Modified: incubator/systemml/site/get-started.html
URL: 
http://svn.apache.org/viewvc/incubator/systemml/site/get-started.html?rev=1795636&r1=1795635&r2=1795636&view=diff
==============================================================================
--- incubator/systemml/site/get-started.html (original)
+++ incubator/systemml/site/get-started.html Fri May 19 21:48:49 2017
@@ -155,243 +155,60 @@
   </div>
 </section> -->
 
-<!-- Overview-->
-<section class="full-stripe clear-header">
+<!-- Install SystemML -->
+<section class="full-stripe full-stripe--alternate">
   <div class="ml-container ml-container--vertically-centered 
ml-container--reverse-order">
     <div class="col col-6 content-group content-group--more-padding">
       <img src="/assets/img/robotTutorialSm.png" alt="What is Apache 
SystemML?">
     </div>
-    <div class="col col-6 content-group content-group--more-padding">
-      <h2>SystemML Beginner Tutorial</h2>
+    <div class="col col-6 content-group content-group--more-padding 
button-group">
+      <h2>Install SystemML</h2>
       <h4><strong>Level:</strong> Beginner &nbsp; | &nbsp; 
<strong>Time:</strong> 20 minutes</h4><br>
-      <p><bdi>How to set up and run Apache SystemML locally.</bdi></p>
+      <p>New to Apache SystemML? Try our guick install guide that will walk 
you through setting up your environment and getting you up and going with 
SystemML.</p>
       <a class="button button-secondary" 
href="https://apache.github.io/incubator-systemml"; target="_blank">Docs</a>
+      <a class="button button-primary" href="install-systemml.html">Install 
SystemML</a>
     </div>
   </div>
-</section>
-
-<!-- Tutorial Instructions -->
-<section class="full-stripe full-stripe--alternate">
-
-  <!-- Section 1 -->
-  <div class="ml-container content-group content-group--tutorial border">
-    <!-- Section Header -->
-    <div class="col col-12 content-group--medium-bottom-margin">
-      <h2>Assumptions</h2>
-      <p>If you haven’t run Apache SystemML before, make sure to set up your 
environment first.</p>
-    </div>
-
-    <!-- Step 1 Instructions -->
-    <div class="col col-12">
-      <h3><span class="circle">1</span>Install Homebrew</h3>
+  <!-- Sample Notebooks -->
+  <h2 class="text-center">Sample Notebooks</h2>
+  <div class="flex-container">
+    <div class="nb-card">
+        <h3>SystemML LinearRegCG</h3>
+        <p>SystemML Linear Regression in Zeppelin Notebook.</p>
+        <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/zeppelin-notebooks/SystemML_LinearRegCG.json";
 target="_blank"><span class="icon zeppelin-logo"></span><span>View on 
Github</span></a>
+    </div>
+    <div class="nb-card">
+        <h3>Deep Learning Image Classification</h3>
+        <p>This notebook shows SystemML Deep Learning functionality to map 
images of single digit numbers to their corresponding numeric 
representations.</p>
+        <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/jupyter-notebooks/Deep_Learning_Image_Classification.ipynb";
 target="_blank"><span class="icon jupyter-logo"></span><span>View on 
Github</span></a>
+    </div>
+    <div class="nb-card">
+        <h3>Linear Regression Algorithms Demo</h3>
+        <p>This notebook shows: Install SystemML Python package and jar file, 
pip, SystemML 'Hello World'.</p>
+        <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/jupyter-notebooks/Linear_Regression_Algorithms_Demo.ipynb";
 target="_blank"><span class="icon jupyter-logo"></span><span>View on 
Github</span></a>
+    </div>
+    <div class="nb-card">
+        <h3>SystemML PySpark Recommendation Demo</h3>
+        <p>This demonstrates using SystemML for product recommendation using 
Poisson NonNegative Matrix Factorization (PNMF) with PNMF algorithm written 
using R like syntax.</p>
+        <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/jupyter-notebooks/SystemML-PySpark-Recommendation-Demo.ipynb";
 target="_blank"><span class="icon jupyter-logo"></span><span>View on 
Github</span></a>
+    </div>
+    <div class="nb-card">
+        <h3>SystemML Scala Tutorial</h3>
+        <p>This tutorial includes simple example to run DML script and display 
output.</p>
+        <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/jupyter-notebooks/tutorial1.ipynb";
 target="_blank"><span class="icon jupyter-logo"></span><span>View on 
Github</span></a>
+    </div>
+    <div class="nb-card">
+        <h3>Autoencoder</h3>
+        <p>This notebook demonstrates the invocation of the SystemML 
autoencoder script, and alternative ways of passing in/out data.</p>
+        <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/jupyter-notebooks/Autoencoder.ipynb";
 target="_blank"><span class="icon jupyter-logo"></span><span>View on 
Github</span></a>
+    </div>
+    <div class="nb-card">
+        <h3>SystemML Zeppelin Tutorial</h3>
+        <p>SystemML Zeppelin tutorial.</p>
+        <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/zeppelin-notebooks/tutorial1_zeppelin.json";
 target="_blank"><span class="icon zeppelin-logo"></span><span>View on 
Github</span></a>
     </div>
 
-    <!-- Step 1 Code -->
-    <div class="col col-12">
-
-
-      <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash">/usr/bin/ruby -e <span class="s2">"</span><span 
class="k">$(</span>curl -fsSL 
https://raw.githubusercontent.com/Homebrew/install/master/install<span 
