
}
+ if(ncol(ctypes) != ncol(X))
+ stop("randomForest: inconsistent num features and col types: "+ncol(X)+"
vs "+ncol(ctypes)+".");
+ if(sum(y <= 0) != 0)
+ stop("randomForest: y is not properly recoded and binned (contiguous
positive integers).");
+ if(max(y) == 1)
+ stop("randomForest: y contains only one class label.");
- num_features_total = num_scale_features + num_cat_features;
- num_feature_samples = as.integer (floor (num_features_total ^ fpow));
-
-
#-------------------------------------------------------------------------------------
-
- ##### INITIALIZATION
- L = matrix (1, rows = num_records, cols = num_trees); # last visited node id
for each training sample
-
- # create matrix of counts (generated by Poisson distribution) storing how
many times each sample appears in each tree
- print ("CONPUTING COUNTS...");
- C = rand (rows = num_records, cols = num_trees, pdf = "poisson", lambda =
rate);
- Ix_nonzero = (C != 0);
- L = L * Ix_nonzero;
- total_counts = sum (C);
+ lseed = as.integer(ifelse(seed!=-1, seed,
as.scalar(rand(rows=1,cols=1,min=0, max=1e9))));
+ randSeeds = rand(rows = 3 * num_trees, cols = 1, seed=lseed, min=0, max=1e9);
- # model
- # LARGE leaf nodes
- # NC_large[,1]: node id
- # NC_large[,2]: tree id
- # NC_large[,3]: class label
- # NC_large[,4]: no. of misclassified samples
- # NC_large[,5]: 1 if special leaf (impure and 3 samples at that leaf >
threshold) or 0 otherwise
- NC_large = matrix (0, rows = 5, cols = 1);
-
- # SMALL leaf nodes
- # same schema as for LARGE leaf nodes (to be initialized)
- NC_small = matrix (0, rows = 5, cols = 1);
-
- # LARGE internal nodes
- # Q_large[,1]: node id
- # Q_large[,2]: tree id
- Q_large = matrix (0, rows = 2, cols = num_trees);
- Q_large[1,] = matrix (1, rows = 1, cols = num_trees);
- Q_large[2,] = t (seq (1, num_trees));
-
- # SMALL internal nodes
- # same schema as for LARGE internal nodes (to be initialized)
- Q_small = matrix (0, rows = 2, cols = 1);
-
- # F_large[,1]: feature
- # F_large[,2]: type
- # F_large[,3]: offset
- F_large = matrix (0, rows = 3, cols = 1);
-
- # same schema as for LARGE nodes
- F_small = matrix (0, rows = 3, cols = 1);
-
- # split points for LARGE internal nodes
- S_large = matrix (0, rows = 1, cols = 1);
-
- # split points for SMALL internal nodes
- S_small = matrix (0, rows = 1, cols = 1);
-
- # initialize queue
- cur_nodes_large = matrix (1, rows = 2, cols = num_trees);
- cur_nodes_large[2,] = t (seq (1, num_trees));
-
- num_cur_nodes_large = num_trees;
- num_cur_nodes_small = 0;
- level = 0;
-
- while ((num_cur_nodes_large + num_cur_nodes_small) > 0 & level < depth) {
- level = level + 1;
- print (" --- start level " + level + " --- ");
-
- ##### PREPARE MODEL
- if (num_cur_nodes_large > 0) { # LARGE nodes to process
- cur_Q_large = matrix (0, rows = 2, cols = 2 * num_cur_nodes_large);
- cur_NC_large = matrix (0, rows = 5, cols = 2 * num_cur_nodes_large);
- cur_F_large = matrix (0, rows = 3, cols = num_cur_nodes_large);
- cur_S_large = matrix (0, rows = 1, cols = num_cur_nodes_large *
distinct_values_max);
- cur_nodes_small = matrix (0, rows = 3, cols = 2 * num_cur_nodes_large);
- }
-
- ##### LOOP OVER LARGE NODES...
- parfor (i6 in 1:num_cur_nodes_large, check = 0) {
- cur_node = as.scalar (cur_nodes_large[1,i6]);
- cur_tree = as.scalar (cur_nodes_large[2,i6]);
-
- # select sample features WOR
- feature_samples = sample (num_features_total, num_feature_samples);
- feature_samples = order (target = feature_samples, by = 1);
- num_scale_feature_samples = sum (feature_samples <= num_scale_features);
- num_cat_feature_samples = num_feature_samples -
num_scale_feature_samples;
-
- # --- find best split ---
- # samples that reach cur_node
- Ix = (L[,cur_tree] == cur_node);
-
- cur_Y_bin = Y_bin * (Ix * C[,cur_tree]);
- label_counts_overall = colSums (cur_Y_bin);
- label_sum_overall = sum (label_counts_overall);
- label_dist_overall = label_counts_overall / label_sum_overall;
-
- if (imp == "entropy") {
- label_dist_zero = (label_dist_overall == 0);
- cur_impurity = - sum (label_dist_overall * log (label_dist_overall +
label_dist_zero)); # / log (2); # impurity before
- } else { # imp == "Gini"
- cur_impurity = sum (label_dist_overall * (1 - label_dist_overall)); #
impurity before
- }
- best_scale_gain = 0;
- best_cat_gain = 0;
- if (num_scale_features > 0 & num_scale_feature_samples > 0) {
- scale_feature_samples = feature_samples[1:num_scale_feature_samples,];
-
- # main operation
- label_counts_left_scale = t (t (cur_Y_bin) %*% X_scale_ext);
-
- # compute left and right label distribution
- label_sum_left = rowSums (label_counts_left_scale);
- label_dist_left = label_counts_left_scale / label_sum_left;
- if (imp == "entropy") {
- label_dist_left = replace (target = label_dist_left, pattern = 0,
replacement = 1);
- log_label_dist_left = log (label_dist_left); # / log (2)
- impurity_left_scale = - rowSums (label_dist_left *
log_label_dist_left);
- } else { # imp == "Gini"
- impurity_left_scale = rowSums (label_dist_left * (1 -
label_dist_left));
- }
- #
- label_counts_right_scale = - label_counts_left_scale +
label_counts_overall;
- label_sum_right = rowSums (label_counts_right_scale);
- label_dist_right = label_counts_right_scale / label_sum_right;
- if (imp == "entropy") {
- label_dist_right = replace (target = label_dist_right, pattern = 0,
replacement = 1);
- log_label_dist_right = log (label_dist_right); # / log (2)
- impurity_right_scale = - rowSums (label_dist_right *
log_label_dist_right);
- } else { # imp == "Gini"
- impurity_right_scale = rowSums (label_dist_right * (1 -
label_dist_right));
- }
-
- I_gain_scale = cur_impurity - ( ( label_sum_left / label_sum_overall )
* impurity_left_scale + ( label_sum_right / label_sum_overall ) *
impurity_right_scale);
-
- I_gain_scale = replace (target = I_gain_scale, pattern = NaN,
replacement = 0);
-
- # determine best feature to split on and the split value
- feature_start_ind = matrix (0, rows = 1, cols = num_scale_features);
- feature_start_ind[1,1] = 1;
- if (num_scale_features > 1) {
- feature_start_ind[1,2:num_scale_features] =
cum_count_thresholds[1,1:(num_scale_features - 1)] + 1;
- }
- max_I_gain_found = 0;
- max_I_gain_found_ind = 0;
- best_i = 0;
-
- for (i in 1:num_scale_feature_samples) { # assuming feature_samples is
5x1
- cur_feature_samples_bin = as.scalar (scale_feature_samples[i,]);
- cur_start_ind = as.scalar
(feature_start_ind[,cur_feature_samples_bin]);
- cur_end_ind = as.scalar
(cum_count_thresholds[,cur_feature_samples_bin]);
- I_gain_portion = I_gain_scale[cur_start_ind:cur_end_ind,];
- cur_max_I_gain = max (I_gain_portion);
- cur_max_I_gain_ind = as.scalar (rowIndexMax (t (I_gain_portion)));
- if (cur_max_I_gain > max_I_gain_found) {
- max_I_gain_found = cur_max_I_gain;
- max_I_gain_found_ind = cur_max_I_gain_ind;
- best_i = i;
- }
- }
-
- best_scale_gain = max_I_gain_found;
- max_I_gain_ind_scale = max_I_gain_found_ind;
- best_scale_feature = 0;
- if (best_i > 0) {
- best_scale_feature = as.scalar (scale_feature_samples[best_i,]);
- }
- best_scale_split = max_I_gain_ind_scale;
- if (best_scale_feature > 1) {
- best_scale_split = best_scale_split +
as.scalar(cum_count_thresholds[,(best_scale_feature - 1)]);
- }
- }
-
- if (num_cat_features > 0 & num_cat_feature_samples > 0){
- cat_feature_samples = feature_samples[(num_scale_feature_samples +
1):(num_scale_feature_samples + num_cat_feature_samples),] - num_scale_features;
-
- # initialization
- split_values_bin = matrix (0, rows = 1, cols =
distinct_values_overall);
- split_values = split_values_bin;
