http://git-wip-us.apache.org/repos/asf/systemml/blob/98595c52/src/test/scripts/functions/codegen/Algorithm_GLM.R
----------------------------------------------------------------------
diff --git a/src/test/scripts/functions/codegen/Algorithm_GLM.R 
b/src/test/scripts/functions/codegen/Algorithm_GLM.R
deleted file mode 100644
index a1fd302..0000000
--- a/src/test/scripts/functions/codegen/Algorithm_GLM.R
+++ /dev/null
@@ -1,1081 +0,0 @@
-#-------------------------------------------------------------
-#
-# Licensed to the Apache Software Foundation (ASF) under one
-# or more contributor license agreements.  See the NOTICE file
-# distributed with this work for additional information
-# regarding copyright ownership.  The ASF licenses this file
-# to you under the Apache License, Version 2.0 (the
-# "License"); you may not use this file except in compliance
-# with the License.  You may obtain a copy of the License at
-# 
-#   http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing,
-# software distributed under the License is distributed on an
-# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-# KIND, either express or implied.  See the License for the
-# specific language governing permissions and limitations
-# under the License.
-#
-#-------------------------------------------------------------
-
-args <- commandArgs(TRUE)
-library("Matrix")
-
-
-
-
-check_if_supported <- 
-    function (ncol_y, dist_type, var_power, link_type, link_power)
-{
-    is_supported = 0;
-    if (ncol_y == 1 & dist_type == 1 & link_type == 1)
-    { # POWER DISTRIBUTION
-        is_supported = 1;
-        if (var_power == 0.0 & link_power == -1.0) {print 
("Gaussian.inverse");      } else {
-        if (var_power == 0.0 & link_power ==  0.0) {print ("Gaussian.log");    
      } else {
-        if (var_power == 0.0 & link_power ==  0.5) {print ("Gaussian.sqrt");   
      } else {
-        if (var_power == 0.0 & link_power ==  1.0) {print ("Gaussian.id");     
      } else {
-        if (var_power == 0.0                     ) {print 
("Gaussian.power_nonlog"); } else {
-        if (var_power == 1.0 & link_power == -1.0) {print ("Poisson.inverse"); 
      } else {
-        if (var_power == 1.0 & link_power ==  0.0) {print ("Poisson.log");     
      } else {
-        if (var_power == 1.0 & link_power ==  0.5) {print ("Poisson.sqrt");    
      } else {
-        if (var_power == 1.0 & link_power ==  1.0) {print ("Poisson.id");      
      } else {
-        if (var_power == 1.0                     ) {print 
("Poisson.power_nonlog");  } else {
-        if (var_power == 2.0 & link_power == -1.0) {print ("Gamma.inverse");   
      } else {
-        if (var_power == 2.0 & link_power ==  0.0) {print ("Gamma.log");       
      } else {
-        if (var_power == 2.0 & link_power ==  0.5) {print ("Gamma.sqrt");      
      } else {
-        if (var_power == 2.0 & link_power ==  1.0) {print ("Gamma.id");        
      } else {
-        if (var_power == 2.0                     ) {print 
("Gamma.power_nonlog");    } else {
-        if (var_power == 3.0 & link_power == -2.0) {print 
("InvGaussian.1/mu^2");    } else {
-        if (var_power == 3.0 & link_power == -1.0) {print 
("InvGaussian.inverse");   } else {
-        if (var_power == 3.0 & link_power ==  0.0) {print ("InvGaussian.log"); 
      } else {
-        if (var_power == 3.0 & link_power ==  0.5) {print 
("InvGaussian.sqrt");      } else {
-        if (var_power == 3.0 & link_power ==  1.0) {print ("InvGaussian.id");  
      } else {
-        if (var_power == 3.0                     ) {print 
("InvGaussian.power_nonlog");}else{
-        if (                   link_power ==  0.0) {print ("PowerDist.log");   
      } else {
-                                                    print 
("PowerDist.power_nonlog");
-    }   }}}}} }}}}} }}}}} }}}}} }}
-    if (ncol_y == 1 & dist_type == 2)
-    {
-        print ("Error: Bernoulli response matrix has not been converted into 
two-column format.");
-    }
-    if (ncol_y == 2 & dist_type == 2 & link_type >= 1 & link_type <= 5)
-    { # BINOMIAL/BERNOULLI DISTRIBUTION
-        is_supported = 1;
-        if (link_type == 1 & link_power == -1.0) {print ("Binomial.inverse");  
      } else {
-        if (link_type == 1 & link_power ==  0.0) {print ("Binomial.log");      
      } else {
-        if (link_type == 1 & link_power ==  0.5) {print ("Binomial.sqrt");     
      } else {
-        if (link_type == 1 & link_power ==  1.0) {print ("Binomial.id");       
      } else {
-        if (link_type == 1)                      {print 
("Binomial.power_nonlog");   } else {
-        if (link_type == 2)                      {print ("Binomial.logit");    
      } else {
-        if (link_type == 3)                      {print ("Binomial.probit");   
      } else {
-        if (link_type == 4)                      {print ("Binomial.cloglog");  
      } else {
-        if (link_type == 5)                      {print ("Binomial.cauchit");  
      }
-    }   }}}}} }}}
-    if (is_supported == 0) {
-        print ("Response matrix with " + ncol_y + " columns, distribution 
family (" + dist_type + ", " + var_power
-             + ") and link family (" + link_type + ", " + link_power + ") are 
NOT supported together.");
-    }
-    
-    return (is_supported)
-}
-
-glm_initialize <- function (X, Y, dist_type, var_power, link_type, link_power, 
icept_status, max_iter_CG)
-{