class="k">)</span><span class="s2">"</span>
-<span class="c"># Linux</span>
-ruby -e <span class="s2">"</span><span class="k">$(</span>curl -fsSL 
https://raw.githubusercontent.com/Linuxbrew/install/master/install<span 
class="k">)</span><span class="s2">"</span></code></pre></figure>
-
-    </div>
-
-    <!-- Step 2 Instructions -->
-    <div class="col col-12">
-      <h3><span class="circle">2</span>Install Java</h3>
-    </div>
-
-    <!-- Step 2 Code -->
-    <div class="col col-12">
-      <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash">brew tap caskroom/cask
-brew install Caskroom/cask/java
-
-brew install python
-pip install jupyter matplotlib numpy</code></pre></figure>
-    </div>
   </div>
-
-  <!-- Section 2 -->
-  <div class="ml-container content-group content-group--tutorial border">
-    <!-- Section Header -->
-    <div class="col col-12 content-group--medium-bottom-margin">
-      <h2>Downloads</h2>
-      <p>Download Apache Spark and Apache SystemML.</p>
-    </div>
-
-    <!-- Step 3 Instructions -->
-    <div class="col col-12">
-      <h3><span class="circle">3</span>Download and Install Apache Spark</h3>
-    </div>
-
-    <!-- Step 3 Code -->
-    <div class="col col-12">
-      <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash">brew tap homebrew/versions
-brew install apache-spark</code></pre></figure>
-
-    <p> Alternatively, you can <a 
href="http://spark.apache.org/downloads.html";>download Apache Spark</a> 
directly. </p>
-    </div>
-
-    <!-- Step 4 Instructions -->
-    <div class="col col-12">
-      <h3><span class="circle">4</span>Download and Install Apache 
SystemML</h3>
-    </div>
-
-    <!-- Step 4 Code -->
-    <div class="col col-12">
-
-       <p>
-       If you are a python user, we recommend that you download and install 
Apache SystemML via pip:
-       </p>
-      <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash"><span class="c"># Python 2</span>
-pip install systemml
-<span class="c"># Bleeding edge: pip install 
git+git://github.com/apache/incubator-systemml.git#subdirectory=src/main/python</span></code></pre></figure>
-
-      <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash"><span class="c"># Python 3:</span>
-pip3 install systemml
-<span class="c"># Bleeding edge: pip3 install 
git+git://github.com/apache/incubator-systemml.git#subdirectory=src/main/python</span></code></pre></figure>
-
-
-
-       <p>
-       Alternatively, if you intend to use SystemML via spark-shell (or 
spark-submit), you only need systemml-0.14.0-incubating.jar, which is packaged 
into our official binary release (<a 
href="http://www.apache.org/dyn/closer.lua/incubator/systemml/0.14.0-incubating/systemml-0.14.0-incubating-bin.zip";
 target="_blank">systemml-0.14.0-incubating-bin.zip</a>).
-       Note: If you have installed SystemML via pip, you can get the location 
of this jar by executing following command:
-       </p>
-      <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash">python -c <span class="s1">'import imp; import os; print 
os.path.join(imp.find_module("systemml")[1], 
"systemml-java")'</span></code></pre></figure>
-
-       <p>
-       Note - For Spark 1.6 users only, include a version specifier to 
download and install compatible Apache SystemML via pip:
-       </p>
-      <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash"><span class="c"># For Spark 1.6 users with Python 2:</span>
-pip install <span class="s2">"systemml&lt;0.13.0"</span></code></pre></figure>
-
-    </div>
-
-    <!-- Section 3 -->
-    <div class="ml-container content-group content-group--tutorial">
-      <!-- Section Header -->
-      <div class="col col-12 content-group--medium-bottom-margin">
-        <h2>Ways to Use</h2>
-        <p>You can use SystemML in one of the following ways:</p>
-       <ol>
-               <li>On Cluster (using our programmatic APIs):
-                       <ul>
-                               <li>Using pyspark: Please see our <a 
href="http://apache.github.io/incubator-systemml/beginners-guide-python";>beginner's
 guide for python users</a>.</li>
-                               <li>Using Jupyter: Described below in step 
5.</li>
-                               <li>Using spark-shell: Described below in step 
6.</li>
-                       </ul>
-               </li>
-
-               <li>On Cluster (command-line batch mode):
-                       <ul>
-                               <li>Using spark-submit: Please see our <a 
href="http://apache.github.io/incubator-systemml/spark-batch-mode";>spark batch 
mode tutorial</a>.</li>
-                               <li>Using hadoop: Please see our <a 
href="http://apache.github.io/incubator-systemml/hadoop-batch-mode";>hadoop 
batch model tutorial</a>.</li>
-                       </ul>
-               </li>
-
-               <li>On laptop (command-line batch mode) without installing 
Spark or Hadoop: Please see our <a 
href="http://apache.github.io/incubator-systemml/standalone-guide";>standalone 
mode tutorial</a>.</li>
-
-               <li>In-memory mode (as part of another Java application for 
scoring): Please see our <a 
href="http://apache.github.io/incubator-systemml/jmlc";>JMLC tutorial</a>.</li>
-       </ol>
-
-       <p>
-       Note that you can also run pyspark, spark-shell, spark-submit on you 
laptop using "--master local[*]" parameter.
