Repository: incubator-systemml
Updated Branches:
  refs/heads/master 9820f4c52 -> 9c19b4771


http://git-wip-us.apache.org/repos/asf/incubator-systemml/blob/9c19b477/src/test/java/org/apache/sysml/test/integration/mlcontext/MLContextTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/sysml/test/integration/mlcontext/MLContextTest.java 
b/src/test/java/org/apache/sysml/test/integration/mlcontext/MLContextTest.java
index c8d3450..78d4968 100644
--- 
a/src/test/java/org/apache/sysml/test/integration/mlcontext/MLContextTest.java
+++ 
b/src/test/java/org/apache/sysml/test/integration/mlcontext/MLContextTest.java
@@ -42,7 +42,6 @@ import java.util.HashMap;
 import java.util.List;
 import java.util.Map;
 
-import org.apache.spark.SparkConf;
 import org.apache.spark.api.java.JavaRDD;
 import org.apache.spark.api.java.JavaSparkContext;
 import org.apache.spark.api.java.function.Function;
@@ -61,13 +60,13 @@ import org.apache.sysml.api.mlcontext.BinaryBlockMatrix;
 import org.apache.sysml.api.mlcontext.MLContext;
 import org.apache.sysml.api.mlcontext.MLContextConversionUtil;
 import org.apache.sysml.api.mlcontext.MLContextException;
+import org.apache.sysml.api.mlcontext.MLContextUtil;
 import org.apache.sysml.api.mlcontext.MLResults;
 import org.apache.sysml.api.mlcontext.MatrixFormat;
 import org.apache.sysml.api.mlcontext.MatrixMetadata;
 import org.apache.sysml.api.mlcontext.Script;
 import org.apache.sysml.api.mlcontext.ScriptExecutor;
 import org.apache.sysml.runtime.controlprogram.caching.MatrixObject;
-import org.apache.sysml.runtime.controlprogram.context.SparkExecutionContext;
 import org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtils;
 import org.apache.sysml.test.integration.AutomatedTestBase;
 import org.junit.After;
@@ -86,18 +85,15 @@ public class MLContextTest extends AutomatedTestBase {
        protected final static String TEST_DIR = 
"org/apache/sysml/api/mlcontext";
        protected final static String TEST_NAME = "MLContext";
 
-       private static SparkConf conf;
+       private static SparkSession spark;
        private static JavaSparkContext sc;
        private static MLContext ml;
 
        @BeforeClass
        public static void setUpClass() {
-               if (conf == null)
-                       conf = SparkExecutionContext.createSystemMLSparkConf()
-                               .setAppName("MLContextTest").setMaster("local");
-               if (sc == null)
-                       sc = new JavaSparkContext(conf);
-               ml = new MLContext(sc);
+               spark = createSystemMLSparkSession("MLContextTest", "local");
+               ml = new MLContext(spark);
+               sc = MLContextUtil.getJavaSparkContext(ml);
        }
 
        @Override
@@ -513,13 +509,12 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new MatrixMetadata(MatrixFormat.DF_DOUBLES);
 
@@ -539,13 +534,12 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new MatrixMetadata(MatrixFormat.DF_DOUBLES);
 
@@ -565,14 +559,13 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new 
MatrixMetadata(MatrixFormat.DF_DOUBLES_WITH_INDEX);
 
@@ -592,14 +585,13 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new 
MatrixMetadata(MatrixFormat.DF_DOUBLES_WITH_INDEX);
 
@@ -619,14 +611,13 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new 
MatrixMetadata(MatrixFormat.DF_DOUBLES_WITH_INDEX);
 
@@ -646,14 +637,13 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new 
MatrixMetadata(MatrixFormat.DF_DOUBLES_WITH_INDEX);
 
@@ -673,12 +663,11 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<Tuple2<Double, Vector>> javaRddTuple = 
sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddTuple.map(new 
DoubleVectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", new VectorUDT(), 
true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new 
MatrixMetadata(MatrixFormat.DF_VECTOR_WITH_INDEX);
 
@@ -698,12 +687,11 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<Tuple2<Double, Vector>> javaRddTuple = 
sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddTuple.map(new 
DoubleVectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", new VectorUDT(), 
true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new 
MatrixMetadata(MatrixFormat.DF_VECTOR_WITH_INDEX);
 
@@ -723,12 +711,11 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<Tuple2<Double, org.apache.spark.mllib.linalg.Vector>> 
javaRddTuple = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddTuple.map(new 
DoubleMllibVectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", new 
org.apache.spark.mllib.linalg.VectorUDT(), true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new 
MatrixMetadata(MatrixFormat.DF_VECTOR_WITH_INDEX);
 
@@ -748,12 +735,11 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<Tuple2<Double, org.apache.spark.mllib.linalg.Vector>> 
javaRddTuple = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddTuple.map(new 
DoubleMllibVectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", new 
org.apache.spark.mllib.linalg.VectorUDT(), true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new 
MatrixMetadata(MatrixFormat.DF_VECTOR_WITH_INDEX);
 