-    saturated_log_l = 0.0;
-    isNaN = 0;
-    y_corr = Y [, 1];
-    if (dist_type == 2) {
-        n_corr = rowSums (Y);
-        is_n_zero = (n_corr == 0.0);
-        y_corr = Y [, 1] / (n_corr + is_n_zero) + (0.5 - Y [, 1]) * is_n_zero; 
   
-    }
-    linear_terms = y_corr;
-    if (dist_type == 1 & link_type == 1) { # POWER DISTRIBUTION
-        if          (link_power ==  0.0) {
-            if (sum (y_corr < 0.0) == 0) {
-                is_zero_y_corr = (y_corr == 0.0);
-                linear_terms = log (y_corr + is_zero_y_corr) - is_zero_y_corr 
/ (1.0 - is_zero_y_corr);
-            } else { isNaN = 1; }
-        } else { if (link_power ==  1.0) {
-            linear_terms = y_corr;
-        } else { if (link_power == -1.0) {
-            linear_terms = 1.0 / y_corr;
-        } else { if (link_power ==  0.5) {
-            if (sum (y_corr < 0.0) == 0) {
-                linear_terms = sqrt (y_corr);
-            } else { isNaN = 1; }
-        } else { if (link_power >   0.0) {
-            if (sum ((y_corr < 0.0)) == 0) {
-                is_zero_y_corr = (y_corr == 0.0);
-                linear_terms = (y_corr + is_zero_y_corr) ^ link_power - 
is_zero_y_corr;
-            } else { isNaN = 1; }
-        } else {
-            if (sum ((y_corr <= 0.0)) == 0) {
-                linear_terms = y_corr ^ link_power;
-            } else { isNaN = 1; }
-        }}}}}
-    }
-    if (dist_type == 2 & link_type >= 1 & link_type <= 5)
-    { # BINOMIAL/BERNOULLI DISTRIBUTION
-        if          (link_type == 1 & link_power == 0.0)  { # Binomial.log
-            if (sum ((y_corr < 0.0)) == 0) {
-                is_zero_y_corr = (y_corr == 0.0);
-                linear_terms = log (y_corr + is_zero_y_corr) - is_zero_y_corr 
/ (1.0 - is_zero_y_corr);
-            } else { isNaN = 1; }
-        } else { if (link_type == 1 & link_power >  0.0)  { # 
Binomial.power_nonlog pos
-            if (sum ((y_corr < 0.0)) == 0) {
-                is_zero_y_corr = (y_corr == 0.0);
-                linear_terms = (y_corr + is_zero_y_corr) ^ link_power - 
is_zero_y_corr;
-            } else { isNaN = 1; }
-        } else { if (link_type == 1)                      { # 
Binomial.power_nonlog neg
-            if (sum ((y_corr <= 0.0)) == 0) {
-                linear_terms = y_corr ^ link_power;
-            } else { isNaN = 1; }
-        } else { 
-            is_zero_y_corr = (y_corr <= 0.0);
-            is_one_y_corr  = (y_corr >= 1.0);
-            y_corr = y_corr * (1.0 - is_zero_y_corr) * (1.0 - is_one_y_corr) + 
0.5 * (is_zero_y_corr + is_one_y_corr);
-            if (link_type == 2)                           { # Binomial.logit
-                linear_terms = log (y_corr / (1.0 - y_corr)) 
-                    + is_one_y_corr / (1.0 - is_one_y_corr) - is_zero_y_corr / 
(1.0 - is_zero_y_corr);
-            } else { if (link_type == 3)                  { # Binomial.probit
-                y_below_half = y_corr + (1.0 - 2.0 * y_corr) * (y_corr > 0.5);
-                t = sqrt (- 2.0 * log (y_below_half));
-                approx_inv_Gauss_CDF = - t + (2.515517 + t * (0.802853 + t * 
0.010328)) / (1.0 + t * (1.432788 + t * (0.189269 + t * 0.001308)));
-                linear_terms = approx_inv_Gauss_CDF * (1.0 - 2.0 * (y_corr > 
0.5))
-                    + is_one_y_corr / (1.0 - is_one_y_corr) - is_zero_y_corr / 
(1.0 - is_zero_y_corr);
-            } else { if (link_type == 4)                  { # Binomial.cloglog
-                linear_terms = log (- log (1.0 - y_corr))
-                    - log (- log (0.5)) * (is_zero_y_corr + is_one_y_corr)
-                    + is_one_y_corr / (1.0 - is_one_y_corr) - is_zero_y_corr / 
(1.0 - is_zero_y_corr);
-            } else { if (link_type == 5)                  { # Binomial.cauchit
-                linear_terms = tan ((y_corr - 0.5) * 
3.1415926535897932384626433832795)
-                    + is_one_y_corr / (1.0 - is_one_y_corr) - is_zero_y_corr / 
(1.0 - is_zero_y_corr);
-        }}  }}}}}
-    }
-    
-    if (isNaN == 0) {
-        tmp1 = glm_log_likelihood_part (linear_terms, Y, dist_type, var_power, 
link_type, link_power);
-        saturated_log_l = tmp1[1];
-        isNaN = tmp1[2];
-    }
-    
-    if ((dist_type == 1 & link_type == 1 & link_power == 0.0) |
-        (dist_type == 2 & link_type >= 2))
-    {    
-        desired_eta = 0.0;
-    } else { if (link_type == 1 & link_power == 0.0) {
-        desired_eta = log (0.5);
-    } else { if (link_type == 1) {
-        desired_eta = 0.5 ^ link_power;
-    } else {
-        desired_eta = 0.5;
-    }}}
-    
-    beta = matrix (0.0, ncol(X), 1);
-    
-    if (desired_eta != 0.0) {
-        if (icept_status == 1 | icept_status == 2) {
-            beta [nrow(beta), 1] = desired_eta;
-        } else {
-            # We want: avg (X %*% ssX_transform %*% beta) = desired_eta
-            # Note that "ssX_transform" is trivial here, hence ignored
-            
-            beta = straightenX (X, 0.000001, max_iter_CG);  
-            beta = beta * desired_eta;
-}   }   
-
-  return (c(beta, saturated_log_l, isNaN))
-}
-
-
-glm_dist <- function (linear_terms, Y,
-                    dist_type, var_power, link_type, link_power)
-{
-    num_records = nrow (linear_terms);
-    zeros_r = matrix (0.0, num_records, 1);
-    ones_r = 1 + zeros_r;
-    g_Y  = zeros_r;
-    w  = zeros_r;
-
-    # Some constants
-