-       </p>
-      </div>
-
-      <!-- Step 5 Instructions -->
-      <div class="col col-12">
-        <h3><span class="circle">5</span>In Jupyter Notebook</h3>
-      </div>
-
-      <!-- Step 5 Code -->
-      <div class="col col-12">
-        <h4>Get Started</h4>
-        <p>Start up your Jupyter notebook by moving to the folder where you 
saved the notebook. Then copy and paste the line below:</p>
-        <figure class="highlight"><pre><code class="language-python" 
data-lang="python"><span class="c"># Python 2:</span>
-<span class="n">PYSPARK_DRIVER_PYTHON</span><span class="o">=</span><span 
class="n">jupyter</span> <span class="n">PYSPARK_DRIVER_PYTHON_OPTS</span><span 
class="o">=</span><span class="s">"notebook"</span> <span 
class="n">pyspark</span> <span class="o">--</span><span class="n">master</span> 
<span class="n">local</span><span class="p">[</span><span 
class="o">*</span><span class="p">]</span> <span class="o">--</span><span 
class="n">driver</span><span class="o">-</span><span 
class="n">class</span><span class="o">-</span><span class="n">path</span> <span 
class="n">SystemML</span><span class="o">.</span><span class="n">jar</span> 
<span class="o">--</span><span class="n">jars</span> <span 
class="n">SystemML</span><span class="o">.</span><span 
class="n">jar</span><span class="o">--</span><span class="n">conf</span> <span 
class="s">"spark.driver.memory=12g"</span> <span class="o">--</span><span 
class="n">conf</span> <span class="n">spark</span><span class="o">.</span><span 
class="n">driver<
 /span><span class="o">.</span><span class="n">maxResultSize</span><span 
class="o">=</span><span class="mi">0</span> <span class="o">--</span><span 
class="n">conf</span> <span class="n">spark</span><span class="o">.</span><span 
class="n">akka</span><span class="o">.</span><span 
class="n">frameSize</span><span class="o">=</span><span class="mi">128</span> 
<span class="o">--</span><span class="n">conf</span> <span 
class="n">spark</span><span class="o">.</span><span 
class="n">default</span><span class="o">.</span><span 
class="n">parallelism</span><span class="o">=</span><span 
class="mi">100</span></code></pre></figure>
-        <figure class="highlight"><pre><code class="language-python" 
data-lang="python"><span class="c"># Python 3:</span>
-<span class="n">PYSPARK_PYTHON</span><span class="o">=</span><span 
class="n">python3</span> <span class="n">PYSPARK_DRIVER_PYTHON</span><span 
class="o">=</span><span class="n">jupyter</span> <span 
class="n">PYSPARK_DRIVER_PYTHON_OPTS</span><span class="o">=</span><span 
class="s">"notebook"</span> <span class="n">pyspark</span> <span 
class="o">--</span><span class="n">master</span> <span 
class="n">local</span><span class="p">[</span><span class="o">*</span><span 
class="p">]</span> <span class="o">--</span><span class="n">driver</span><span 
class="o">-</span><span class="n">class</span><span class="o">-</span><span 
class="n">path</span> <span class="n">SystemML</span><span 
class="o">.</span><span class="n">jar</span> <span class="o">--</span><span 
class="n">jars</span> <span class="n">SystemML</span><span 
class="o">.</span><span class="n">jar</span> <span class="o">--</span><span 
class="n">conf</span> <span class="s">"spark.driver.memory=12g"</span> <span 
class="o">--</span><span clas
 s="n">conf</span> <span class="n">spark</span><span class="o">.</span><span 
class="n">driver</span><span class="o">.</span><span 
class="n">maxResultSize</span><span class="o">=</span><span class="mi">0</span> 
<span class="o">--</span><span class="n">conf</span> <span 
class="n">spark</span><span class="o">.</span><span class="n">akka</span><span 
class="o">.</span><span class="n">frameSize</span><span class="o">=</span><span 
class="mi">128</span> <span class="o">--</span><span class="n">conf</span> 
<span class="n">spark</span><span class="o">.</span><span 
class="n">default</span><span class="o">.</span><span 
class="n">parallelism</span><span class="o">=</span><span 
class="mi">100</span></code></pre></figure>
-
-      </div>
-
-      <!-- Step 6 Instructions -->
-      <div class="col col-12">
-        <h3><span class="circle">6</span>To Run SystemML in the Spark 
Shell</h3>
-      </div>
-
-      <!-- Step 6 Code -->
-      <div class="col col-12">
-        <h4>Start Spark Shell with SystemML</h4>
-        <p> To use SystemML with Spark Shell, the SystemML jar can be 
referenced using Spark Shell’s --jars option. Start the Spark Shell with 
SystemML with the following line of code in your terminal:</p>
-        <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash">spark-shell --executor-memory 4G --driver-memory 4G --jars 
SystemML.jar</code></pre></figure>
-        <!-- <pre><code>spark-shell --executor-memory 4G --driver-memory 4G 
--jars SystemML.jar</code></pre> -->
-        <h4>Create the MLContext</h4>
-        <p>To begin, start an MLContext by typing the code below. Once 
successful, you should see a “Welcome to Apache SystemML!” message.</p>
-        <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash">import org.apache.sysml.api.mlcontext._
-import org.apache.sysml.api.mlcontext.ScriptFactory._
-val ml <span class="o">=</span> new MLContext<span class="o">(</span>sc<span 
class="o">)</span></code></pre></figure>
-
-        <h4>Hello World</h4>
-        <p>The ScriptFactory class allows DML and PYDML scripts to be created 
from Strings, Files, URLs, and InputStreams. Here, we’ll use the dmlmethod to 
create a DML “hello world” script based on a String.  We execute the script 
using MLContext’s execute method, which displays “hello world” to the 
console. The execute method returns an MLResults object, which contains no 
results since the script has no outputs.</p>
-        <figure class="highlight"><pre><code class="language-python" 
data-lang="python"><span class="n">val</span> <span 
class="n">helloScript</span> <span class="o">=</span> <span 
class="n">dml</span><span class="p">(</span><span class="s">"print('hello 
world')"</span><span class="p">)</span>
-<span class="n">ml</span><span class="o">.</span><span 
class="n">execute</span><span class="p">(</span><span 
class="n">helloScript</span><span class="p">)</span></code></pre></figure>
-        <h4>DataFrame Example</h4>
-        <p>As an example of how to use SystemML, we’ll first use Spark to 
create a DataFrame called df of random doubles from 0 to 1 consisting of 10,000 
rows and 1,000 columns.</p>
-        <figure class="highlight"><pre><code class="language-python" 
data-lang="python"><span class="kn">import</span> <span 
class="nn">org.apache.spark.sql._</span>
-<span class="kn">import</span> <span 
class="nn">org.apache.spark.sql.types.</span><span class="p">{</span><span 
class="n">StructType</span><span class="p">,</span><span 
class="n">StructField</span><span class="p">,</span><span 
class="n">DoubleType</span><span class="p">}</span>
-<span class="kn">import</span> <span class="nn">scala.util.Random</span>
-<span class="n">val</span> <span class="n">numRows</span> <span 
class="o">=</span> <span class="mi">10000</span>
-<span class="n">val</span> <span class="n">numCols</span> <span 
class="o">=</span> <span class="mi">1000</span>
-<span class="n">val</span> <span class="n">data</span> <span 
class="o">=</span> <span class="n">sc</span><span class="o">.</span><span 
class="n">parallelize</span><span class="p">(</span><span class="mi">0</span> 
<span class="n">to</span> <span class="n">numRows</span><span 
class="o">-</span><span class="mi">1</span><span class="p">)</span><span 
class="o">.</span><span class="nb">map</span> <span class="p">{</span> <span 
class="n">_</span> <span class="o">=&gt;</span> <span class="n">Row</span><span 
class="o">.</span><span class="n">fromSeq</span><span class="p">(</span><span 
class="n">Seq</span><span class="o">.</span><span class="n">fill</span><span 
class="p">(</span><span class="n">numCols</span><span class="p">)(</span><span 
class="n">Random</span><span class="o">.</span><span 
class="n">nextDouble</span><span class="p">))</span> <span class="p">}</span>
-<span class="n">val</span> <span class="n">schema</span> <span 
class="o">=</span> <span class="n">StructType</span><span 
class="p">((</span><span class="mi">0</span> <span class="n">to</span> <span 
class="n">numCols</span><span class="o">-</span><span class="mi">1</span><span 
class="p">)</span><span class="o">.</span><span class="nb">map</span> <span 
class="p">{</span> <span class="n">i</span> <span class="o">=&gt;</span> <span 
class="n">StructField</span><span class="p">(</span><span class="s">"C"</span> 
<span class="o">+</span> <span class="n">i</span><span class="p">,</span> <span 
class="n">DoubleType</span><span class="p">,</span> <span 
class="n">true</span><span class="p">)</span> <span class="p">}</span> <span 
class="p">)</span>
-<span class="n">val</span> <span class="n">df</span> <span class="o">=</span> 
<span class="n">sqlContext</span><span class="o">.</span><span 
class="n">createDataFrame</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="n">schema</span><span class="p">)</span></code></pre></figure>
-
-        <p>We’ll create a DML script using the ScriptFactory dml method to 
find the minimum, maximum, and mean values in a matrix. This script has one 
input variable, matrix Xin, and three output variables, minOut, maxOut, and 
meanOut.