- split_values_offset = matrix (0, rows = 1, cols = num_cat_features);
- I_gains = split_values_offset;
- impurities_left = split_values_offset;
- impurities_right = split_values_offset;
- best_label_counts_left = matrix (0, rows = num_cat_features, cols =
num_classes);
- best_label_counts_right = matrix (0, rows = num_cat_features, cols =
num_classes);
-
- # main operation
- label_counts = t (t (cur_Y_bin) %*% X_cat);
-
- parfor (i9 in 1:num_cat_feature_samples, check = 0){
- cur_cat_feature = as.scalar (cat_feature_samples[i9,1]);
- start_ind = 1;
- if (cur_cat_feature > 1)
- start_ind = start_ind + as.scalar
(distinct_values_offset[(cur_cat_feature - 1),]);
- offset = as.scalar (distinct_values[1,cur_cat_feature]);
- cur_label_counts = label_counts[start_ind:(start_ind + offset - 1),];
- label_sum = rowSums (cur_label_counts);
- label_dist = cur_label_counts / label_sum;
- if (imp == "entropy") {
- label_dist = replace (target = label_dist, pattern = 0,
replacement = 1);
- log_label_dist = log (label_dist); # / log(2)
- impurity_tmp = - rowSums (label_dist * log_label_dist);
- impurity_tmp = replace (target = impurity_tmp, pattern = NaN,
replacement = 1/0);
- } else { # imp == "Gini"
- impurity_tmp = rowSums (label_dist * (1 - label_dist));
- }
-
- # sort cur feature by impurity
- cur_distinct_values = seq (1, nrow (cur_label_counts));
- cur_distinct_values_impurity = cbind (cur_distinct_values,
impurity_tmp);
- cur_feature_sorted = order (target = cur_distinct_values_impurity,
by = 2, decreasing = FALSE);
- P = table (cur_distinct_values, cur_feature_sorted); # permutation
matrix
- label_counts_sorted = P %*% cur_label_counts;
-
- # compute left and right label distribution
- label_counts_left = cumsum (label_counts_sorted);
-
- label_sum_left = rowSums (label_counts_left);
- label_dist_left = label_counts_left / label_sum_left;
- label_dist_left = replace (target = label_dist_left, pattern = NaN,
replacement = 1);
- if (imp == "entropy") {
- label_dist_left = replace (target = label_dist_left, pattern = 0,
replacement = 1);
- log_label_dist_left = log (label_dist_left); # / log(2)
- impurity_left = - rowSums (label_dist_left * log_label_dist_left);
- } else { # imp == "Gini"
- impurity_left = rowSums (label_dist_left * (1 - label_dist_left));
- }
- #
- label_counts_right = - label_counts_left + label_counts_overall;
- label_sum_right = rowSums (label_counts_right);
- label_dist_right = label_counts_right / label_sum_right;
- label_dist_right = replace (target = label_dist_right, pattern =
NaN, replacement = 1);
- if (imp == "entropy") {
- label_dist_right = replace (target = label_dist_right, pattern =
0, replacement = 1);
- log_label_dist_right = log (label_dist_right); # / log (2)
- impurity_right = - rowSums (label_dist_right *
log_label_dist_right);
- } else { # imp == "Gini"
- impurity_right = rowSums (label_dist_right * (1 -
label_dist_right));
- }
- I_gain = cur_impurity - ( ( label_sum_left / label_sum_overall ) *
impurity_left + ( label_sum_right / label_sum_overall ) * impurity_right);
-
- Ix_label_sum_left_zero = (label_sum_left == 0);
- Ix_label_sum_right_zero = (label_sum_right == 0);
- Ix_label_sum_zero = Ix_label_sum_left_zero * Ix_label_sum_right_zero;
- I_gain = I_gain * (1 - Ix_label_sum_zero);
-
- I_gain[nrow (I_gain),] = 0; # last entry invalid
-
- max_I_gain_ind = as.scalar (rowIndexMax (t (I_gain)));
-
- split_values[1, start_ind:(start_ind + max_I_gain_ind - 1)] = t
(cur_feature_sorted[1:max_I_gain_ind,1]);
- for (i10 in 1:max_I_gain_ind) {
- ind = as.scalar (cur_feature_sorted[i10,1]);
- if (ind == 1)
- split_values_bin[1,start_ind] = 1.0;
- else
- split_values_bin[1,(start_ind + ind - 1)] = 1.0;
- }
- split_values_offset[1,cur_cat_feature] = max_I_gain_ind;
-
- I_gains[1,cur_cat_feature] = max (I_gain);
-
- impurities_left[1,cur_cat_feature] = as.scalar
(impurity_left[max_I_gain_ind,]);
- impurities_right[1,cur_cat_feature] = as.scalar
(impurity_right[max_I_gain_ind,]);
- best_label_counts_left[cur_cat_feature,] =
label_counts_left[max_I_gain_ind,];
- best_label_counts_right[cur_cat_feature,] =
label_counts_right[max_I_gain_ind,];
- }
-
- # determine best feature to split on and the split values
- best_cat_feature = as.scalar (rowIndexMax (I_gains));
- best_cat_gain = max (I_gains);
- start_ind = 1;
- if (best_cat_feature > 1)
- start_ind = start_ind + as.scalar
(distinct_values_offset[(best_cat_feature - 1),]);
- offset = as.scalar (distinct_values[1,best_cat_feature]);
- best_split_values_bin = split_values_bin[1, start_ind:(start_ind +
offset - 1)];
- }
-
- # compare best scale feature to best cat. feature and pick the best one
- if (num_scale_features > 0 & num_scale_feature_samples > 0 &
best_scale_gain >= best_cat_gain & best_scale_gain > 0) {
- # --- update model ---
- cur_F_large[1,i6] = best_scale_feature;
- cur_F_large[2,i6] = 1;
- cur_F_large[3,i6] = 1;
- cur_S_large[1,(i6 - 1) * distinct_values_max + 1] =
thresholds[max_I_gain_ind_scale, best_scale_feature];
- left_child = 2 * (cur_node - 1) + 1 + 1;
- right_child = 2 * (cur_node - 1) + 2 + 1;
-
- # samples going to the left subtree
- Ix_left = X_scale_ext[,best_scale_split];
- Ix_left = Ix * Ix_left;
- Ix_right = Ix * (1 - Ix_left);
- L[,cur_tree] = L[,cur_tree] * (1 - Ix_left) + (Ix_left * left_child);
- L[,cur_tree] = L[,cur_tree] * (1 - Ix_right) + (Ix_right *
right_child);
- left_child_size = sum (Ix_left * C[,cur_tree]);
- right_child_size = sum (Ix_right * C[,cur_tree]);
-
- # check if left or right child is a leaf
- left_pure = FALSE;
- right_pure = FALSE;
- cur_impurity_left = as.scalar(impurity_left_scale[best_scale_split,]);
# max_I_gain_ind_scale
- cur_impurity_right =
as.scalar(impurity_right_scale[best_scale_split,]); # max_I_gain_ind_scale
- if ( (left_child_size <= num_leaf | cur_impurity_left == 0 | (level ==
depth)) &
- (right_child_size <= num_leaf | cur_impurity_right == 0 | (level ==
depth)) |
- (left_child_size <= threshold & right_child_size <= threshold &
(level == depth)) ) { # both left and right nodes are leaf
-
- cur_label_counts_left = label_counts_left_scale[best_scale_split,];
# max_I_gain_ind_scale
- cur_NC_large[1,(2 * (i6 - 1) + 1)] = left_child;
- cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;
- cur_NC_large[3,(2 * (i6 - 1) + 1)] = as.scalar( rowIndexMax
(cur_label_counts_left)); # leaf class label
- left_pure = TRUE;
- # compute number of misclassified points
- cur_NC_large[4,(2 * (i6 - 1) + 1)] = left_child_size - max
(cur_label_counts_left);
-
- cur_label_counts_right = label_counts_overall -
cur_label_counts_left;
- cur_NC_large[1,(2 * i6)] = right_child;
- cur_NC_large[2,(2 * i6)] = cur_tree;
- cur_NC_large[3,(2 * i6)] = as.scalar( rowIndexMax
(cur_label_counts_right)); # leaf class label
- right_pure = TRUE;
- # compute number of misclassified pints
- cur_NC_large[4,(2 * i6)] = right_child_size - max
(cur_label_counts_right);
-
- } else if (left_child_size <= num_leaf | cur_impurity_left == 0 |
(level == depth) |
- (left_child_size <= threshold & (level == depth))) {
-
- cur_label_counts_left = label_counts_left_scale[best_scale_split,];
# max_I_gain_ind_scale
- cur_NC_large[1,(2 * (i6 - 1) + 1)] = left_child;
- cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;
- cur_NC_large[3,(2 * (i6 - 1) + 1)] = as.scalar( rowIndexMax
(cur_label_counts_left)); # leaf class label
- left_pure = TRUE;
- # compute number of misclassified points
- cur_NC_large[4,(2 * (i6 - 1) + 1)] = left_child_size - max
(cur_label_counts_left);
-
- } else if (right_child_size <= num_leaf | cur_impurity_right == 0 |
(level == depth) |