-    one_over_sqrt_two_pi = 0.39894228040143267793994605993438;
-    ones_2 = matrix (1.0, 1, 2);
-    p_one_m_one = ones_2;
-    p_one_m_one [1, 2] = -1.0;
-    m_one_p_one = ones_2;
-    m_one_p_one [1, 1] = -1.0;
-    zero_one = ones_2;
-    zero_one [1, 1] = 0.0;
-    one_zero = ones_2;
-    one_zero [1, 2] = 0.0;
-    flip_pos = matrix (0, 2, 2);
-    flip_neg = flip_pos;
-    flip_pos [1, 2] = 1;
-    flip_pos [2, 1] = 1;
-    flip_neg [1, 2] = -1;
-    flip_neg [2, 1] = 1;
-    
-    if (dist_type == 1 & link_type == 1) { # POWER DISTRIBUTION
-        y_mean = zeros_r;
-        if          (link_power ==  0.0) {
-            y_mean = exp (linear_terms);
-            y_mean_pow = y_mean ^ (1 - var_power);
-            w   = y_mean_pow * y_mean;
-            g_Y = y_mean_pow * (Y - y_mean);
-        } else { if (link_power ==  1.0) {
-            y_mean = linear_terms;
-            w   = y_mean ^ (- var_power);
-            g_Y = w * (Y - y_mean);
-        } else {
-            y_mean = linear_terms ^ (1.0 / link_power);
-            c1  = (1 - var_power) / link_power - 1;
-            c2  = (2 - var_power) / link_power - 2;
-            g_Y = (linear_terms ^ c1) * (Y - y_mean) / link_power;
-            w   = (linear_terms ^ c2) / (link_power ^ 2);
-    }   }}
-    if (dist_type == 2 & link_type >= 1 & link_type <= 5)
-    { # BINOMIAL/BERNOULLI DISTRIBUTION
-        if (link_type == 1) { # BINOMIAL.POWER LINKS
-            if (link_power == 0.0)  { # Binomial.log
-                vec1 = 1 / (exp (- linear_terms) - 1);
-                g_Y = Y [, 1] - Y [, 2] * vec1;
-                w   = rowSums (Y) * vec1;
-            } else {                  # Binomial.nonlog
-                vec1 = zeros_r;
-                if (link_power == 0.5)  {
-                    vec1 = 1 / (1 - linear_terms ^ 2);
-                } else { if (sum ((linear_terms < 0.0)) == 0) {
-                    vec1 = linear_terms ^ (- 2 + 1 / link_power) / (1 - 
linear_terms ^ (1 / link_power));
-                } else {isNaN = 1;}}
-                # We want a "zero-protected" version of
-                #     vec2 = Y [, 1] / linear_terms;
-                is_y_0 = (Y [, 1] == 0.0);
-                vec2 = (Y [, 1] + is_y_0) / (linear_terms * (1 - is_y_0) + 
is_y_0) - is_y_0;
-                g_Y =  (vec2 - Y [, 2] * vec1 * linear_terms) / link_power;
-                w   =  rowSums (Y) * vec1 / link_power ^ 2;
-            }
-        } else {
-            is_LT_pos_infinite = (linear_terms ==  1.0/0.0);
-            is_LT_neg_infinite = (linear_terms == -1.0/0.0);
-            is_LT_infinite = is_LT_pos_infinite %*% one_zero + 
is_LT_neg_infinite %*% zero_one;
-            finite_linear_terms = replace (target =        linear_terms, 
pattern =  1.0/0.0, replacement = 0);
-            finite_linear_terms = replace (target = finite_linear_terms, 
pattern = -1.0/0.0, replacement = 0);
-            if (link_type == 2)                           { # Binomial.logit
-                Y_prob = exp (finite_linear_terms) %*% one_zero + ones_r %*% 
zero_one;
-                Y_prob = Y_prob / (rowSums (Y_prob) %*% ones_2);
-                Y_prob = Y_prob * ((1.0 - rowSums (is_LT_infinite)) %*% 
ones_2) + is_LT_infinite;
-                g_Y = rowSums (Y * (Y_prob %*% flip_neg));           ### = 
y_residual;
-                w   = rowSums (Y * (Y_prob %*% flip_pos) * Y_prob);  ### = 
y_variance;
-            } else { if (link_type == 3)                  { # Binomial.probit
-                is_lt_pos = (linear_terms > 0.0);
-                t_gp = 1.0 / (1.0 + abs (finite_linear_terms) * 0.231641888);  
# 0.231641888 = 0.3275911 / sqrt (2.0)
-                pt_gp = t_gp * ( 0.254829592 
-                      + t_gp * (-0.284496736 # "Handbook of Mathematical 
Functions", ed. by M. Abramowitz and I.A. Stegun,
-                      + t_gp * ( 1.421413741 # U.S. Nat-l Bureau of Standards, 
10th print (Dec 1972), Sec. 7.1.26, p. 299
-                      + t_gp * (-1.453152027 
-                      + t_gp *   1.061405429))));
-                the_gauss_exp = exp (- (linear_terms ^ 2) / 2.0);
-                vec1 = 0.25 * pt_gp * (2 - the_gauss_exp * pt_gp);
-                vec2 = Y [, 1] - rowSums (Y) * is_lt_pos + the_gauss_exp * 
pt_gp * rowSums (Y) * (is_lt_pos - 0.5);
-                w   = the_gauss_exp * (one_over_sqrt_two_pi ^ 2) * rowSums (Y) 
/ vec1;
-                g_Y = one_over_sqrt_two_pi * vec2 / vec1;
-            } else { if (link_type == 4)                  { # Binomial.cloglog
-                the_exp = exp (linear_terms)
-                the_exp_exp = exp (- the_exp);
-                is_too_small = ((10000000 + the_exp) == 10000000);
-                the_exp_ratio = (1 - is_too_small) * (1 - the_exp_exp) / 
(the_exp + is_too_small) + is_too_small * (1 - the_exp / 2);
-                g_Y =  (rowSums (Y) * the_exp_exp - Y [, 2]) / the_exp_ratio;
-                w   =  the_exp_exp * the_exp * rowSums (Y) / the_exp_ratio;
-            } else { if (link_type == 5)                  { # Binomial.cauchit
-                Y_prob = 0.5 + (atan (finite_linear_terms) %*% p_one_m_one) / 
3.1415926535897932384626433832795;
-                Y_prob = Y_prob * ((1.0 - rowSums (is_LT_infinite)) %*% 
ones_2) + is_LT_infinite;
-                y_residual = Y [, 1] * Y_prob [, 2] - Y [, 2] * Y_prob [, 1];
-                var_function = rowSums (Y) * Y_prob [, 1] * Y_prob [, 2];