-For performance, we’ll specify metadata indicating that the matrix has 
10,000 rows and 1,000 columns.
-We execute the script and obtain the results as a Tuple by calling getTuple on 
the results, specifying the types and names of the output variables.</p>
-        <figure class="highlight"><pre><code class="language-python" 
data-lang="python"><span class="n">val</span> <span class="n">minMaxMean</span> 
<span class="o">=</span>
-<span class="s">"""
-minOut = min(Xin)
-maxOut = max(Xin)
-meanOut = mean(Xin)
-"""</span>
-<span class="n">val</span> <span class="n">mm</span> <span class="o">=</span> 
<span class="n">new</span> <span class="n">MatrixMetadata</span><span 
class="p">(</span><span class="n">numRows</span><span class="p">,</span> <span 
class="n">numCols</span><span class="p">)</span>
-<span class="n">val</span> <span class="n">minMaxMeanScript</span> <span 
class="o">=</span> <span class="n">dml</span><span class="p">(</span><span 
class="n">minMaxMean</span><span class="p">)</span><span 
class="o">.</span><span class="ow">in</span><span class="p">(</span><span 
class="s">"Xin"</span><span class="p">,</span> <span class="n">df</span><span 
class="p">,</span> <span class="n">mm</span><span class="p">)</span><span 
class="o">.</span><span class="n">out</span><span class="p">(</span><span 
class="s">"minOut"</span><span class="p">,</span> <span 
class="s">"maxOut"</span><span class="p">,</span> <span 
class="s">"meanOut"</span><span class="p">)</span>
-<span class="n">val</span> <span class="p">(</span><span 
class="nb">min</span><span class="p">,</span> <span class="nb">max</span><span 
class="p">,</span> <span class="n">mean</span><span class="p">)</span> <span 
class="o">=</span> <span class="n">ml</span><span class="o">.</span><span 
class="n">execute</span><span class="p">(</span><span 
class="n">minMaxMeanScript</span><span class="p">)</span><span 
class="o">.</span><span class="n">getTuple</span><span class="p">[</span><span 
class="n">Double</span><span class="p">,</span> <span 
class="n">Double</span><span class="p">,</span> <span 
class="n">Double</span><span class="p">](</span><span 
class="s">"minOut"</span><span class="p">,</span> <span 
class="s">"maxOut"</span><span class="p">,</span> <span 
class="s">"meanOut"</span><span class="p">)</span></code></pre></figure>
-        <p>Many different types of input and output variables are 
automatically allowed. These types include Boolean, Long, Double, String, 
Array[Array[Double]], RDD<String> and JavaRDD<String> in CSV (dense) and IJV 
(sparse) formats, DataFrame, BinaryBlockMatrix,Matrix, and Frame. RDDs and 
JavaRDDs are assumed to be CSV format unless MatrixMetadata is supplied 
indicating IJV format.</p>
-        <h4>RDD Example:</h4>
-        <p>Let’s take a look at an example of input matrices as RDDs in CSV 
format. We’ll create two 2x2 matrices and input these into a DML script. This 
script will sum each matrix and create a message based on which sum is greater. 