- (right_child_size <= threshold & (level == depth))) {
-
- cur_label_counts_right =
label_counts_right_scale[best_scale_split,]; # max_I_gain_ind_scale
- cur_NC_large[1,(2 * i6)] = right_child;
- cur_NC_large[2,(2 * i6)] = cur_tree;
- cur_NC_large[3,(2 * i6)] = as.scalar( rowIndexMax
(cur_label_counts_right)); # leaf class label
- right_pure = TRUE;
- # compute number of misclassified pints
- cur_NC_large[4,(2 * i6)] = right_child_size - max
(cur_label_counts_right);
- }
- }
- else if (num_cat_features > 0 & num_cat_feature_samples > 0 &
best_cat_gain > 0) {
- # --- update model ---
- cur_F_large[1,i6] = best_cat_feature;
- cur_F_large[2,i6] = 2;
- offset_nonzero = as.scalar (split_values_offset[1,best_cat_feature]);
- S_start_ind = (i6 - 1) * distinct_values_max + 1;
- cur_F_large[3,i6] = offset_nonzero;
- cur_S_large[1,S_start_ind:(S_start_ind + offset_nonzero - 1)] =
split_values[1,start_ind:(start_ind + offset_nonzero - 1)];
-
- left_child = 2 * (cur_node - 1) + 1 + 1;
- right_child = 2 * (cur_node - 1) + 2 + 1;
-
- # samples going to the left subtree
- Ix_left = rowSums (X_cat[,start_ind:(start_ind + offset - 1)] *
best_split_values_bin);
- Ix_left = (Ix_left >= 1);
- Ix_left = Ix * Ix_left;
- Ix_right = Ix * (1 - Ix_left);
- L[,cur_tree] = L[,cur_tree] * (1 - Ix_left) + (Ix_left * left_child);
- L[,cur_tree] = L[,cur_tree] * (1 - Ix_right) + (Ix_right *
right_child);
- left_child_size = sum (Ix_left * C[,cur_tree]);
- right_child_size = sum (Ix_right * C[,cur_tree]);
-
- # check if left or right child is a leaf
- left_pure = FALSE;
- right_pure = FALSE;
- cur_impurity_left = as.scalar(impurities_left[,best_cat_feature]);
- cur_impurity_right = as.scalar(impurities_right[,best_cat_feature]);
- if ( (left_child_size <= num_leaf | cur_impurity_left == 0 | (level ==
depth)) &
- (right_child_size <= num_leaf | cur_impurity_right == 0 | (level ==
depth)) |
- (left_child_size <= threshold & right_child_size <= threshold &
(level == depth)) ) { # both left and right nodes are leaf
-
- cur_label_counts_left = best_label_counts_left[best_cat_feature,];
- cur_NC_large[1,(2 * (i6 - 1) + 1)] = left_child;
- cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;
- cur_NC_large[3,(2 * (i6 - 1) + 1)] = as.scalar( rowIndexMax
(cur_label_counts_left)); # leaf class label
- left_pure = TRUE;
- # compute number of misclassified points
- cur_NC_large[4,(2 * (i6 - 1) + 1)] = left_child_size - max
(cur_label_counts_left);
-
- cur_label_counts_right = label_counts_overall -
cur_label_counts_left;
- cur_NC_large[1,(2 * i6)] = right_child;
- cur_NC_large[2,(2 * i6)] = cur_tree;
- cur_NC_large[3,(2 * i6)] = as.scalar( rowIndexMax
(cur_label_counts_right)); # leaf class label
- right_pure = TRUE;
- # compute number of misclassified pints
- cur_NC_large[4,(2 * i6)] = right_child_size - max
(cur_label_counts_right);
-
- } else if (left_child_size <= num_leaf | cur_impurity_left == 0 |
(level == depth) |
- (left_child_size <= threshold & (level == depth))) {
-
- cur_label_counts_left = best_label_counts_left[best_cat_feature,];
- cur_NC_large[1,(2 * (i6 - 1) + 1)] = left_child;
- cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;
- cur_NC_large[3,(2 * (i6 - 1) + 1)] = as.scalar( rowIndexMax
(cur_label_counts_left)); # leaf class label
- left_pure = TRUE;
- # compute number of misclassified points
- cur_NC_large[4,(2 * (i6 - 1) + 1)] = left_child_size - max
(cur_label_counts_left);
-
- } else if (right_child_size <= num_leaf | cur_impurity_right == 0 |
(level == depth) |
- (right_child_size <= threshold & (level == depth))) {
-
- cur_label_counts_right = best_label_counts_right[best_cat_feature,];
- cur_NC_large[1,(2 * i6)] = right_child;
- cur_NC_large[2,(2 * i6)] = cur_tree;
- cur_NC_large[3,(2 * i6)] = as.scalar( rowIndexMax
(cur_label_counts_right)); # leaf class label
- right_pure = TRUE;
- # compute number of misclassified pints
- cur_NC_large[4,(2 * i6)] = right_child_size - max
(cur_label_counts_right);
-
- }
- } else {
- print ("NUMBER OF SAMPLES AT NODE " + cur_node + " in tree " +
cur_tree + " CANNOT BE REDUCED TO MATCH " + num_leaf + ". THIS NODE IS DECLARED
AS LEAF!");
- right_pure = TRUE;
- left_pure = TRUE;
- cur_NC_large[1,(2 * (i6 - 1) + 1)] = cur_node;
- cur_NC_large[2,(2 * (i6 - 1) + 1)] = cur_tree;
- class_label = as.scalar (rowIndexMax (label_counts_overall));
- cur_NC_large[3,(2 * (i6 - 1) + 1)] = class_label;
- cur_NC_large[4,(2 * (i6 - 1) + 1)] = label_sum_overall - max
(label_counts_overall);
- cur_NC_large[5,(2 * (i6 - 1) + 1)] = 1; # special leaf
- }
-
- # add nodes to Q
- if (!left_pure) {
- if (left_child_size > threshold) {
- cur_Q_large[1,(2 * (i6 - 1)+ 1)] = left_child;
- cur_Q_large[2,(2 * (i6 - 1)+ 1)] = cur_tree;
- } else {
- cur_nodes_small[1,(2 * (i6 - 1)+ 1)] = left_child;
- cur_nodes_small[2,(2 * (i6 - 1)+ 1)] = left_child_size;
- cur_nodes_small[3,(2 * (i6 - 1)+ 1)] = cur_tree;
- }
- }
- if (!right_pure) {
- if (right_child_size > threshold) {
- cur_Q_large[1,(2 * i6)] = right_child;
- cur_Q_large[2,(2 * i6)] = cur_tree;
- } else{
- cur_nodes_small[1,(2 * i6)] = right_child;
- cur_nodes_small[2,(2 * i6)] = right_child_size;
- cur_nodes_small[3,(2 * i6)] = cur_tree;
- }
- }
- }
+ # training of num_tree decision trees
+ M = matrix(0, rows=num_trees, cols=2^max_depth-1);
+ F = matrix(0, rows=num_trees, cols=ncol(X));
+ parfor(i in 1:num_trees) {
+ if( verbose )
+ print("randomForest: start training tree "+i+"/"+num_trees+".");
- ##### PREPARE MODEL FOR LARGE NODES
- if (num_cur_nodes_large > 0) {
- cur_Q_large = removeEmpty (target = cur_Q_large, margin = "cols");
- if (as.scalar (cur_Q_large[1,1]) != 0) Q_large = cbind (Q_large,
cur_Q_large);
- cur_NC_large = removeEmpty (target = cur_NC_large, margin = "cols");
- if (as.scalar (cur_NC_large[1,1]) != 0) NC_large = cbind (NC_large,
cur_NC_large);
-
- cur_F_large = removeEmpty (target = cur_F_large, margin = "cols");
- if (as.scalar (cur_F_large[1,1]) != 0) F_large = cbind (F_large,
cur_F_large);
- cur_S_large = removeEmpty (target = cur_S_large, margin = "cols");
- if (as.scalar (cur_S_large[1,1]) != 0) S_large = cbind (S_large,
cur_S_large);
-
- num_cur_nodes_large_pre = 2 * num_cur_nodes_large;
- if (as.scalar (cur_Q_large[1,1]) == 0) {
- num_cur_nodes_large = 0;
- } else {
- cur_nodes_large = cur_Q_large;
- num_cur_nodes_large = ncol (cur_Q_large);
- }
- }
-
- ##### PREPARE MODEL FOR SMALL NODES
- cur_nodes_small_nonzero = removeEmpty (target = cur_nodes_small, margin =
"cols");
- if (as.scalar (cur_nodes_small_nonzero[1,1]) != 0) { # if SMALL nodes exist
- num_cur_nodes_small = ncol (cur_nodes_small_nonzero);
- }
+ # step 1: sample data
+ si1 = as.integer(as.scalar(randSeeds[3*(i-1)+1,1]));
+ I1 = rand(rows=nrow(X), cols=1, seed=si1) <= sample_frac;
+ Xi = removeEmpty(target=X, margin="rows", select=I1);
+ yi = removeEmpty(target=y, margin="rows", select=I1);
- if (num_cur_nodes_small > 0) { # SMALL nodes to process
- reserve_len = sum (2 ^ (ceil (log (cur_nodes_small_nonzero[2,]) / log
(2)))) + num_cur_nodes_small;
- cur_Q_small = matrix (0, rows = 2, cols = reserve_len);
- cur_F_small = matrix (0, rows = 3, cols = reserve_len);
- cur_NC_small = matrix (0, rows = 5, cols = reserve_len);
- cur_S_small = matrix (0, rows = 1, cols = reserve_len *
distinct_values_max); # split values of the best feature
+ # step 2: sample features
+ if( feature_frac < 1.0 ) {
+ si2 = as.integer(as.scalar(randSeeds[3*(i-1)+2,1]));
+ I2 = rand(rows=ncol(X), cols=1, seed=si2) <= feature_frac;
+ Xi = removeEmpty(target=Xi, margin="cols", select=I2);
+ F[i,] = t(I2);
}
-
- ##### LOOP OVER SMALL NODES...