-                link_gradient_normalized = (1 + linear_terms ^ 2) * 
3.1415926535897932384626433832795;
-                g_Y =  rowSums (Y) * y_residual / (var_function * 
link_gradient_normalized);
-                w   = (rowSums (Y) ^ 2) / (var_function * 
link_gradient_normalized ^ 2);
-            }}}}   
-        }
-    }
-    
-    return (c(g_Y, w))
-}
-
-
-glm_log_likelihood_part <- function (linear_terms, Y,
-        dist_type, var_power, link_type, link_power)
-{
-    isNaN = 0;
-    log_l = 0.0;
-    num_records = nrow (Y);
-    zeros_r = matrix (0.0, num_records, 1);
-    
-    if (dist_type == 1 & link_type == 1)
-    { # POWER DISTRIBUTION
-        b_cumulant = zeros_r;
-        natural_parameters = zeros_r;
-        is_natural_parameter_log_zero = zeros_r;
-        if          (var_power == 1.0 & link_power == 0.0)  { # Poisson.log
-            b_cumulant = exp (linear_terms);
-            is_natural_parameter_log_zero = (linear_terms == (-1.0/0.0));
-            natural_parameters = replace (target = linear_terms, pattern = 
-1.0/0.0, replacement = 0);
-        } else { if (var_power == 1.0 & link_power == 1.0)  { # Poisson.id
-            if (sum ((linear_terms < 0.0)) == 0)  {
-                b_cumulant = linear_terms;
-                is_natural_parameter_log_zero = (linear_terms == 0.0);
-                natural_parameters = log (linear_terms + 
is_natural_parameter_log_zero);
-            } else {isNaN = 1;}
-        } else { if (var_power == 1.0 & link_power == 0.5)  { # Poisson.sqrt
-            if (sum ((linear_terms <0.0)) == 0)  {
-                b_cumulant = linear_terms ^ 2;
-                is_natural_parameter_log_zero = (linear_terms == 0.0);
-                natural_parameters = 2.0 * log (linear_terms + 
is_natural_parameter_log_zero);
-            } else {isNaN = 1;}
-        } else { if (var_power == 1.0 & link_power  > 0.0)  { # 
Poisson.power_nonlog, pos
-            if (sum ((linear_terms <0.0)) == 0)  {
-                is_natural_parameter_log_zero = (linear_terms == 0.0);
-                b_cumulant = (linear_terms + is_natural_parameter_log_zero) ^ 
(1.0 / link_power) - is_natural_parameter_log_zero;
-                natural_parameters = log (linear_terms + 
is_natural_parameter_log_zero) / link_power;
-            } else {isNaN = 1;}
-        } else { if (var_power == 1.0)                      { # 
Poisson.power_nonlog, neg
-            if (sum ((linear_terms <= 0.0)) == 0) {
-                b_cumulant = linear_terms ^ (1.0 / link_power);
-                natural_parameters = log (linear_terms) / link_power;
-            } else {isNaN = 1;}
-        } else { if (var_power == 2.0 & link_power == -1.0) { # Gamma.inverse
-            if (sum ((linear_terms <= 0.0)) == 0) {
-                b_cumulant = - log (linear_terms);
-                natural_parameters = - linear_terms;
-            } else {isNaN = 1;}
-        } else { if (var_power == 2.0 & link_power ==  1.0) { # Gamma.id
-            if (sum ((linear_terms <= 0.0)) == 0) {
-                b_cumulant = log (linear_terms);
-                natural_parameters = - 1.0 / linear_terms;
-            } else {isNaN = 1;}
-        } else { if (var_power == 2.0 & link_power ==  0.0) { # Gamma.log
-            b_cumulant = linear_terms;
-            natural_parameters = - exp (- linear_terms);
-        } else { if (var_power == 2.0)                      { # 
Gamma.power_nonlog
-            if (sum ((linear_terms <= 0.0)) == 0) {
-                b_cumulant = log (linear_terms) / link_power;
-                natural_parameters = - linear_terms ^ (- 1.0 / link_power);
-            } else {isNaN = 1;}
-        } else { if                    (link_power ==  0.0) { # PowerDist.log
-            natural_parameters = exp (linear_terms * (1.0 - var_power)) / (1.0 
- var_power);
-            b_cumulant = exp (linear_terms * (2.0 - var_power)) / (2.0 - 
var_power);
-        } else {                                              # 
PowerDist.power_nonlog
-            if          (-2 * link_power == 1.0 - var_power) {
-                natural_parameters = 1.0 / (linear_terms ^ 2) / (1.0 - 
var_power);
-            } else { if (-1 * link_power == 1.0 - var_power) {
-                natural_parameters = 1.0 / linear_terms / (1.0 - var_power);
-            } else { if (     link_power == 1.0 - var_power) {
-                natural_parameters = linear_terms / (1.0 - var_power);
-            } else { if ( 2 * link_power == 1.0 - var_power) {
-                natural_parameters = linear_terms ^ 2 / (1.0 - var_power);
-            } else {
-                if (sum ((linear_terms <=0.0)) == 0) {
-                    power = (1.0 - var_power) / link_power;
-                    natural_parameters = (linear_terms ^ power) / (1.0 - 
var_power);
-                } else {isNaN = 1;}
-            }}}}
-            if          (-2 * link_power == 2.0 - var_power) {
-                b_cumulant = 1.0 / (linear_terms ^ 2) / (2.0 - var_power);
-            } else { if (-1 * link_power == 2.0 - var_power) {
-                b_cumulant = 1.0 / linear_terms / (2.0 - var_power);
-            } else { if (     link_power == 2.0 - var_power) {
-                b_cumulant = linear_terms / (2.0 - var_power);
-            } else { if ( 2 * link_power == 2.0 - var_power) {
-                b_cumulant = linear_terms ^ 2 / (2.0 - var_power);
-            } else {