We will output the sums and the message.</p>
-        <figure class="highlight"><pre><code class="language-python" 
data-lang="python"><span class="n">val</span> <span class="n">rdd1</span> <span 
class="o">=</span> <span class="n">sc</span><span class="o">.</span><span 
class="n">parallelize</span><span class="p">(</span><span 
class="n">Array</span><span class="p">(</span><span 
class="s">"1.0,2.0"</span><span class="p">,</span> <span 
class="s">"3.0,4.0"</span><span class="p">))</span>
-<span class="n">val</span> <span class="n">rdd2</span> <span 
class="o">=</span> <span class="n">sc</span><span class="o">.</span><span 
class="n">parallelize</span><span class="p">(</span><span 
class="n">Array</span><span class="p">(</span><span 
class="s">"5.0,6.0"</span><span class="p">,</span> <span 
class="s">"7.0,8.0"</span><span class="p">))</span>
-<span class="n">val</span> <span class="n">sums</span> <span 
class="o">=</span> <span class="s">"""
-s1 = sum(m1);
-s2 = sum(m2);
-if (s1 &gt; s2) {
-message = "s1 is greater"
-} else if (s2 &gt; s1) {
-message = "s2 is greater"
-} else {
-message = "s1 and s2 are equal"
-}
-"""</span>
-<span class="n">scala</span><span class="o">.</span><span 
class="n">tools</span><span class="o">.</span><span class="n">nsc</span><span 
class="o">.</span><span class="n">io</span><span class="o">.</span><span 
class="n">File</span><span class="p">(</span><span 
class="s">"sums.dml"</span><span class="p">)</span><span 
class="o">.</span><span class="n">writeAll</span><span class="p">(</span><span 
class="n">sums</span><span class="p">)</span>
-<span class="n">val</span> <span class="n">sumScript</span> <span 
class="o">=</span> <span class="n">dmlFromFile</span><span 
class="p">(</span><span class="s">"sums.dml"</span><span 
class="p">)</span><span class="o">.</span><span class="ow">in</span><span 
class="p">(</span><span class="n">Map</span><span class="p">(</span><span 
class="s">"m1"</span><span class="o">-&gt;</span> <span 
class="n">rdd1</span><span class="p">,</span> <span class="s">"m2"</span><span 
class="o">-&gt;</span> <span class="n">rdd2</span><span 
class="p">))</span><span class="o">.</span><span class="n">out</span><span 
class="p">(</span><span class="s">"s1"</span><span class="p">,</span> <span 
class="s">"s2"</span><span class="p">,</span> <span 
class="s">"message"</span><span class="p">)</span>
-<span class="n">val</span> <span class="n">sumResults</span> <span 
class="o">=</span> <span class="n">ml</span><span class="o">.</span><span 
class="n">execute</span><span class="p">(</span><span 
class="n">sumScript</span><span class="p">)</span>
-<span class="n">val</span> <span class="n">s1</span> <span class="o">=</span> 
<span class="n">sumResults</span><span class="o">.</span><span 
class="n">getDouble</span><span class="p">(</span><span 
class="s">"s1"</span><span class="p">)</span>
-<span class="n">val</span> <span class="n">s2</span> <span class="o">=</span> 
<span class="n">sumResults</span><span class="o">.</span><span 
class="n">getDouble</span><span class="p">(</span><span 
class="s">"s2"</span><span class="p">)</span>
-<span class="n">val</span> <span class="n">message</span> <span 
class="o">=</span> <span class="n">sumResults</span><span 
class="o">.</span><span class="n">getString</span><span class="p">(</span><span 
class="s">"message"</span><span class="p">)</span>
-<span class="n">val</span> <span class="n">rdd1Metadata</span> <span 
class="o">=</span> <span class="n">new</span> <span 
class="n">MatrixMetadata</span><span class="p">(</span><span 
class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span 
class="p">)</span>
-<span class="n">val</span> <span class="n">rdd2Metadata</span> <span 
class="o">=</span> <span class="n">new</span> <span 
class="n">MatrixMetadata</span><span class="p">(</span><span 
class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span 
class="p">)</span>
-<span class="n">val</span> <span class="n">sumScript</span> <span 
class="o">=</span> <span class="n">dmlFromFile</span><span 
class="p">(</span><span class="s">"sums.dml"</span><span 
class="p">)</span><span class="o">.</span><span class="ow">in</span><span 
class="p">(</span><span class="n">Seq</span><span class="p">((</span><span 
class="s">"m1"</span><span class="p">,</span> <span class="n">rdd1</span><span 
class="p">,</span> <span class="n">rdd1Metadata</span><span class="p">),</span> 
<span class="p">(</span><span class="s">"m2"</span><span class="p">,</span> 
<span class="n">rdd2</span><span class="p">,</span> <span 
class="n">rdd2Metadata</span><span class="p">)))</span><span 
class="o">.</span><span class="n">out</span><span class="p">(</span><span 
class="s">"s1"</span><span class="p">,</span> <span class="s">"s2"</span><span 
class="p">,</span> <span class="s">"message"</span><span class="p">)</span>
-<span class="n">val</span> <span class="p">(</span><span 
class="n">firstSum</span><span class="p">,</span> <span 
class="n">secondSum</span><span class="p">,</span> <span 
class="n">sumMessage</span><span class="p">)</span> <span class="o">=</span> 
<span class="n">ml</span><span class="o">.</span><span 
class="n">execute</span><span class="p">(</span><span 
class="n">sumScript</span><span class="p">)</span><span class="o">.</span><span 
class="n">getTuple</span><span class="p">[</span><span 
class="n">Double</span><span class="p">,</span> <span 
class="n">Double</span><span class="p">,</span> <span 
class="n">String</span><span class="p">](</span><span 
class="s">"s1"</span><span class="p">,</span> <span class="s">"s2"</span><span 
class="p">,</span> <span class="s">"message"</span><span 
class="p">)</span></code></pre></figure>
-      <p>Congratulations! You’ve now run examples in Apache SystemML!</p>
-    </div>
-  </div>
-
-
-
-
 </section>
 
 </div>

Modified: incubator/systemml/site/index.html
URL: 
http://svn.apache.org/viewvc/incubator/systemml/site/index.html?rev=1795636&r1=1795635&r2=1795636&view=diff
==============================================================================
--- incubator/systemml/site/index.html (original)
+++ incubator/systemml/site/index.html Fri May 19 21:48:49 2017
@@ -175,7 +175,7 @@
 <!-- About -->
 <section class="full-stripe">
   <div class="ml-container ml-container--vertically-top 
ml-container--reverse-order">
-    <div class="col col-6 content-group content-group--more-padding">
+    <div class="col col-6 content-group">
       <!--<img src="/assets/img/diagramAnim-v4.gif" alt="What is Apache 
SystemML?">-->
       <div class="video-wrapper">
