Repository: systemml
Updated Branches:
  refs/heads/master 202f658c2 -> 7cc70b669


[MINOR] Remove deprecated ppred from JMLC test scripts


Project: http://git-wip-us.apache.org/repos/asf/systemml/repo
Commit: http://git-wip-us.apache.org/repos/asf/systemml/commit/7cc70b66
Tree: http://git-wip-us.apache.org/repos/asf/systemml/tree/7cc70b66
Diff: http://git-wip-us.apache.org/repos/asf/systemml/diff/7cc70b66

Branch: refs/heads/master
Commit: 7cc70b669868d6da292829025232062d08a33537
Parents: 202f658
Author: Deron Eriksson <[email protected]>
Authored: Fri Jun 23 13:48:24 2017 -0700
Committer: Deron Eriksson <[email protected]>
Committed: Fri Jun 23 13:48:24 2017 -0700

----------------------------------------------------------------------
 .../functions/jmlc/FrameDecodeTest.java         |  5 ++---
 .../functions/jmlc/FrameIndexingAppendTest.java |  5 ++---
 .../functions/jmlc/reuse-glm-predict.dml        | 22 ++++++++++----------
 .../functions/jmlc/reuse-msvm-predict.dml       |  2 +-
 4 files changed, 16 insertions(+), 18 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/systemml/blob/7cc70b66/src/test/java/org/apache/sysml/test/integration/functions/jmlc/FrameDecodeTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/sysml/test/integration/functions/jmlc/FrameDecodeTest.java
 
b/src/test/java/org/apache/sysml/test/integration/functions/jmlc/FrameDecodeTest.java
index 07da75f..59ac69d 100644
--- 
a/src/test/java/org/apache/sysml/test/integration/functions/jmlc/FrameDecodeTest.java
+++ 
b/src/test/java/org/apache/sysml/test/integration/functions/jmlc/FrameDecodeTest.java
@@ -23,9 +23,6 @@ import java.io.IOException;
 import java.util.ArrayList;
 import java.util.HashMap;
 
-import org.junit.Assert;
-import org.junit.Test;
-import org.apache.sysml.api.DMLException;
 import org.apache.sysml.api.jmlc.Connection;
 import org.apache.sysml.api.jmlc.PreparedScript;
 import org.apache.sysml.api.jmlc.ResultVariables;
@@ -34,6 +31,8 @@ import org.apache.sysml.runtime.io.IOUtilFunctions;
 import org.apache.sysml.test.integration.AutomatedTestBase;
 import org.apache.sysml.test.integration.TestConfiguration;
 import org.apache.sysml.test.utils.TestUtils;
+import org.junit.Assert;
+import org.junit.Test;
 
 public class FrameDecodeTest extends AutomatedTestBase 
 {

http://git-wip-us.apache.org/repos/asf/systemml/blob/7cc70b66/src/test/java/org/apache/sysml/test/integration/functions/jmlc/FrameIndexingAppendTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/sysml/test/integration/functions/jmlc/FrameIndexingAppendTest.java
 
b/src/test/java/org/apache/sysml/test/integration/functions/jmlc/FrameIndexingAppendTest.java
index 441f447..1e62af9 100644
--- 
a/src/test/java/org/apache/sysml/test/integration/functions/jmlc/FrameIndexingAppendTest.java
+++ 
b/src/test/java/org/apache/sysml/test/integration/functions/jmlc/FrameIndexingAppendTest.java
@@ -23,9 +23,6 @@ import java.io.IOException;
 import java.util.ArrayList;
 import java.util.HashMap;
 
-import org.junit.Assert;
-import org.junit.Test;
-import org.apache.sysml.api.DMLException;
 import org.apache.sysml.api.jmlc.Connection;
 import org.apache.sysml.api.jmlc.PreparedScript;
 import org.apache.sysml.api.jmlc.ResultVariables;
@@ -34,6 +31,8 @@ import org.apache.sysml.runtime.io.IOUtilFunctions;
 import org.apache.sysml.test.integration.AutomatedTestBase;
 import org.apache.sysml.test.integration.TestConfiguration;
 import org.apache.sysml.test.utils.TestUtils;
+import org.junit.Assert;
+import org.junit.Test;
 
 public class FrameIndexingAppendTest extends AutomatedTestBase 
 {

http://git-wip-us.apache.org/repos/asf/systemml/blob/7cc70b66/src/test/scripts/functions/jmlc/reuse-glm-predict.dml
----------------------------------------------------------------------
diff --git a/src/test/scripts/functions/jmlc/reuse-glm-predict.dml 
b/src/test/scripts/functions/jmlc/reuse-glm-predict.dml
index 5a0dc43..f50d399 100644
--- a/src/test/scripts/functions/jmlc/reuse-glm-predict.dml
+++ b/src/test/scripts/functions/jmlc/reuse-glm-predict.dml
@@ -111,7 +111,7 @@ if (fileY != " ")
     # POWER DISTRIBUTIONS (GAUSSIAN, POISSON, GAMMA, ETC.)
     #
         if (link_power == 0.0) {
-            is_zero_Y = ppred (Y, 0.0, "==");
+            is_zero_Y = (Y == 0.0);
             lt_saturated = log (Y + is_zero_Y) - is_zero_Y / (1.0 - is_zero_Y);
         } else {
             lt_saturated = Y ^ link_power;
@@ -137,7 +137,7 @@ if (fileY != " ")
             num_categories = ncol (beta) + 1;
             if (min (Y) <= 0) { 
                 # Category labels "0", "-1" etc. are converted into the 
baseline label
-                Y = Y + (- Y + num_categories) * ppred (Y, 0, "<=");
+                Y = Y + (- Y + num_categories) * (Y <= 0);
             }
             Y_size = min (num_categories, max(Y));
             Y_unsized = table (seq (1, num_records, 1), Y);
@@ -149,8 +149,8 @@ if (fileY != " ")
         }
         