-                if (sum ((linear_terms<= 0.0)) == 0) {
-                    power = (2.0 - var_power) / link_power;
-                    b_cumulant = (linear_terms ^ power) / (2.0 - var_power);
-                } else {isNaN = 1;}
-            }}}}
-        }}}}} }}}}}
-        if (sum (is_natural_parameter_log_zero * abs (Y)) > 0.0) {
-            log_l = -1.0 / 0.0;
-            isNaN = 1;
-        }
-        if (isNaN == 0)
-        {
-            log_l = sum (Y * natural_parameters - b_cumulant);
-            if (log_l != log_l | (log_l == log_l + 1.0 & log_l == log_l * 
2.0)) {
-                log_l = -1.0 / 0.0;
-                isNaN = 1;
-    }   }   }
-    
-    if (dist_type == 2 & link_type >= 1 & link_type <= 5)
-    { # BINOMIAL/BERNOULLI DISTRIBUTION
-    
-        tmp7 = binomial_probability_two_column (linear_terms, link_type, 
link_power);
-        Y_prob = tmp7[1];
-        isNaN = tmp7[2]
-        
-        if (isNaN == 0) {            
-            does_prob_contradict = (Y_prob <= 0.0);
-            if (sum (does_prob_contradict * abs (Y)) == 0.0) {
-                log_l = sum (Y * log (Y_prob * (1 - does_prob_contradict) + 
does_prob_contradict));
-                if (log_l != log_l | (log_l == log_l + 1.0 & log_l == log_l * 
2.0)) {
-                    isNaN = 1;
-                }
-            } else {
-                log_l = -1.0 / 0.0;
-                isNaN = 1;
-    }   }   }
-    
-    if (isNaN == 1) {
-        log_l = - 1.0 / 0.0; 
-    }
-}
-
-
-
-binomial_probability_two_column <- function (linear_terms, link_type, 
link_power)
-{
-    isNaN = 0;
-    num_records = nrow (linear_terms);
-
-    # Define some auxiliary matrices
-
-    ones_2 = matrix (1.0, 1, 2);
-    p_one_m_one = ones_2;
-    p_one_m_one [1, 2] = -1.0;
-    m_one_p_one = ones_2;
-    m_one_p_one [1, 1] = -1.0;
-    zero_one = ones_2;
-    zero_one [1, 1] = 0.0;
-    one_zero = ones_2;
-    one_zero [1, 2] = 0.0;
-
-    zeros_r = matrix (0.0, num_records, 1);
-    ones_r = 1.0 + zeros_r;
-
-    # Begin the function body
-
-    Y_prob = zeros_r %*% ones_2;
-    if (link_type == 1) { # Binomial.power
-        if          (link_power == 0.0) { # Binomial.log
-            Y_prob = exp (linear_terms) %*% p_one_m_one + ones_r %*% zero_one; 
   
-        } else { if (link_power == 0.5) { # Binomial.sqrt
-            Y_prob = (linear_terms ^ 2) %*% p_one_m_one + ones_r %*% zero_one; 
   
-        } else {                          # Binomial.power_nonlog
-            if (sum ((linear_terms < 0.0)) == 0) {
-                Y_prob = (linear_terms ^ (1.0 / link_power)) %*% p_one_m_one + 
ones_r %*% zero_one;    
-            } else {isNaN = 1;}
-        }}
-    } else {              # Binomial.non_power
-        is_LT_pos_infinite = (linear_terms ==  (1.0/0.0));
-        is_LT_neg_infinite = (linear_terms == (-1.0/0.0));
-        is_LT_infinite = is_LT_pos_infinite %*% one_zero + is_LT_neg_infinite 
%*% zero_one;
-        finite_linear_terms = replace (target =        linear_terms, pattern = 
 1.0/0.0, replacement = 0);
-        finite_linear_terms = replace (target = finite_linear_terms, pattern = 
-1.0/0.0, replacement = 0);
-        if (link_type == 2)             { # Binomial.logit
-            Y_prob = exp (finite_linear_terms) %*% one_zero + ones_r %*% 
zero_one;
-            Y_prob = Y_prob / (rowSums (Y_prob) %*% ones_2);
-        } else { if (link_type == 3)    { # Binomial.probit
-            lt_pos_neg = (finite_linear_terms >= 0.0) %*% p_one_m_one + ones_r 
%*% zero_one;
-            t_gp = 1.0 / (1.0 + abs (finite_linear_terms) * 0.231641888);  # 
0.231641888 = 0.3275911 / sqrt (2.0)
-            pt_gp = t_gp * ( 0.254829592 
-                  + t_gp * (-0.284496736 # "Handbook of Mathematical 
Functions", ed. by M. Abramowitz and I.A. Stegun,
-                  + t_gp * ( 1.421413741 # U.S. Nat-l Bureau of Standards, 
10th print (Dec 1972), Sec. 7.1.26, p. 299
-                  + t_gp * (-1.453152027 
-                  + t_gp *   1.061405429))));
-            the_gauss_exp = exp (- (finite_linear_terms ^ 2) / 2.0);
-            Y_prob = lt_pos_neg + ((the_gauss_exp * pt_gp) %*% ones_2) * (0.5 
- lt_pos_neg);
-        } else { if (link_type == 4)    { # Binomial.cloglog
-            the_exp = exp (finite_linear_terms);
-            the_exp_exp = exp (- the_exp);
-            is_too_small = ((10000000 + the_exp)== 10000000);
-            Y_prob [, 1] = (1 - is_too_small) * (1 - the_exp_exp) + 
is_too_small * the_exp * (1 - the_exp / 2);
-            Y_prob [, 2] = the_exp_exp;
-        } else { if (link_type == 5)    { # Binomial.cauchit
-            Y_prob = 0.5 + (atan (finite_linear_terms) %*% p_one_m_one) / 
3.1415926535897932384626433832795;
-        } else {
-            isNaN = 1;
-        }}}}
-        Y_prob = Y_prob * ((1.0 - rowSums (is_LT_infinite)) %*% ones_2) + 
is_LT_infinite;
-}   
-
-   return (c(Y_prob, isNaN));
-}            
-
-
-# THE CG-STEIHAUG PROCEDURE SCRIPT
-
-# Apply Conjugate Gradient - Steihaug algorithm in order to approximately 
minimize
-# 0.5 z^T (X^T diag(w) X + diag (lambda)) z + (g + lambda * beta)^T z
-# under constraint:  ||z|| <= trust_delta.
-# See Alg. 7.2 on p. 171 of "Numerical Optimization" 2nd ed. by Nocedal and 
Wright
-# IN THE ABOVE, "X" IS UNDERSTOOD TO BE "X %*% (SHIFT/SCALE TRANSFORM)"; this 
transform
-# is given separately because sparse "X" may become dense after applying the 
transform.