- for (i7 in 1:num_cur_nodes_small) {
- cur_node_small = as.scalar (cur_nodes_small_nonzero[1,i7]);
- cur_tree_small = as.scalar (cur_nodes_small_nonzero[3,i7]);
- # build dataset for SMALL node
- Ix = (L[,cur_tree_small] == cur_node_small);
- #print(as.scalar(Ix[0,0]));
- if (num_scale_features > 0)
- X_scale_ext_small = removeEmpty (target = X_scale_ext, margin =
"rows", select = Ix);
- if (num_cat_features > 0)
- X_cat_small = removeEmpty (target = X_cat, margin = "rows", select =
Ix);
- L_small = removeEmpty (target = L * Ix, margin = "rows");
- C_small = removeEmpty (target = C * Ix, margin = "rows");
- Y_bin_small = removeEmpty (target = Y_bin * Ix, margin = "rows");
-
- # compute offset
- offsets = cumsum (t (2 ^ ceil (log (cur_nodes_small_nonzero[2,]) / log
(2))));
- start_ind_global = 1;
- if (i7 > 1)
- start_ind_global = start_ind_global + as.scalar (offsets[(i7 - 1),]);
- start_ind_S_global = 1;
- if (i7 > 1)
- start_ind_S_global = start_ind_S_global + (as.scalar (offsets[(i7 -
1),]) * distinct_values_max);
-
- Q = matrix (0, rows = 2, cols = 1);
- Q[1,1] = cur_node_small;
- Q[2,1] = cur_tree_small;
- F = matrix (0, rows = 3, cols = 1);
- NC = matrix (0, rows = 5, cols = 1);
- S = matrix (0, rows = 1, cols = 1);
- cur_nodes_ = matrix (cur_node_small, rows = 2, cols = 1);
- cur_nodes_[1,1] = cur_node_small;
- cur_nodes_[2,1] = cur_tree_small;
- num_cur_nodes = 1;
- level_ = level;
-
- while (num_cur_nodes > 0 & level_ < depth) {
- level_ = level_ + 1;
- cur_Q = matrix (0, rows = 2, cols = 2 * num_cur_nodes);
- cur_F = matrix (0, rows = 3, cols = num_cur_nodes);
- cur_NC = matrix (0, rows = 5, cols = 2 * num_cur_nodes);
- cur_S = matrix (0, rows = 1, cols = num_cur_nodes *
distinct_values_max);
-
- parfor (i8 in 1:num_cur_nodes, check = 0) {
- cur_node = as.scalar (cur_nodes_[1,i8]);
- cur_tree = as.scalar (cur_nodes_[2,i8]);
-
- # select sample features WOR
- feature_samples = sample (num_features_total, num_feature_samples);
- feature_samples = order (target = feature_samples, by = 1);
- num_scale_feature_samples = sum (feature_samples <=
num_scale_features);
- num_cat_feature_samples = num_feature_samples -
num_scale_feature_samples;
-
- # --- find best split ---
- # samples that reach cur_node
- Ix = (L_small[,cur_tree] == cur_node);
- cur_Y_bin = Y_bin_small * (Ix * C_small[,cur_tree]);
- label_counts_overall = colSums (cur_Y_bin);
-
- label_sum_overall = sum (label_counts_overall);
- label_dist_overall = label_counts_overall / label_sum_overall;
- if (imp == "entropy") {
- label_dist_zero = (label_dist_overall == 0);
- cur_impurity = - sum (label_dist_overall * log (label_dist_overall
+ label_dist_zero)); # / log (2);
- } else { # imp == "Gini"
- cur_impurity = sum (label_dist_overall * (1 - label_dist_overall));
- }
- best_scale_gain = 0;
- best_cat_gain = 0;
-
- if (num_scale_features > 0 & num_scale_feature_samples > 0) {
- scale_feature_samples =
feature_samples[1:num_scale_feature_samples,];
-
- # main operation
- label_counts_left_scale = t (t (cur_Y_bin) %*% X_scale_ext_small);
-
- # compute left and right label distribution
- label_sum_left = rowSums (label_counts_left_scale);
- label_dist_left = label_counts_left_scale / label_sum_left;
- if (imp == "entropy") {
- label_dist_left = replace (target = label_dist_left, pattern =
0, replacement = 1);
- log_label_dist_left = log (label_dist_left); # / log (2)
- impurity_left_scale = - rowSums (label_dist_left *
log_label_dist_left);
- } else { # imp == "Gini"
- impurity_left_scale = rowSums (label_dist_left * (1 -
label_dist_left));
- }
- #
- label_counts_right_scale = - label_counts_left_scale +
label_counts_overall;
- label_sum_right = rowSums (label_counts_right_scale);
- label_dist_right = label_counts_right_scale / label_sum_right;
- if (imp == "entropy") {
- label_dist_right = replace (target = label_dist_right, pattern =
0, replacement = 1);
- log_label_dist_right = log (label_dist_right); # log (2)
- impurity_right_scale = - rowSums (label_dist_right *
log_label_dist_right);
- } else { # imp == "Gini"
- impurity_right_scale = rowSums (label_dist_right * (1 -
label_dist_right));
- }
- I_gain_scale = cur_impurity - ( ( label_sum_left /
label_sum_overall ) * impurity_left_scale + ( label_sum_right /
label_sum_overall ) * impurity_right_scale);
-
- I_gain_scale = replace (target = I_gain_scale, pattern = NaN,
replacement = 0);
-
- # determine best feature to split on and the split value
- feature_start_ind = matrix (0, rows = 1, cols =
num_scale_features);
- feature_start_ind[1,1] = 1;
- if (num_scale_features > 1) {
- feature_start_ind[1,2:num_scale_features] =
cum_count_thresholds[1,1:(num_scale_features - 1)] + 1;
- }
- max_I_gain_found = 0;
- max_I_gain_found_ind = 0;
- best_i = 0;
-
- for (i in 1:num_scale_feature_samples) { # assuming
feature_samples is 5x1
- cur_feature_samples_bin = as.scalar (scale_feature_samples[i,]);
- cur_start_ind = as.scalar
(feature_start_ind[,cur_feature_samples_bin]);
- cur_end_ind = as.scalar
(cum_count_thresholds[,cur_feature_samples_bin]);
- I_gain_portion = I_gain_scale[cur_start_ind:cur_end_ind,];
- cur_max_I_gain = max (I_gain_portion);
- cur_max_I_gain_ind = as.scalar (rowIndexMax (t
(I_gain_portion)));
- if (cur_max_I_gain > max_I_gain_found) {
- max_I_gain_found = cur_max_I_gain;
- max_I_gain_found_ind = cur_max_I_gain_ind;
- best_i = i;
- }
- }
-
- best_scale_gain = max_I_gain_found;
- max_I_gain_ind_scale = max_I_gain_found_ind;
- best_scale_feature = 0;
- if (best_i > 0) {
- best_scale_feature = as.scalar (scale_feature_samples[best_i,]);
- }
- best_scale_split = max_I_gain_ind_scale;
- if (best_scale_feature > 1) {
- best_scale_split = best_scale_split +
as.scalar(cum_count_thresholds[,(best_scale_feature - 1)]);
- }
- }
+ if( verbose )
+ print("-- ["+i+"] sampled "+nrow(Xi)+"/"+nrow(X)+" rows and
"+ncol(Xi)+"/"+ncol(X)+" cols.");
- if (num_cat_features > 0 & num_cat_feature_samples > 0){
- cat_feature_samples = feature_samples[(num_scale_feature_samples +
1):(num_scale_feature_samples + num_cat_feature_samples),] - num_scale_features;
-
- # initialization
- split_values_bin = matrix (0, rows = 1, cols =
distinct_values_overall);
- split_values = split_values_bin;
- split_values_offset = matrix (0, rows = 1, cols =
num_cat_features);
- I_gains = split_values_offset;
- impurities_left = split_values_offset;
- impurities_right = split_values_offset;
- best_label_counts_left = matrix (0, rows = num_cat_features, cols
= num_classes);
- best_label_counts_right = matrix (0, rows = num_cat_features, cols
= num_classes);
-
- # main operation