         <iframe src="https://www.youtube.com/embed/r-kFYkYoD_4"; 
frameborder="0" allowfullscreen></iframe>
@@ -184,14 +184,12 @@
     <div class="col col-6 content-group content-group--more-padding">
       <!-- bdi tag prevents reverse punctuation when rtl direction property is 
applied -->
       <h2><bdi>What is SystemML?</bdi></h2>
-      <p><bdi>Apache SystemML provides declarative, large-scalable machine 
learning and deep learning. Data scientists are able to implement algorithms 
and neural network architectures in a high-level language without knowledge of 
distributed programming or Apache Spark. Depending on data characteristics such 
as data size/shape and data sparsity (dense/sparse), and cluster 
characteristics such as cluster size and memory configurations, SystemML's 
cost-based optimizing compiler automatically generates hybrid runtime execution 
plans that are composed of single-node and distributed operations on a Apache 
Spark cluster for best performance.</bdi></p>
-
-      <p><bdi>Very soon, additional deep learning capabilities will allow for 
importing and running popular neural network architectures and pre-trained 
models from Caffe for training and scoring in SystemML.</bdi></p>
+      <p>Apache SystemML provides an optimal workplace for machine learning 
using big data. It can be run on top of Apache Spark, where it automatically 
scales your data, line by line, determining whether your code should be run on 
the driver or an Apache Spark cluster. Future SystemML developments include 
additional deep learning with GPU capabilities such as importing and running 
neural network architectures and pre-trained models for training.</p>
     </div>
   </div>
 </section>
 
-<!-- Beginner Tutorial -->
+<!-- BGet Started -->
 <section class="full-stripe full-stripe--alternate">
   <div class="ml-container ml-container--vertically-centered">
     <div class="col col-6 content-group content-group--more-padding">
@@ -200,24 +198,27 @@
     <div class="col col-6 content-group content-group--more-padding 
button-group">
       <h2>Get Started</h2>
       <p>New to Apache SystemML? Try our Get Started tutorial that will walk 
you through setting up your environment and getting you up and going with 
SystemML.</p>
-      <a class="button button-primary" href="get-started.html">Begin 
Tutorial</a>
+      <a class="button button-primary" href="install-systemml.html">Install 
SystemML</a>
       <a class="button button-secondary" href="documentation.html" 
target="_blank">Docs</a>
     </div>
   </div>
+
+  <h4 class="text-center"><a href="get-started.html">View Sample 
Notebooks</a></h4>
+
 </section>
 
 <!-- Contact Us -->
 <section class="full-stripe">
   <div class="ml-container ml-container--horizontally-center">
     <div class="col col-12 content-group ">
-      <h2>Subscribe to Our Mailing Lists</h2>
-      <p>Subscribe to our development mailing list for SystemML updates and 
news. Once subscribed, <a href="mailto:[email protected]";>join 
the conversation</a>.
-      As SystemML grows, so will our community. Check out <a 
href="community.html#mailing-list">All Mailing Lists</a>.
+      <h2>Contribute</h2>
+      <p>Contribute to Apache SystemML<sup>TM</sup> by subscribing to our 
developer mailing list for updates and news. Check out <a 
href="community.html#mailing-list">All Mailing Lists</a>.
       </p>
     </div>
     <div class="col col-12 content-group button-group">
       <a href="mailto:[email protected]?subject=send 
this email to subscribe" class="button button-primary">Subscribe</a>
       <a 
href="http://mail-archives.apache.org/mod_mbox/incubator-systemml-dev/"; 
target="_blank" class="button button-secondary">View Archive</a>
+      <a href="https://systemml.apache.org/roadmap"; target="_blank" 
class="button button-secondary">Roadmap</a>
     </div>
   </div>
 </section>

Added: incubator/systemml/site/install-systemml.html
URL: 
http://svn.apache.org/viewvc/incubator/systemml/site/install-systemml.html?rev=1795636&view=auto
==============================================================================
--- incubator/systemml/site/install-systemml.html (added)
+++ incubator/systemml/site/install-systemml.html Fri May 19 21:48:49 2017
@@ -0,0 +1,325 @@
+<!--
+
+-->
+<!--
+
+-->
+<!DOCTYPE html>
+<html lang="en">
+  <!--
+
+-->
+<head>
+  <meta charset="utf-8">
+  <meta http-equiv="X-UA-Compatible" content="IE=edge">
+
+  <title>Get Started</title>
+  
+  <meta name="description" content="Get-Started Page">
+  
+  <meta name="author" content="Apache SystemML">
+
+  <!-- Enable responsive viewport -->
+  <meta name="HandheldFriendly" content="True">
+  <meta name="viewport" content="width=device-width, initial-scale=1.0">
+
+  <!-- You can use Open Graph tags to customize link previews.
+  Learn more: https://developers.facebook.com/docs/sharing/webmasters -->
+  <meta property="og:url"           content="https://systemml.apache.org/"; />
+  <meta property="og:type"          content="website" />
+  <meta property="og:title"         content="Get Started" />
+  <meta property="og:description"   content="Apache SystemML provides an 
optimal workplace for Machine Learning using big data" />
+  <meta property="og:image"         content="" />
+
+  <!-- Le HTML5 shim, for IE6-8 support of HTML elements -->
+  <!--[if lt IE 9]>
+    <script src="http://html5shim.googlecode.com/svn/trunk/html5.js";></script>
+  <![endif]-->
+
+  <!-- Le styles -->
+  <link rel="stylesheet" href="/assets/css/main.css">
+
+  <!-- favicons -->
+  <link rel="shortcut icon" href="/assets/img/favicon.png">
+</head>
+ <!-- META -->
+  <body class="vcard">
+    <!--
+
+-->
+<header class="site-header site-header--not-home">
+  <h1 class="logo"><a class="url" href="/"><i class="logo-mark"></i><span 
class="fn org">Apache SystemML<sup id="trademark">&trade;</sup></span></a></h1>
+  <nav class="main-nav">
+    <ul>
+      
+      <li role="presentation">
+        
+        
+        <a href="/download" target="_self">Download</a>
+        
+      </li>
+      
+      <li role="presentation">
+        
+        
+        <a href="/get-started" target="_self">Get Started</a>
+        
+      </li>
+      
+      <li role="presentation">
+        
+        
+        <a href="/documentation" target="_self">Docs</a>
+        
+      </li>
+      
+      <li role="presentation">
+        
+        
+        <a href="/roadmap" target="_self">Roadmap</a>
+        
+      </li>
+      
+      <li role="presentation">
+        