-#
-get_CG_Steihaug_point <-
-    function (X, scale_X, shift_X, w, g, beta, lambda, trust_delta, 
max_iter_CG)
-{
-    trust_delta_sq = trust_delta ^ 2;
-    size_CG = nrow (g);
-    z = matrix (0.0, size_CG, 1);
-    neg_log_l_change = 0.0;
-    reached_trust_boundary = 0;
-    g_reg = g + lambda * beta;
-    r_CG = g_reg;
-    p_CG = -r_CG;
-    rr_CG = sum(r_CG * r_CG);
-    eps_CG = rr_CG * min (0.25, sqrt (rr_CG));
-    converged_CG = 0;
-    if (rr_CG < eps_CG) {
-        converged_CG = 1;
-    }
-    
-    max_iteration_CG = max_iter_CG;
-    if (max_iteration_CG <= 0) {
-        max_iteration_CG = size_CG;
-    }
-    i_CG = 0;
-    while (converged_CG == 0)
-    {
-        i_CG = i_CG + 1;
-        ssX_p_CG = diag (scale_X) %*% p_CG;
-        ssX_p_CG [size_CG, ] = ssX_p_CG [size_CG, ] + t(shift_X) %*% p_CG;
-        temp_CG = t(X) %*% (w * (X %*% ssX_p_CG));
-        q_CG = (lambda * p_CG) + diag (scale_X) %*% temp_CG + shift_X %*% 
temp_CG [size_CG, ];
-        pq_CG = sum (p_CG * q_CG);
-        if (pq_CG <= 0) {
-            pp_CG = sum (p_CG * p_CG);  
-            if (pp_CG > 0) {
-                tmp6 = get_trust_boundary_point (g_reg, z, p_CG, q_CG, r_CG, 
pp_CG, pq_CG, trust_delta_sq);
-                z = tmp6[1];
-                neg_log_l_change= tmp6[2];
-                reached_trust_boundary = 1;
-            } else {
-                neg_log_l_change = 0.5 * sum (z * (r_CG + g_reg));
-            }
-            converged_CG = 1;
-        }
-        if (converged_CG == 0) {
-            alpha_CG = rr_CG / pq_CG;
-            new_z = z + alpha_CG * p_CG;
-            if (sum(new_z * new_z) >= trust_delta_sq) {
-                pp_CG = sum (p_CG * p_CG);  
-                tmp8 = get_trust_boundary_point (g_reg, z, p_CG, q_CG, r_CG, 
pp_CG, pq_CG, trust_delta_sq);
-                z = tmp8[1];
-                neg_log_l_change = tmp8[2]
-                reached_trust_boundary = 1;
-                converged_CG = 1;
-            }
-            if (converged_CG == 0) {
-                z = new_z;
-                old_rr_CG = rr_CG;
-                r_CG = r_CG + alpha_CG * q_CG;
-                rr_CG = sum(r_CG * r_CG);
-                if (i_CG == max_iteration_CG | rr_CG < eps_CG) {
-                    neg_log_l_change = 0.5 * sum (z * (r_CG + g_reg));
-                    reached_trust_boundary = 0;
-                    converged_CG = 1;
-                }
-                if (converged_CG == 0) {
-                    p_CG = -r_CG + (rr_CG / old_rr_CG) * p_CG;
-}   }   }   }   
-
-  return (c(z, neg_log_l_change, i_CG, reached_trust_boundary));
-}
-
-
-# An auxiliary function used twice inside the CG-STEIHAUG loop:
-get_trust_boundary_point <- 
-    function (g, z, p, q, r, pp, pq, trust_delta_sq)
-{
-    zz = sum (z * z);  pz = sum (p * z);
-    sq_root_d = sqrt (pz * pz - pp * (zz - trust_delta_sq));
-    tau_1 = (- pz + sq_root_d) / pp;
-    tau_2 = (- pz - sq_root_d) / pp;
-    zq = sum (z * q);  gp = sum (g * p);
-    f_extra = 0.5 * sum (z * (r + g));
-    f_change_1 = f_extra + (0.5 * tau_1 * pq + zq + gp) * tau_1;
-    f_change_2 = f_extra + (0.5 * tau_2 * pq + zq + gp) * tau_2;
-    if (f_change_1 < f_change_2) {
-        new_z = z + (tau_1 * p);
-        f_change = f_change_1;
-    }
-    else {
-        new_z = z + (tau_2 * p);
-        f_change = f_change_2;
-    }
-    
-    return (c(new_z, f_change))
-}
-
-
-# Computes vector w such that  ||X %*% w - 1|| -> MIN  given  avg(X %*% w) = 1
-# We find z_LS such that ||X %*% z_LS - 1|| -> MIN unconditionally, then scale
-# it to compute  w = c * z_LS  such that  sum(X %*% w) = nrow(X).