- label_counts = t (t (cur_Y_bin) %*% X_cat_small);
-
- parfor (i9 in 1:num_cat_feature_samples, check = 0){
- cur_cat_feature = as.scalar (cat_feature_samples[i9,1]);
- start_ind = 1;
- if (cur_cat_feature > 1)
- start_ind = start_ind + as.scalar
(distinct_values_offset[(cur_cat_feature - 1),]);
- offset = as.scalar (distinct_values[1,cur_cat_feature]);
- cur_label_counts = label_counts[start_ind:(start_ind + offset -
1),];
- label_sum = rowSums (cur_label_counts);
- label_dist = cur_label_counts / label_sum;
- if (imp == "entropy") {
- label_dist = replace (target = label_dist, pattern = 0,
replacement = 1);
- log_label_dist = log (label_dist); # / log(2)
- impurity_tmp = - rowSums (label_dist * log_label_dist);
- impurity_tmp = replace (target = impurity_tmp, pattern = NaN,
replacement = 1/0);
- } else { # imp == "Gini"
- impurity_tmp = rowSums (label_dist * (1 - label_dist));
- }
-
- # sort cur feature by impurity
- cur_distinct_values = seq (1, nrow (cur_label_counts));
- cur_distinct_values_impurity = cbind (cur_distinct_values,
impurity_tmp);
- cur_feature_sorted = order (target =
cur_distinct_values_impurity, by = 2, decreasing = FALSE);
- P = table (cur_distinct_values, cur_feature_sorted); #
permutation matrix
- label_counts_sorted = P %*% cur_label_counts;
-
- # compute left and right label distribution
- label_counts_left = cumsum (label_counts_sorted);
-
- label_sum_left = rowSums (label_counts_left);
- label_dist_left = label_counts_left / label_sum_left;
- label_dist_left = replace (target = label_dist_left, pattern =
NaN, replacement = 1);
- if (imp == "entropy") {
- label_dist_left = replace (target = label_dist_left, pattern =
0, replacement = 1);
- log_label_dist_left = log (label_dist_left); # / log(2)
- impurity_left = - rowSums (label_dist_left *
log_label_dist_left);
- } else { # imp == "Gini"
- impurity_left = rowSums (label_dist_left * (1 -
label_dist_left));
- }
- #
- label_counts_right = - label_counts_left + label_counts_overall;
- label_sum_right = rowSums (label_counts_right);
- label_dist_right = label_counts_right / label_sum_right;
- label_dist_right = replace (target = label_dist_right, pattern =
NaN, replacement = 1);
- if (imp == "entropy") {
- label_dist_right = replace (target = label_dist_right, pattern
= 0, replacement = 1);
- log_label_dist_right = log (label_dist_right); # / log (2)
- impurity_right = - rowSums (label_dist_right *
log_label_dist_right);
- } else { # imp == "Gini"
- impurity_right = rowSums (label_dist_right * (1 -
label_dist_right));
- }
- I_gain = cur_impurity - ( ( label_sum_left / label_sum_overall )
* impurity_left + ( label_sum_right / label_sum_overall ) * impurity_right);
-
- Ix_label_sum_left_zero = (label_sum_left == 0);
- Ix_label_sum_right_zero = (label_sum_right == 0);
- Ix_label_sum_zero = Ix_label_sum_left_zero *
Ix_label_sum_right_zero;
- I_gain = I_gain * (1 - Ix_label_sum_zero);
-
- I_gain[nrow (I_gain),] = 0; # last entry invalid
- max_I_gain_ind = as.scalar (rowIndexMax (t (I_gain)));
-
- split_values[1, start_ind:(start_ind + max_I_gain_ind - 1)] = t
(cur_feature_sorted[1:max_I_gain_ind,1]);
- for (i10 in 1:max_I_gain_ind) {
- ind = as.scalar (cur_feature_sorted[i10,1]);
- if (ind == 1)
- split_values_bin[1,start_ind] = 1.0;
- else
- split_values_bin[1,(start_ind + ind - 1)] = 1.0;
- }
- split_values_offset[1,cur_cat_feature] = max_I_gain_ind;
-
- I_gains[1,cur_cat_feature] = max (I_gain);
-
- impurities_left[1,cur_cat_feature] = as.scalar
(impurity_left[max_I_gain_ind,]);
- impurities_right[1,cur_cat_feature] = as.scalar
(impurity_right[max_I_gain_ind,]);
- best_label_counts_left[cur_cat_feature,] =
label_counts_left[max_I_gain_ind,];
- best_label_counts_right[cur_cat_feature,] =
label_counts_right[max_I_gain_ind,];
- }
-
- # determine best feature to split on and the split values
- best_cat_feature = as.scalar (rowIndexMax (I_gains));
- best_cat_gain = max (I_gains);
- start_ind = 1;
- if (best_cat_feature > 1) {
- start_ind = start_ind + as.scalar
(distinct_values_offset[(best_cat_feature - 1),]);
- }
- offset = as.scalar (distinct_values[1,best_cat_feature]);
- best_split_values_bin = split_values_bin[1, start_ind:(start_ind +
offset - 1)];
- }
-
- # compare best scale feature to best cat. feature and pick the best
one
- if (num_scale_features > 0 & num_scale_feature_samples > 0 &
best_scale_gain >= best_cat_gain & best_scale_gain > 0) {
- # --- update model ---
- cur_F[1,i8] = best_scale_feature;
- cur_F[2,i8] = 1;
- cur_F[3,i8] = 1;
- cur_S[1,(i8 - 1) * distinct_values_max + 1] =
thresholds[max_I_gain_ind_scale, best_scale_feature];
-
- left_child = 2 * (cur_node - 1) + 1 + 1;
- right_child = 2 * (cur_node - 1) + 2 + 1;
-
- # samples going to the left subtree
- Ix_left = X_scale_ext_small[, best_scale_split];
- Ix_left = Ix * Ix_left;
- Ix_right = Ix * (1 - Ix_left);
- L_small[,cur_tree] = L_small[,cur_tree] * (1 - Ix_left) + (Ix_left
* left_child);
- L_small[,cur_tree] = L_small[,cur_tree] * (1 - Ix_right) +
(Ix_right * right_child);
- left_child_size = sum (Ix_left * C_small[,cur_tree]);
- right_child_size = sum (Ix_right * C_small[,cur_tree]);
-
- # check if left or right child is a leaf
- left_pure = FALSE;
- right_pure = FALSE;
- cur_impurity_left =
as.scalar(impurity_left_scale[best_scale_split,]);
- cur_impurity_right =
as.scalar(impurity_right_scale[best_scale_split,]);
- if ( (left_child_size <= num_leaf | cur_impurity_left == 0 |
level_ == depth) &
- (right_child_size <= num_leaf | cur_impurity_right == 0 |
level_ == depth) ) { # both left and right nodes are leaf
-
- cur_label_counts_left =
label_counts_left_scale[best_scale_split,];
- cur_NC[1,(2 * (i8 - 1) + 1)] = left_child;
- cur_NC[2,(2 * (i8 - 1) + 1)] = cur_tree;
- cur_NC[3,(2 * (i8 - 1) + 1)] = as.scalar( rowIndexMax
(cur_label_counts_left)); # leaf class label
- left_pure = TRUE;
- # compute number of misclassified points
- cur_NC[4,(2 * (i8 - 1) + 1)] = left_child_size - max
(cur_label_counts_left);
-
- cur_label_counts_right = label_counts_overall -
cur_label_counts_left;
- cur_NC[1,(2 * i8)] = right_child;
- cur_NC[2,(2 * i8)] = cur_tree;
- cur_NC[3,(2 * i8)] = as.scalar( rowIndexMax
(cur_label_counts_right)); # leaf class label
- right_pure = TRUE;
- # compute number of misclassified points
- cur_NC[4,(2 * i8)] = right_child_size - max
(cur_label_counts_right);
-
- } else if (left_child_size <= num_leaf | cur_impurity_left == 0 |
level_ == depth) {
-
- cur_label_counts_left =
label_counts_left_scale[best_scale_split,];
- cur_NC[1,(2 * (i8 - 1) + 1)] = left_child;
- cur_NC[2,(2 * (i8 - 1) + 1)] = cur_tree;
- cur_NC[3,(2 * (i8 - 1) + 1)] = as.scalar( rowIndexMax