         P = means;
-        zero_Y = ppred (Y, 0.0, "==");
-        zero_P = ppred (P, 0.0, "==");
+        zero_Y = (Y == 0.0);
+        zero_P = (P == 0.0);
         ones_ctg = matrix (1, rows = ncol(Y), cols = 1);
         
         logl_vec = rowSums (Y *  log (P + zero_Y)   );
@@ -163,8 +163,8 @@ if (fileY != " ")
         means = means * (Y_counts %*% t(ones_ctg));
         vars  = vars  * (Y_counts %*% t(ones_ctg));
         
-        frac_below_5 = sum (ppred (means, 5, "<")) / (nrow (means) * ncol 
(means));
-        frac_below_1 = sum (ppred (means, 1, "<")) / (nrow (means) * ncol 
(means));
+        frac_below_5 = sum (means < 5) / (nrow (means) * ncol (means));
+        frac_below_1 = sum (means < 1) / (nrow (means) * ncol (means));
         
         if (frac_below_5 > 0.2 | frac_below_1 > 0.0) {
             print ("WARNING: residual statistics are inaccurate here due to 
low cell means.");
@@ -312,7 +312,7 @@ glm_means_and_vars =
             y_prob [, 1]  = elt / (1.0 + elt);
             y_prob [, 2]  = 1.0 / (1.0 + elt);
         } else { if (link_type == 3)                      { # Binomial.probit
-            sign_lt = 2 * ppred (linear_terms, 0.0, ">=") - 1;
+            sign_lt = 2 * (linear_terms >= 0.0) - 1;
             t_gp = 1.0 / (1.0 + abs (linear_terms) * 0.231641888);  # 
0.231641888 = 0.3275911 / sqrt (2.0)
             erf_corr =
                 t_gp * ( 0.254829592 
@@ -325,7 +325,7 @@ glm_means_and_vars =
             y_prob = y_prob / 2;
         } else { if (link_type == 4)                      { # Binomial.cloglog
             elt = exp (linear_terms);
-            is_too_small = ppred (10000000 + elt, 10000000, "==");
+            is_too_small = ((10000000 + elt) == 10000000);
             y_prob [, 2] = exp (- elt);
             y_prob [, 1] = (1 - is_too_small) * (1.0 - y_prob [, 2]) + 
is_too_small * elt * (1.0 - elt / 2);
         } else { if (link_type == 5)                      { # Binomial.cauchit
@@ -356,15 +356,15 @@ glm_partial_loglikelihood_for_power_dist_and_link =   # 
Assumes: dist_type == 1
     num_records = nrow (Y);
     if (var_power == 1.0) { # Poisson
         if (link_power == 0.0)  { # Poisson.log
-            is_natural_parameter_log_zero = ppred (linear_terms, -1.0/0.0, 
"==");
+            is_natural_parameter_log_zero = (linear_terms == (-1.0/0.0));
             natural_parameters = replace (target = linear_terms, pattern = 
-1.0/0.0, replacement = 0);
             b_cumulant = exp (linear_terms);
         } else {                  # Poisson.power_nonlog
-            is_natural_parameter_log_zero = ppred (linear_terms, 0.0, "==");
+            is_natural_parameter_log_zero = (linear_terms == 0.0);
             natural_parameters = log (linear_terms + 
is_natural_parameter_log_zero) / link_power;
             b_cumulant = (linear_terms + is_natural_parameter_log_zero) ^ (1.0 
/ link_power) - is_natural_parameter_log_zero;
         }
-        is_minus_infinity = ppred (Y, 0, ">") * is_natural_parameter_log_zero;
+        is_minus_infinity = (Y > 0) * is_natural_parameter_log_zero;
         log_l_part = Y * natural_parameters - b_cumulant - is_minus_infinity / 
(1 - is_minus_infinity);
     } else {
         if (var_power == 2.0 & link_power == 0.0)  { # Gamma.log

http://git-wip-us.apache.org/repos/asf/systemml/blob/7cc70b66/src/test/scripts/functions/jmlc/reuse-msvm-predict.dml
----------------------------------------------------------------------
diff --git a/src/test/scripts/functions/jmlc/reuse-msvm-predict.dml 
b/src/test/scripts/functions/jmlc/reuse-msvm-predict.dml
index 026b88b..56dac69 100644
--- a/src/test/scripts/functions/jmlc/reuse-msvm-predict.dml
+++ b/src/test/scripts/functions/jmlc/reuse-msvm-predict.dml
@@ -56,7 +56,7 @@ if(cmdLine_Y != " "){
        if(min(y) < 1)
                stop("Stopping due to invalid argument: Label vector (Y) must 
be recoded")
        
-       correct_percentage = sum(ppred(predicted_y - y, 0, "==")) / N * 100;
+       correct_percentage = sum((predicted_y - y) == 0) / N * 100;
        
        acc_str = "Accuracy (%): " + correct_percentage
        print(acc_str)

Reply via email to