-straightenX <- function (X, eps, max_iter_CG)
-{
-    w_X = t(t(colSums(X)));
-    lambda_LS = 0.000001 * sum(X ^ 2) / ncol(X);
-    eps_LS = eps * nrow(X);
-
-    # BEGIN LEAST SQUARES
-    
-    r_LS = - w_X;
-    z_LS = matrix (0.0, ncol(X), 1);
-    p_LS = - r_LS;
-    norm_r2_LS = sum (r_LS ^ 2);
-    i_LS = 0;
-    while (i_LS < max_iter_CG & i_LS < ncol(X) & norm_r2_LS >= eps_LS)
-    {
-        q_LS = t(X) %*% X %*% p_LS;
-        q_LS = q_LS + lambda_LS * p_LS;
-        alpha_LS = norm_r2_LS / sum (p_LS * q_LS);
-        z_LS = z_LS + alpha_LS * p_LS;
-        old_norm_r2_LS = norm_r2_LS;
-        r_LS = r_LS + alpha_LS * q_LS;
-        norm_r2_LS = sum (r_LS ^ 2);
-        p_LS = -r_LS + (norm_r2_LS / old_norm_r2_LS) * p_LS;
-        i_LS = i_LS + 1;
-    }
-    
-    # END LEAST SQUARES
-    
-    w = (nrow(X) / sum (w_X * z_LS)) * z_LS;
-    return(w);
-}
-
-
-round_to_print <- function (x_to_truncate)
-{
-    mantissa = 1.0;
-    eee = 0;
-    positive_infinity = 1.0 / 0.0;
-    x = abs (x_to_truncate);
-    if (x != x / 2.0) {
-        log_ten = log (10.0);
-        d_eee = round (log (x) / log_ten - 0.5);
-        mantissa = round (x * exp (log_ten * (4.0 - d_eee))) / 10000;
-        if (mantissa == 10.0) {
-            mantissa = 1.0;
-            d_eee = d_eee + 1;
-        }
-        if (x_to_truncate < 0.0) {
-            mantissa = - mantissa;
-        }
-        eee = 0;
-        pow_two = 1;
-        res_eee = abs (d_eee);
-        while (res_eee != 0.0) {
-            new_res_eee = round (res_eee / 2.0 - 0.3);
-            if (new_res_eee * 2.0 < res_eee) {
-                eee = eee + pow_two;
-            }
-            res_eee = new_res_eee;
-            pow_two = 2 * pow_two;
-        }
-        if (d_eee < 0.0) {
-            eee = - eee;
-        }
-    } else { mantissa = x_to_truncate; }
-    
-    return (c(mantissa, eee));
-}
-
-
-X = readMM(paste(args[1], "X.mtx", sep=""));
-Y = readMM(paste(args[1], "Y.mtx", sep=""));
-
-fileO = " ";
-fileLog = " ";
-
-intercept_status = as.integer(args[2]);
-eps = as.double(args[3]);
-max_iteration_IRLS = as.integer(args[4]);
-max_iteration_CG = as.integer(args[4]);
-
-distribution_type = as.integer(args[5]);
-variance_as_power_of_the_mean = as.double(args[6]);
-link_type = as.integer(args[7]); 
-
-if( distribution_type != 1 ) {
-  link_as_power_of_the_mean = as.double(args[8]);
-  bernoulli_No_label = 0.0;
-} else {
-  link_as_power_of_the_mean = 1.0;
-  bernoulli_No_label = as.double(args[8]); 
-}
-
-dispersion = 0.0;
-regularization = 0.001;
-
-
-variance_as_power_of_the_mean = as.double (variance_as_power_of_the_mean);
-link_as_power_of_the_mean = as.double (link_as_power_of_the_mean);
-bernoulli_No_label = as.double (bernoulli_No_label);
-dispersion = as.double (dispersion);
-eps = as.double (eps);
-
-
-# Default values for output statistics:
-
-termination_code     = 0;
-min_beta             = 0.0 / 0.0;
-i_min_beta           = 0.0 / 0.0;
-max_beta             = 0.0 / 0.0;
-i_max_beta           = 0.0 / 0.0;
-intercept_value      = 0.0 / 0.0;
-dispersion           = 0.0 / 0.0;
-estimated_dispersion = 0.0 / 0.0;
-deviance_nodisp      = 0.0 / 0.0;
-deviance             = 0.0 / 0.0;
-
-print("BEGIN GLM SCRIPT");
-
-num_records  = nrow (X);
-num_features = ncol (X);
-zeros_r = matrix (0, num_records, 1);
-ones_r = 1 + zeros_r;
-
-# Introduce the intercept, shift and rescale the columns of X if needed
-
-if (intercept_status == 1 | intercept_status == 2)  # add the intercept column
-{
-    X = cbind (X, ones_r);
-    num_features = ncol (X);
-}
-
-scale_lambda = matrix (1, num_features, 1);
-if (intercept_status == 1 | intercept_status == 2)
-{
-    scale_lambda [num_features, 1] = 0;
-}
-
-if (intercept_status == 2)  # scale-&-shift X columns to mean 0, variance 1
-{                           # Important assumption: X [, num_features] = ones_r
-    avg_X_cols = t(t(colSums(X))) / num_records;
-    var_X_cols = (t(t(colSums (X ^ 2))) - num_records * (avg_X_cols ^ 2)) / 
(num_records - 1);
-    is_unsafe = (var_X_cols <= 0.0);
-    scale_X = 1.0 / sqrt (var_X_cols * (1 - is_unsafe) + is_unsafe);
-    scale_X [num_features, 1] = 1;
-    shift_X = - avg_X_cols * scale_X;
-    shift_X [num_features, 1] = 0;
-    rowSums_X_sq = (X ^ 2) %*% (scale_X ^ 2) + X %*% (2 * scale_X * shift_X) + 
sum (shift_X ^ 2);
-} else {
-    scale_X = matrix (1, num_features, 1);
-    shift_X = matrix (0, num_features, 1);
-    rowSums_X_sq = rowSums (X ^ 2);
-}
-
-# Henceforth we replace "X" with "X %*% (SHIFT/SCALE TRANSFORM)" and rowSums(X 
^ 2)
-# with "rowSums_X_sq" in order to preserve the sparsity of X under shift and 
scale.
-# The transform is then associatively applied to the other side of the 
expression,
-# and is rewritten via "scale_X" and "shift_X" as follows:
-#
-# ssX_A  = (SHIFT/SCALE TRANSFORM) %*% A    --- is rewritten as:
-# ssX_A  = diag (scale_X) %*% A;
-# ssX_A [num_features, ] = ssX_A [num_features, ] + t(shift_X) %*% A;
-#
-# tssX_A = t(SHIFT/SCALE TRANSFORM) %*% A   --- is rewritten as:
-# tssX_A = diag (scale_X) %*% A + shift_X %*% A [num_features, ];
-
-# Initialize other input-dependent parameters
-
-lambda = scale_lambda * regularization;
-if (max_iteration_CG == 0) {
-    max_iteration_CG = num_features;
-}
-
-# In Bernoulli case, convert one-column "Y" into two-column
-
-if (distribution_type == 2 & ncol(Y) == 1)
-{
-    is_Y_negative = (Y == bernoulli_No_label);
-    Y = append (1 - is_Y_negative, is_Y_negative);
-    count_Y_negative = sum (is_Y_negative);
-    if (count_Y_negative == 0) {
-        stop ("GLM Input Error: all Y-values encode Bernoulli YES-label, none 
encode NO-label");
-    }
-    if (count_Y_negative == nrow(Y)) {
-        stop ("GLM Input Error: all Y-values encode Bernoulli NO-label, none 
encode YES-label");
-    }
-}
-
-# Set up the canonical link, if requested [Then we have: Var(mu) * (d link / d 
mu) = const]
-
-if (link_type == 0)
-{
-    if (distribution_type == 1) {
-        link_type = 1;
-        link_as_power_of_the_mean = 1.0 - variance_as_power_of_the_mean;
-    } else { if (distribution_type == 2) {
-            link_type = 2;
-}   }   }
-
-# For power distributions and/or links, we use two constants,
-# "variance as power of the mean" and "link_as_power_of_the_mean",
-# to specify the variance and the link as arbitrary powers of the
-# mean.  However, the variance-powers of 1.0 (Poisson family) and
-# 2.0 (Gamma family) have to be treated as special cases, because
-# these values integrate into logarithms.  The link-power of 0.0
-# is also special as it represents the logarithm link.