(cur_label_counts_left)); # leaf class label
- left_pure = TRUE;
- # compute number of misclassified points
- cur_NC[4,(2 * (i8 - 1) + 1)] = left_child_size - max
(cur_label_counts_left);
-
- } else if (right_child_size <= num_leaf | cur_impurity_right == 0
| level_ == depth) {
-
- cur_label_counts_right =
label_counts_right_scale[best_scale_split,];
- cur_NC[1,(2 * i8)] = right_child;
- cur_NC[2,(2 * i8)] = cur_tree;
- cur_NC[3,(2 * i8)] = as.scalar( rowIndexMax
(cur_label_counts_right)); # leaf class label
- right_pure = TRUE;
- # compute number of misclassified points
- cur_NC[4,(2 * i8)] = right_child_size - max
(cur_label_counts_right);
- }
- } else if (num_cat_features > 0 & num_cat_feature_samples > 0 &
best_cat_gain > 0) {
-
- # --- update model ---
- cur_F[1,i8] = best_cat_feature;
- cur_F[2,i8] = 2;
- offset_nonzero = as.scalar
(split_values_offset[1,best_cat_feature]);
- S_start_ind = (i8 - 1) * distinct_values_max + 1;
- cur_F[3,i8] = offset_nonzero;
- cur_S[1,S_start_ind:(S_start_ind + offset_nonzero - 1)] =
split_values[1,start_ind:(start_ind + offset_nonzero - 1)];
-
- left_child = 2 * (cur_node - 1) + 1 + 1;
- right_child = 2 * (cur_node - 1) + 2 + 1;
-
- # samples going to the left subtree
- Ix_left = rowSums (X_cat_small[,start_ind:(start_ind + offset -
1)] * best_split_values_bin);
- Ix_left = (Ix_left >= 1);
- Ix_left = Ix * Ix_left;
- Ix_right = Ix * (1 - Ix_left);
- L_small[,cur_tree] = L_small[,cur_tree] * (1 - Ix_left) + (Ix_left
* left_child);
- L_small[,cur_tree] = L_small[,cur_tree] * (1 - Ix_right) +
(Ix_right * right_child);
- left_child_size = sum (Ix_left * C_small[,cur_tree]);
- right_child_size = sum (Ix_right * C_small[,cur_tree]);
-
- # check if left or right child is a leaf
- left_pure = FALSE;
- right_pure = FALSE;
- cur_impurity_left = as.scalar(impurities_left[,best_cat_feature]);
- cur_impurity_right =
as.scalar(impurities_right[,best_cat_feature]);
- if ( (left_child_size <= num_leaf | cur_impurity_left == 0 |
level_ == depth) &
- (right_child_size <= num_leaf | cur_impurity_right == 0 |
level_ == depth) ) { # both left and right nodes are leaf
-
- cur_label_counts_left =
best_label_counts_left[best_cat_feature,];
- cur_NC[1,(2 * (i8 - 1) + 1)] = left_child;
- cur_NC[2,(2 * (i8 - 1) + 1)] = cur_tree;
- cur_NC[3,(2 * (i8 - 1) + 1)] = as.scalar( rowIndexMax
(cur_label_counts_left)); # leaf class label
- left_pure = TRUE;
- # compute number of misclassified points
- cur_NC[4,(2 * (i8 - 1) + 1)] = left_child_size - max
(cur_label_counts_left);
-
- cur_label_counts_right = label_counts_overall -
cur_label_counts_left;
- cur_NC[1,(2 * i8)] = right_child;
- cur_NC[2,(2 * i8)] = cur_tree;
- cur_NC[3,(2 * i8)] = as.scalar( rowIndexMax
(cur_label_counts_right)); # leaf class label
- right_pure = TRUE;
- # compute number of misclassified points
- cur_NC[4,(2 * i8)] = right_child_size - max
(cur_label_counts_right);
-
- } else if (left_child_size <= num_leaf | cur_impurity_left == 0 |
level_ == depth) {
-
- cur_label_counts_left =
best_label_counts_left[best_cat_feature,];
- cur_NC[1,(2 * (i8 - 1) + 1)] = left_child;
- cur_NC[2,(2 * (i8 - 1) + 1)] = cur_tree;
- cur_NC[3,(2 * (i8 - 1) + 1)] = as.scalar( rowIndexMax
(cur_label_counts_left)); # leaf class label
- left_pure = TRUE;
- # compute number of misclassified points
- cur_NC[4,(2 * (i8 - 1) + 1)] = left_child_size - max
(cur_label_counts_left);
-
- } else if (right_child_size <= num_leaf | cur_impurity_right == 0
| level_ == depth) {
- cur_label_counts_right =
best_label_counts_right[best_cat_feature,];
- cur_NC[1,(2 * i8)] = right_child;
- cur_NC[2,(2 * i8)] = cur_tree;
- cur_NC[3,(2 * i8)] = as.scalar( rowIndexMax
(cur_label_counts_right)); # leaf class label
- right_pure = TRUE;
- # compute number of misclassified points
- cur_NC[4,(2 * i8)] = right_child_size - max
(cur_label_counts_right);
- }
- } else {
- print ("NUMBER OF SAMPLES AT NODE " + cur_node + " in tree " +
cur_tree + " CANNOT BE REDUCED TO MATCH " + num_leaf + ". THIS NODE IS DECLARED
AS LEAF!");
- right_pure = TRUE;
- left_pure = TRUE;
- cur_NC[1,(2 * (i8 - 1) + 1)] = cur_node;
- cur_NC[2,(2 * (i8 - 1) + 1)] = cur_tree;
- class_label = as.scalar (rowIndexMax (label_counts_overall));
- cur_NC[3,(2 * (i8 - 1) + 1)] = class_label;
- cur_NC[4,(2 * (i8 - 1) + 1)] = label_sum_overall - max
(label_counts_overall);
- cur_NC[5,(2 * (i8 - 1) + 1)] = 1; # special leaf
- }
-
- # add nodes to Q
- if (!left_pure)
- cur_Q[,(2 * (i8 - 1)+ 1)] = as.matrix(list(left_child,cur_tree));
- if (!right_pure)
- cur_Q[,(2 * i8)] = as.matrix(list(right_child, cur_tree));
- }
-
- cur_Q = removeEmpty (target = cur_Q, margin = "cols");
- Q = cbind (Q, cur_Q);
- NC = cbind (NC, cur_NC);
- F = cbind (F, cur_F);
- S = cbind (S, cur_S);
-
- num_cur_nodes_pre = 2 * num_cur_nodes;
- if (as.scalar (cur_Q[1,1]) == 0) {
- num_cur_nodes = 0;
- } else {
- cur_nodes_ = cur_Q;
- num_cur_nodes = ncol (cur_Q);
- }
- }
-
- cur_Q_small[,start_ind_global:(start_ind_global + ncol (Q) - 1)] = Q;
- cur_NC_small[,start_ind_global:(start_ind_global + ncol (NC) - 1)] = NC;
- cur_F_small[,start_ind_global:(start_ind_global + ncol (F) - 1)] = F;
- cur_S_small[,start_ind_S_global:(start_ind_S_global + ncol (S) - 1)] = S;
- }
-
- ##### PREPARE MODEL FOR SMALL NODES
- if (num_cur_nodes_small > 0) { # small nodes already processed
- cur_Q_small = removeEmpty (target = cur_Q_small, margin = "cols");
- if (as.scalar (cur_Q_small[1,1]) != 0) Q_small = cbind (Q_small,
cur_Q_small);
- cur_NC_small = removeEmpty (target = cur_NC_small, margin = "cols");
- if (as.scalar (cur_NC_small[1,1]) != 0) NC_small = cbind (NC_small,
cur_NC_small);
-
- cur_F_small = removeEmpty (target = cur_F_small, margin = "cols"); #
- if (as.scalar (cur_F_small[1,1]) != 0) F_small = cbind (F_small,
cur_F_small);
- cur_S_small = removeEmpty (target = cur_S_small, margin = "cols"); #
- if (as.scalar (cur_S_small[1,1]) != 0) S_small = cbind (S_small,
cur_S_small);
-
- num_cur_nodes_small = 0; # reset
- }
- print (" --- end level " + level + ", remaining no. of LARGE nodes to
expand " + num_cur_nodes_large + " --- ");
+ # step 3: train decision tree
+ t2 = time();
+ si3 = as.integer(as.scalar(randSeeds[3*(i-1)+3,1]));
+ Mtemp = decisionTree(X=Xi, Y=yi, R=ctypes, depth=max_depth);
+ # TODO add min_leaf=min_leaf, max_features = max_features,
impurity=impurity, seed=si3, verbose=verbose);
+ M[i,1:length(Mtemp)] = matrix(Mtemp, rows=1, cols=length(Mtemp));
+ if( verbose )
+ print("-- ["+i+"] trained decision tree in "+(time()-t2)/1e9+"
seconds.");
}
-
- #### prepare model
- print ("PREPARING MODEL...")