+        <a class="nav-link--hover">Community <i class="icon 
icon-chevron-down"></i></a>
+        <ul>
+          
+          
+          <li><a href="/community" target="_self">Get Involved</a></li>
+          
+          
+          <li><a href="https://issues.apache.org/jira/browse/SYSTEMML"; 
target="_blank">Issue Tracker</a></li>
+          
+          
+          <li><a href="https://github.com/apache/incubator-systemml"; 
target="_blank">Source Code</a></li>
+          
+          
+          <li><a href="https://github.com/apache/incubator-systemml-website"; 
target="_blank">Website Source Code</a></li>
+          
+          
+          <li><a href="/roadmap" target="_self">Roadmap</a></li>
+          
+        </ul>
+        
+      </li>
+      
+      <li role="presentation">
+        
+        <a class="nav-link--hover">Apache <i class="icon 
icon-chevron-down"></i></a>
+        <ul>
+          
+          
+          <li><a href="http://www.apache.org/foundation/how-it-works.html"; 
target="_blank">Apache Software Foundation</a></li>
+          
+          
+          <li><a href="http://www.apache.org/licenses/"; target="_blank">Apache 
License</a></li>
+          
+          
+          <li><a href="http://www.apache.org/foundation/sponsorship"; 
target="_blank">Sponsorship</a></li>
+          
+          
+          <li><a href="http://www.apache.org/foundation/thanks.html"; 
target="_blank">Thanks</a></li>
+          
+          
+          <li><a href="/privacy-policy" target="_self">Privacy Policy</a></li>
+          
+          
+          <li><a href="/security" target="_self">Security</a></li>
+          
+        </ul>
+        
+      </li>
+      
+    </ul>
+  </nav>
+</header>
+ <!-- GLOBAL HEADER -->
+    <!--
+
+-->
+<!--
+
+-->
+<div>
+  <!--
+
+-->
+
+<!-- Hero  -->
+<!-- <section class="full-stripe full-stripe--subpage-header clear-header">
+  <div class="ml-container ml-container--horizontally-center">
+    <div class="col col-12 content-group">
+      <h1>Tutorials</h1>
+    </div>
+  </div>
+</section> -->
+
+
+<!-- Tutorial Instructions -->
+<section class="full-stripe full-stripe--alternate">
+
+  <!-- Section 1 -->
+  <div class="ml-container content-group content-group--tutorial border">
+    <!-- Section Header -->
+    <div class="col col-12 content-group--medium-bottom-margin">
+      <h2>Install SystemML</h2>
+    </div>
+
+    <!-- Step 1 Instructions -->
+    <div class="col col-12">
+      <h3><span class="circle">1</span>Pre-requisite</h3>
+    </div>
+
+    <!-- Step 1 Code -->
+    <div class="col col-12">
+
+      <p class="indent">Apache Spark 2.x</p>
+      <p class="indent">Set SPARK_HOME to a location where Spark 2.x has 
installed.</p>
+
+    </div>
+
+    <!-- Step 2 Instructions -->
+    <div class="col col-12">
+      <h3><span class="circle">2</span>Setup</h3>
+    </div>
+
+    <!-- Step 2 Code -->
+    <ul class="ml-tabs">
+               <li class="tab-link current" data-tab="tab-1">Python</li>
+               <li class="tab-link" data-tab="tab-2">Scala</li>
+               <li class="tab-link" data-tab="tab-3">Dev Python (Latest 
code)</li>
+               <li class="tab-link" data-tab="tab-4">Dev Scala (Latest 
code)</li>
+       </ul>
+
+       <div id="tab-1" class="col col-12 tab-content current">
+                 <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash">      <span class="c"># Install SystemML</span>
+      pip install systemml
+      </code></pre></figure>
+    </code>
+       </div>
+       <div id="tab-2" class="col col-12 tab-content">
+    <pre>Download and extract SystemML jar 
(systemml-0.14.0-incubating-SNAPSHOT.jar) file from 
systemml-0.14.0-incubating-bin.tgz or systemml-0.14.0-incubating-bin.tgz file 
located on <a 
href="https://dist.apache.org/repos/dist/release/incubator/systemml/0.14.0-incubating/";>https://dist.apache.org/repos/dist/release/incubator/systemml/0.14.0-incubating/</a></pre>
+       </div>
+       <div id="tab-3" class="col col-12 tab-content">
+    <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash"><span class="c"># Install latest SystemML</span>
+pip install 
https://sparktc.ibmcloud.com/repo/latest/systemml-1.0.0-incubating-SNAPSHOT-python.tgz</code></pre></figure>
+       </div>
+       <div id="tab-4" class="col col-12 tab-content">
+               <pre>Download SystemML jar 
(systemml-1.0.0-incubating-SNAPSHOT.jar) from <a 
href="https://sparktc.ibmcloud.com/repo/latest/";>https://sparktc.ibmcloud.com/repo/latest/</a></pre>
+       </div>
+
+  <!-- Step 3 Instructions -->
+  <div class="col col-12">
+    <h3><span class="circle">3</span>Configure Jupyter Notebook (optional)</h3>
+  </div>
+
+    <!-- Step 3 Code -->
+    <div class="col col-12">
+      <h4 class="indent">3.1 Toree Kernel Setup (Required for Scala 
Kernel)</h4>
+      <p class="indent">Toree installation</p>
+      <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash"><span class="c"># For detail instructions visit 
https://github.com/apache/incubator-toree</span>
+pip install 
https://dist.apache.org/repos/dist/dev/incubator/toree/0.2.0/snapshots/dev1/toree-pip/toree-0.2.0.dev1.tar.gz</code></pre></figure>
+
+    <p class="indent">Installation of Toree component in Jupyter</p>
+    <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash"><span class="c"># For detail instructions visit  
https://toree.apache.org/docs/current/user/installation/</span>
+jupyter toree install —-replace —-interpreters<span 
class="o">=</span>Scala,PySpark --spark_opts<span class="o">=</span><span 
class="s2">"--master=local --jars &lt;SystemML JAR File&gt;” 
--spark_home=</span><span class="k">${</span><span 
class="nv">SPARK_HOME</span><span class="k">}</span></code></pre></figure>
+    <h4 class="indent">3.2 Start Jupyter Notebook Server</h4>
+    <figure class="highlight"><pre><code class="language-bash" 
data-lang="bash"><span class="nv">PYSPARK_DRIVER_PYTHON</span><span 
class="o">=</span>jupyter <span 
class="nv">PYSPARK_DRIVER_PYTHON_OPTS</span><span class="o">=</span><span 
class="s2">"notebook"</span> pyspark --master <span 
class="nb">local</span><span class="o">[</span><span class="k">*</span><span 
class="o">]</span> --conf <span class="s2">"spark.driver.memory=12g"</span> 
--conf spark.driver.maxResultSize<span class="o">=</span>0 --conf 
spark.akka.frameSize<span class="o">=</span>128 --conf 
spark.default.parallelism<span class="o">=</span>100</code></pre></figure>
+    <p>This will a default browser with contents from current directory where 
above command has run.