@@ -773,11 +759,10 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<Vector> javaRddVector = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddVector.map(new VectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", new VectorUDT(), 
true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new MatrixMetadata(MatrixFormat.DF_VECTOR);
 
@@ -797,11 +782,10 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<Vector> javaRddVector = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddVector.map(new VectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", new VectorUDT(), 
true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new MatrixMetadata(MatrixFormat.DF_VECTOR);
 
@@ -821,11 +805,10 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<org.apache.spark.mllib.linalg.Vector> javaRddVector = 
sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddVector.map(new 
MllibVectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", new 
org.apache.spark.mllib.linalg.VectorUDT(), true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new MatrixMetadata(MatrixFormat.DF_VECTOR);
 
@@ -845,11 +828,10 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<org.apache.spark.mllib.linalg.Vector> javaRddVector = 
sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddVector.map(new 
MllibVectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", new 
org.apache.spark.mllib.linalg.VectorUDT(), true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new MatrixMetadata(MatrixFormat.DF_VECTOR);
 
@@ -1677,13 +1659,12 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", 
DataTypes.StringType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.StringType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.StringType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                BinaryBlockMatrix binaryBlockMatrix = new 
BinaryBlockMatrix(dataFrame);
                Script script = dml("avg = avg(M);").in("M", 
binaryBlockMatrix).out("avg");
@@ -1702,13 +1683,12 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", 
DataTypes.StringType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.StringType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.StringType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                BinaryBlockMatrix binaryBlockMatrix = new 
BinaryBlockMatrix(dataFrame);
                Script script = pydml("avg = avg(M)").in("M", 
binaryBlockMatrix).out("avg");
@@ -1971,13 +1951,12 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new MatrixMetadata(3, 3, 9);
 
@@ -1997,13 +1976,12 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                MatrixMetadata mm = new MatrixMetadata(3, 3, 9);
 
@@ -2187,13 +2165,12 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                Script script = dml("print('sum: ' + sum(M));").in("M", 
dataFrame);
                setExpectedStdOut("sum: 27.0");
@@ -2211,13 +2188,12 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                Script script = pydml("print('sum: ' + sum(M))").in("M", 
dataFrame);
                setExpectedStdOut("sum: 27.0");
@@ -2235,14 +2211,13 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                Script script = dml("print('sum: ' + sum(M));").in("M", 
dataFrame);
                setExpectedStdOut("sum: 27.0");
@@ -2260,14 +2235,13 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<String> javaRddString = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddString.map(new 
CommaSeparatedValueStringToDoubleArrayRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C2", 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C3", 
DataTypes.DoubleType, true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                Script script = pydml("print('sum: ' + sum(M))").in("M", 
dataFrame);
                setExpectedStdOut("sum: 27.0");
@@ -2285,12 +2259,11 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<Tuple2<Double, Vector>> javaRddTuple = 
sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddTuple.map(new 
DoubleVectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", new VectorUDT(), 
true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                Script script = dml("print('sum: ' + sum(M));").in("M", 
dataFrame);
                setExpectedStdOut("sum: 45.0");
@@ -2308,12 +2281,11 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<Tuple2<Double, Vector>> javaRddTuple = 
sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddTuple.map(new 
DoubleVectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                
fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, 
DataTypes.DoubleType, true));
                fields.add(DataTypes.createStructField("C1", new VectorUDT(), 
true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                Script script = dml("print('sum: ' + sum(M))").in("M", 
dataFrame);
                setExpectedStdOut("sum: 45.0");
@@ -2331,11 +2303,10 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<Vector> javaRddVector = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddVector.map(new VectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", new VectorUDT(), 
true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                Script script = dml("print('sum: ' + sum(M));").in("M", 
dataFrame);
                setExpectedStdOut("sum: 45.0");
@@ -2353,11 +2324,10 @@ public class MLContextTest extends AutomatedTestBase {
                JavaRDD<Vector> javaRddVector = sc.parallelize(list);
 
                JavaRDD<Row> javaRddRow = javaRddVector.map(new VectorRow());
-               SparkSession sparkSession = 
SparkSession.builder().sparkContext(sc.sc()).getOrCreate();
                List<StructField> fields = new ArrayList<StructField>();
                fields.add(DataTypes.createStructField("C1", new VectorUDT(), 
true));
                StructType schema = DataTypes.createStructType(fields);
-               Dataset<Row> dataFrame = 
sparkSession.createDataFrame(javaRddRow, schema);
+               Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, 
schema);
 
                Script script = dml("print('sum: ' + sum(M))").in("M", 
dataFrame);
                setExpectedStdOut("sum: 45.0");
@@ -2800,11 +2770,11 @@ public class MLContextTest extends AutomatedTestBase {
 
        @AfterClass
        public static void tearDownClass() {
-               // stop spark context to allow single jvm tests (otherwise the
+               // stop underlying spark context to allow single jvm tests 
(otherwise the
                // next test that tries to create a SparkContext would fail)
-               sc.stop();
+               spark.stop();
                sc = null;
-               conf = null;
+               spark = null;
 
                // clear status mlcontext and spark exec context
                ml.close();

Reply via email to