- ### large nodes
- if (as.scalar (Q_large[1,1]) == 0 & ncol (Q_large) > 1)
- Q_large = Q_large[,2:ncol (Q_large)];
- if (as.scalar (NC_large[1,1]) == 0 & ncol (NC_large) > 1)
- NC_large = NC_large[,2:ncol (NC_large)];
- if (as.scalar (S_large[1,1]) == 0 & ncol (S_large) > 1)
- S_large = S_large[,2:ncol (S_large)];
- if (as.scalar (F_large[1,1]) == 0 & ncol (F_large) > 1)
- F_large = F_large[,2:ncol (F_large)];
+ M = cbind(F, M);
- ### small nodes
- if (as.scalar (Q_small[1,1]) == 0 & ncol (Q_small) > 1)
- Q_small = Q_small[,2:ncol (Q_small)];
- if (as.scalar (NC_small[1,1]) == 0 & ncol (NC_small) > 1)
- NC_small = NC_small[,2:ncol (NC_small)];
- if (as.scalar (S_small[1,1]) == 0 & ncol (S_small) > 1)
- S_small = S_small[,2:ncol (S_small)];
- if (as.scalar (F_small[1,1]) == 0 & ncol (F_small) > 1)
- F_small = F_small[,2:ncol (F_small)];
-
- # check for special leaves and if there are any remove them from Q_large and
Q_small
- special_large_leaves_ind = NC_large[5,];
- num_special_large_leaf = sum (special_large_leaves_ind);
- if (num_special_large_leaf > 0) {
- print ("PROCESSING " + num_special_large_leaf + " SPECIAL LARGE
LEAVES...");
- special_large_leaves = removeEmpty (target = NC_large[1:2,] *
special_large_leaves_ind, margin = "cols");
- large_internal_ind = 1 - colSums (outer (t (special_large_leaves[1,]),
Q_large[1,], "==") * outer (t (special_large_leaves[2,]), Q_large[2,], "=="));
- Q_large = removeEmpty (target = Q_large * large_internal_ind, margin =
"cols");
- F_large = removeEmpty (target = F_large, margin = "cols"); # remove
special leaves from F
- }
-
- special_small_leaves_ind = NC_small[5,];
- num_special_small_leaf = sum (special_small_leaves_ind);
- if (num_special_small_leaf > 0) {
- print ("PROCESSING " + num_special_small_leaf + " SPECIAL SMALL
LEAVES...");
- special_small_leaves = removeEmpty (target = NC_small[1:2,] *
special_small_leaves_ind, margin = "cols");
- small_internal_ind = 1 - colSums (outer (t (special_small_leaves[1,]),
Q_small[1,], "==") * outer (t (special_small_leaves[2,]), Q_small[2,], "=="));
- Q_small = removeEmpty (target = Q_small * small_internal_ind, margin =
"cols");
- F_small = removeEmpty (target = F_small, margin = "cols"); # remove
special leaves from F
- }
-
- # model corresponding to large internal nodes
- no_large_internal_node = FALSE;
- if (as.scalar (Q_large[1,1]) != 0) {
- print ("PROCESSING LARGE INTERNAL NODES...");
- num_large_internal = ncol (Q_large);
- max_offset = max (max (F_large[3,]), max (F_small[3,]));
- M1_large = matrix (0, rows = 6 + max_offset, cols = num_large_internal);
- M1_large[1:2,] = Q_large;
- M1_large[4:6,] = F_large;
- # process S_large
- cum_offsets_large = cumsum (t (F_large[3,]));
- parfor (it in 1:num_large_internal, check = 0) {
- start_ind = 1;
- if (it > 1)
- start_ind = start_ind + as.scalar (cum_offsets_large[(it - 1),]);
- offset = as.scalar (F_large[3,it]);
- M1_large[7:(7 + offset - 1),it] = t (S_large[1,start_ind:(start_ind +
offset - 1)]);
- }
- } else {
- print ("No LARGE internal nodes available");
- no_large_internal_node = TRUE;
- }
-
- # model corresponding to small internal nodes
- no_small_internal_node = FALSE;
- if (as.scalar (Q_small[1,1]) != 0) {
- print ("PROCESSING SMALL INTERNAL NODES...");
- num_small_internal = ncol (Q_small);
- M1_small = matrix (0, rows = 6 + max_offset, cols = num_small_internal);
- M1_small[1:2,] = Q_small;
- M1_small[4:6,] = F_small;
- # process S_small
- cum_offsets_small = cumsum (t (F_small[3,]));
- parfor (it in 1:num_small_internal, check = 0) {
- start_ind = 1;
- if (it > 1)
- start_ind = start_ind + as.scalar (cum_offsets_small[(it - 1),]);
- offset = as.scalar (F_small[3,it]);
- M1_small[7:(7 + offset - 1),it] = t (S_small[1,start_ind:(start_ind +
offset - 1)]);
- }
- } else {
- print ("No SMALL internal nodes available");
- no_small_internal_node = TRUE;
- }
-
- # model corresponding to large leaf nodes
- no_large_leaf_node = FALSE;
- if (as.scalar (NC_large[1,1]) != 0) {
- print ("PROCESSING LARGE LEAF NODES...");
- num_large_leaf = ncol (NC_large);
- M2_large = matrix (0, rows = 6 + max_offset, cols = num_large_leaf);
- M2_large[1:2,] = NC_large[1:2,];
- M2_large[5:7,] = NC_large[3:5,];
- } else {
- print ("No LARGE leaf nodes available");
- no_large_leaf_node = TRUE;
- }
-
- # model corresponding to small leaf nodes
- no_small_leaf_node = FALSE;
- if (as.scalar (NC_small[1,1]) != 0) {
- print ("PROCESSING SMALL LEAF NODES...");
- num_small_leaf = ncol (NC_small);
- M2_small = matrix (0, rows = 6 + max_offset, cols = num_small_leaf);
- M2_small[1:2,] = NC_small[1:2,];
- M2_small[5:7,] = NC_small[3:5,];
- } else {
- print ("No SMALL leaf nodes available");
- no_small_leaf_node = TRUE;
- }
-
- if (no_large_internal_node)
- M1 = M1_small;
- else if (no_small_internal_node)
- M1 = M1_large;
- else
- M1 = cbind (M1_large, M1_small);
-
- if (no_large_leaf_node)
- M2 = M2_small;
- else if (no_small_leaf_node)
- M2 = M2_large;
- else
- M2 = cbind (M2_large, M2_small);
-
- M = cbind (M1, M2);
- M = t (order (target = t (M), by = 1)); # sort by node id
- M = t (order (target = t (M), by = 2)); # sort by tree id
-
- # removing redundant subtrees
- if (ncol (M) > 1) {
- print ("CHECKING FOR REDUNDANT SUBTREES...");
- red_leaf = TRUE;
- process_red_subtree = FALSE;
- invalid_node_ind = matrix (0, rows = 1, cols = ncol (M));
- while (red_leaf & ncol (M) > 1) {
- leaf_ind = (M[4,] == 0);
- labels = M[5,] * leaf_ind;
- tree_ids = M[2,];
- parent_ids = floor (M[1,] /2);
- cond1 = (labels[,1:(ncol (M) - 1)] == labels[,2:ncol (M)]); # sibling
leaves with same label
- cond2 = (parent_ids[,1:(ncol (M) - 1)] == parent_ids[,2:ncol (M)]); #
same parents
- cond3 = (tree_ids[,1:(ncol (M) - 1)] == tree_ids[,2:ncol (M)]); # same
tree
- red_leaf_ind = cond1 * cond2 * cond3 * leaf_ind[,2:ncol (M)];
-
- if (sum (red_leaf_ind) > 0) { # if redundant subtrees exist