+You can create your own notebook example or download sample notebooks from 
SystemML resository <a 
href="https://github.com/apache/incubator-systemml/tree/master/samples/jupyter-notebooks";>https://github.com/apache/incubator-systemml/tree/master/samples/jupyter-notebooks</a></p>
+    <figure class="img-border"><img 
src="/assets/img/systemml-juypter-install.jpeg" alt="Start Jupyter Notebook 
Server"></figure>
+    <figure class="img-border"><img 
src="/assets/img/systemml-juypter-install-2.jpeg" alt="Start Jupyter Notebook 
Server"></figure>
+    </div>
+
+    <!-- Step 4 Instructions -->
+    <div class="col col-12">
+      <h3><span class="circle">4</span>Run SystemML in batch mode</h3>
+    </div>
+
+    <!-- Step 4 Code -->
+    <div class="col col-12">
+
+       <prev>Download systemml-0.14.0-incubating-bin.tgz or 
systemml-0.14.0-incubating-bin.tgz file located on <a 
href="https://dist.apache.org/repos/dist/release/incubator/systemml/0.14.0-incubating/";>https://dist.apache.org/repos/dist/release/incubator/systemml/0.14.0-incubating/</a>
  and extract into a directory say SYSTEMML_HOME
+Once you extract zip.tgz file you will have files required to run steps 
outlined in instructions link: <a 
href="http://apache.github.io/incubator-systemml/spark-batch-mode";>http://apache.github.io/incubator-systemml/spark-batch-mode</a></pre>
+
+    </div>
+  </div>
+
+  <h4 class="text-center"><a href="get-started.html">View Sample 
Notebooks</a></h4>
+
+    <h2 class="text-center">Sample Notebooks</h2>
+    <div class="flex-container">
+      <div class="nb-card">
+          <h3>SystemML LinearRegCG</h3>
+          <p>SystemML Linear Regression in Zeppelin Notebook.</p>
+          <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/zeppelin-notebooks/SystemML_LinearRegCG.json";
 target="_blank"><span class="icon zeppelin-logo"></span><span>View on 
Github</span></a>
+      </div>
+      <div class="nb-card">
+          <h3>Deep Learning Image Classification</h3>
+          <p>This notebook shows SystemML Deep Learning functionality to map 
images of single digit numbers to their corresponding numeric 
representations.</p>
+          <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/jupyter-notebooks/Deep_Learning_Image_Classification.ipynb";
 target="_blank"><span class="icon jupyter-logo"></span><span>View on 
Github</span></a>
+      </div>
+      <div class="nb-card">
+          <h3>Linear Regression Algorithms Demo</h3>
+          <p>This notebook shows: Install SystemML Python package and jar 
file, pip, SystemML 'Hello World'.</p>
+          <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/jupyter-notebooks/Linear_Regression_Algorithms_Demo.ipynb";
 target="_blank"><span class="icon jupyter-logo"></span><span>View on 
Github</span></a>
+      </div>
+      <div class="nb-card">
+          <h3>SystemML PySpark Recommendation Demo</h3>
+          <p>This demonstrates using SystemML for product recommendation using 
Poisson NonNegative Matrix Factorization (PNMF) with PNMF algorithm written 
using R like syntax.</p>
+          <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/jupyter-notebooks/SystemML-PySpark-Recommendation-Demo.ipynb";
 target="_blank"><span class="icon jupyter-logo"></span><span>View on 
Github</span></a>
+      </div>
+      <div class="nb-card">
+          <h3>SystemML Scala Tutorial</h3>
+          <p>This tutorial includes simple example to run DML script and 
display output.</p>
+          <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/jupyter-notebooks/tutorial1.ipynb";
 target="_blank"><span class="icon jupyter-logo"></span><span>View on 
Github</span></a>
+      </div>
+      <div class="nb-card">
+          <h3>Autoencoder</h3>
+          <p>This notebook demonstrates the invocation of the SystemML 
autoencoder script, and alternative ways of passing in/out data.</p>
+          <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/jupyter-notebooks/Autoencoder.ipynb";
 target="_blank"><span class="icon jupyter-logo"></span><span>View on 
Github</span></a>
+      </div>
+      <div class="nb-card">
+          <h3>SystemML Zeppelin Tutorial</h3>
+          <p>SystemML Zeppelin tutorial.</p>
+          <a class="nb-link" 
href="https://github.com/apache/incubator-systemml/blob/master/samples/zeppelin-notebooks/tutorial1_zeppelin.json";
 target="_blank"><span class="icon zeppelin-logo"></span><span>View on 
Github</span></a>
+      </div>
+
+    </div>
+
+</section>
+
+</div>
+
+ 
+    <!--
+
+-->
+<footer class="site-footer">
+  <div class="ml-container">
+    <div class="footer-col-wrapper">
+      <div style="margin-top: 20px; margin-bottom: 20px;">
+        <a href="http://incubator.apache.org";><img width="350px;" 
src="/assets/img/apache-foundation-logo.svg" alt="Apache Incubator"/></a>
+      </div>
+      <div>
+        <p>Copyright &copy; 2015-2017 <a href="http://www.apache.org";>The 
Apache Software Foundation</a>. Licensed under the <a 
href="http://www.apache.org/licenses/LICENSE-2.0";>Apache License, Version 
2.0</a>. Apache and the Apache Feather logo are trademarks of The Apache 
Software Foundation.</p>
+      </div>
+    </div>
+  </div>
+  <script>
+  (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
+  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new 
Date();a=s.createElement(o),
+  
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
+  })(window,document,'script','//www.google-analytics.com/analytics.js','ga');
+
+  ga('create', 'UA-71553733-1', 'auto');
+  ga('send', 'pageview');
+</script>
+
+</footer>
+ <!-- GLOBAL FOOTER-->
+    <script src="assets/js/bundle.min.js"></script>
+  </body>
+</html>
+


Reply via email to