- red_leaf_ids = M[1:2,2:ncol (M)] * red_leaf_ind;
- red_leaf_ids_nonzero = removeEmpty (target = red_leaf_ids, margin =
"cols");
- parfor (it in 1:ncol (red_leaf_ids_nonzero), check = 0){
- cur_right_leaf_id = as.scalar (red_leaf_ids_nonzero[1,it]);
- cur_parent_id = floor (cur_right_leaf_id / 2);
- cur_tree_id = as.scalar (red_leaf_ids_nonzero[2,it]);
- cur_right_leaf_pos = as.scalar (rowIndexMax ((M[1,] ==
cur_right_leaf_id) * (M[2,] == cur_tree_id)));
- cur_parent_pos = as.scalar(rowIndexMax ((M[1,] == cur_parent_id) *
(M[2,] == cur_tree_id)));
- M[3:nrow (M), cur_parent_pos] = M[3:nrow (M), cur_right_leaf_pos];
- M[4,cur_right_leaf_pos] = -1;
- M[4,cur_right_leaf_pos - 1] = -1;
- invalid_node_ind[1,cur_right_leaf_pos] = 1;
- invalid_node_ind[1,cur_right_leaf_pos - 1] = 1;
- }
- process_red_subtree = TRUE;
- } else {
- red_leaf = FALSE;
- }
- }
-
- if (process_red_subtree) {
- print ("REMOVING REDUNDANT SUBTREES...");
- valid_node_ind = (invalid_node_ind == 0);
- M = removeEmpty (target = M * valid_node_ind, margin = "cols");
- }
- }
-
- internal_ind = (M[4,] > 0);
- internal_ids = M[1:2,] * internal_ind;
- internal_ids_nonzero = removeEmpty (target = internal_ids, margin = "cols");
- if (as.scalar (internal_ids_nonzero[1,1]) > 0) { # if internal nodes exist
- a1 = internal_ids_nonzero[1,];
- a2 = internal_ids_nonzero[1,] * 2;
- vcur_tree_id = internal_ids_nonzero[2,];
- pos_a1 = rowIndexMax( outer(t(a1), M[1,], "==") * outer(t(vcur_tree_id),
M[2,], "==") );
- pos_a2 = rowIndexMax( outer(t(a2), M[1,], "==") * outer(t(vcur_tree_id),
M[2,], "==") );
- M[3,] = t(table(pos_a1, 1, pos_a2 - pos_a1, ncol(M), 1));
- }
- else {
- print ("All trees in the random forest contain only one leaf!");
+ if(verbose) {
+ print("randomForest: trained ensemble with num_trees="+num_trees+" in
"+(time()-t1)/1e9+" seconds.");
}
}
diff --git a/scripts/builtin/slicefinder.dml b/scripts/builtin/slicefinder.dml
index 3005c8c764..0689280c12 100644
--- a/scripts/builtin/slicefinder.dml
+++ b/scripts/builtin/slicefinder.dml
@@ -27,8 +27,8 @@
#
# INPUT:
#
---------------------------------------------------------------------------------------
-# X Recoded dataset into Matrix
-# e Trained model
+# X Feature matrix in recoded/binned representation
+# e Error vector of trained model
# k Number of subsets required
# maxL maximum level L (conjunctions of L predicates), 0 unlimited
# minSup minimum support (min number of rows per slice)
diff --git
a/src/test/java/org/apache/sysds/test/functions/builtin/part2/BuiltinRandomForestTest.java
b/src/test/java/org/apache/sysds/test/functions/builtin/part2/BuiltinRandomForestTest.java
index 1432ca2231..08eae79dff 100644
---
a/src/test/java/org/apache/sysds/test/functions/builtin/part2/BuiltinRandomForestTest.java
+++
b/src/test/java/org/apache/sysds/test/functions/builtin/part2/BuiltinRandomForestTest.java
@@ -19,7 +19,6 @@
package org.apache.sysds.test.functions.builtin.part2;
-import org.junit.Ignore;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
@@ -51,34 +50,29 @@ public class BuiltinRandomForestTest extends
AutomatedTestBase
@Parameterized.Parameter(1)
public int cols;
@Parameterized.Parameter(2)
- public int bins;
- @Parameterized.Parameter(3)
public int depth;
- @Parameterized.Parameter(4)
+ @Parameterized.Parameter(3)
public int num_leaf;
- @Parameterized.Parameter(5)
+ @Parameterized.Parameter(4)
public int num_trees;
- @Parameterized.Parameter(6)
+ @Parameterized.Parameter(5)
public String impurity;
@Parameterized.Parameters
public static Collection<Object[]> data() {
return Arrays.asList(new Object[][] {
- //TODO fix randomForest script (currently indexing
issues)
- {2000, 7, 4, 7, 10, 1, "Gini"},
- {2000, 7, 4, 7, 10, 1, "entropy"},
- {2000, 7, 4, 3, 5, 3, "Gini"},
- {2000, 7, 4, 3, 5, 3, "entropy"},
+ {2000, 7, 7, 10, 1, "gini"},
+ {2000, 7, 7, 10, 1, "entropy"},
+ {1000, 7, 7, 10, 4, "gini"},
+ {1000, 7, 7, 10, 4, "entropy"},
});
}
- @Ignore
@Test
public void testRandomForestSinglenode() {
runRandomForestTest(ExecMode.SINGLE_NODE);
}
- @Ignore
@Test
public void testRandomForestHybrid() {
runRandomForestTest(ExecMode.HYBRID);
@@ -95,7 +89,7 @@ public class BuiltinRandomForestTest extends AutomatedTestBase
String HOME = SCRIPT_DIR + TEST_DIR;
fullDMLScriptName = HOME + TEST_NAME + ".dml";
programArgs = new String[]{"-args",
- input("X"), input("Y"), String.valueOf(bins),
+ input("X"), input("Y"),
String.valueOf(depth), String.valueOf(num_leaf),
String.valueOf(num_trees), impurity,
output("B") };
diff --git a/src/test/scripts/functions/builtin/randomForest.dml
b/src/test/scripts/functions/builtin/randomForest.dml
index e7b2b7120b..092d52f8cb 100644
--- a/src/test/scripts/functions/builtin/randomForest.dml
+++ b/src/test/scripts/functions/builtin/randomForest.dml
@@ -19,16 +19,25 @@
#
#-------------------------------------------------------------
-X = read($1);
+F = as.frame(read($1));
Y = read($2);
-R = matrix(1, rows=ncol(X), cols = 3);
-bins = $3;
-depth = $4;
-num_leafs = $5;
-num_trees = $6;
-impurity = $7;
+depth = $3;
+num_leafs = $4;
+num_trees = $5;
+impurity = $6;
-[M, C, S_map, C_map] = randomForest(X=X, Y=Y, R=R, bins=bins, depth=depth,
- num_leaf=num_leafs, num_trees=num_trees, impurity=impurity);
+jspec = "{ids: true, bin: ["
+ + "{id: 1, method: equi-width, numbins: 10},"
+ + "{id: 2, method: equi-width, numbins: 10},"
+ + "{id: 3, method: equi-width, numbins: 10},"
+ + "{id: 4, method: equi-width, numbins: 10},"
+ + "{id: 5, method: equi-width, numbins: 10},"
+ + "{id: 6, method: equi-width, numbins: 10},"
+ + "{id: 7, method: equi-width, numbins: 10}]}";
+[X,D] = transformencode(target=F, spec=jspec);
-write(M, $8);
+R = matrix(1, rows=1, cols=ncol(X));
+M = randomForest(X=X, y=Y, ctypes=R, num_trees=num_trees, seed=7,
+ max_depth=depth, min_leaf=num_leafs, impurity=impurity, verbose=TRUE);
+
+write(M, $7);