-
-num_response_columns = ncol (Y);
-
-is_supported = check_if_supported (num_response_columns, distribution_type, 
variance_as_power_of_the_mean, link_type, link_as_power_of_the_mean);
-if (is_supported == 1)
-{
-
-#####   INITIALIZE THE BETAS   #####
-
-tmp2 = glm_initialize (X, Y, distribution_type, variance_as_power_of_the_mean, 
link_type, link_as_power_of_the_mean, intercept_status, max_iteration_CG);
-beta = tmp2[1];
-saturated_log_l = tmp2[2]
-isNaN = tmp2[3];
-
-
-if (isNaN == 0)
-{
-
-#####  START OF THE MAIN PART  #####
-
-sum_X_sq = sum (rowSums_X_sq);
-trust_delta = 0.5 * sqrt (num_features) / max (sqrt (rowSums_X_sq));
-###  max_trust_delta = trust_delta * 10000.0;
-log_l = 0.0;
-deviance_nodisp = 0.0;
-new_deviance_nodisp = 0.0;
-isNaN_log_l = 2;
-newbeta = beta;
-g = matrix (0.0, num_features, 1);
-g_norm = sqrt (sum ((g + lambda * beta) ^ 2));
-accept_new_beta = 1;
-reached_trust_boundary = 0;
-neg_log_l_change_predicted = 0.0;
-i_IRLS = 0;
-
-print ("BEGIN IRLS ITERATIONS...");
-
-ssX_newbeta = diag (scale_X) %*% newbeta;
-ssX_newbeta [num_features, ] = ssX_newbeta [num_features, ] + t(shift_X) %*% 
newbeta;
-all_linear_terms = X %*% ssX_newbeta;
-
-print("DEBUG1")
-tmp4 = glm_log_likelihood_part(all_linear_terms, Y, distribution_type, 
variance_as_power_of_the_mean, link_type, link_as_power_of_the_mean);
-new_log_l = tmp4[1];
-isNaN_new_log_l = tmp4[2];
-
-if (isNaN_new_log_l == 0) {
-    new_deviance_nodisp = 2.0 * (saturated_log_l - new_log_l);
-    new_log_l = new_log_l - 0.5 * sum (lambda * newbeta ^ 2);
-}
-
-print("DEBUG2")
-
-
-# set w to avoid 'Initialization of w depends on if-else/while execution' 
warnings
-w = matrix (0.0, 1, 1);
-while (termination_code == 0)
-{
-    accept_new_beta = 1;
-    
-    if (i_IRLS > 0)
-    {
-        if (isNaN_log_l == 0) {
-            accept_new_beta = 0;
-        }
-
-# Decide whether to accept a new iteration point and update the trust region
-# See Alg. 4.1 on p. 69 of "Numerical Optimization" 2nd ed. by Nocedal and 
Wright
-
-        rho = (- new_log_l + log_l) / neg_log_l_change_predicted;
-        if (rho < 0.25 | isNaN_new_log_l == 1) {
-            trust_delta = 0.25 * trust_delta;
-        }
-        if (rho > 0.75 & isNaN_new_log_l == 0 & reached_trust_boundary == 1) {
-            trust_delta = 2 * trust_delta;
-            
-### if (trust_delta > max_trust_delta) {
-###     trust_delta = max_trust_delta;
-### }
-
-        }
-        if (rho > 0.1 & isNaN_new_log_l == 0) {
-            accept_new_beta = 1;
-        }
-    }
-
-    if (fileLog != " ") {
-        log_str = append (log_str, "IS_POINT_UPDATED," + i_IRLS + "," + 
accept_new_beta);
-        log_str = append (log_str, "TRUST_DELTA,"      + i_IRLS + "," + 
trust_delta);
-    }
-    if (accept_new_beta == 1)
-    {
-        beta = newbeta;  log_l = new_log_l;  deviance_nodisp = 
new_deviance_nodisp;  isNaN_log_l = isNaN_new_log_l;
-        
-        tmp3 = glm_dist (all_linear_terms, Y, distribution_type, 
variance_as_power_of_the_mean, link_type, link_as_power_of_the_mean);
-        g_Y = tmp3[1];
-        w = tmp3[2];
-        
-        # We introduced these variables to avoid roundoff errors:
-        #     g_Y = y_residual / (y_var * link_grad);
-        #     w   = 1.0 / (y_var * link_grad * link_grad);
-                      
-        gXY = - t(X) %*% g_Y;
-        g = diag (scale_X) %*% gXY + shift_X %*% gXY [num_features, ];
-        g_norm = sqrt (sum ((g + lambda * beta) ^ 2));
-        
-        if (fileLog != " ") {
-            log_str = append (log_str, "GRADIENT_NORM," + i_IRLS + "," + 
g_norm);
-        }
-    }
-    
-    tmp5 = get_CG_Steihaug_point (X, scale_X, shift_X, w, g, beta, lambda, 
trust_delta, max_iteration_CG);
-    z = tmp5[1];
-    neg_log_l_change_predicted = tmp5[2];
-    num_CG_iters  = tmp5[3];
-    reached_trust_boundary = tmp5[4];
-
-
-    newbeta = beta + z;
-    
-    ssX_newbeta = diag (scale_X) %*% newbeta;
-    ssX_newbeta [num_features, ] = ssX_newbeta [num_features, ] + t(shift_X) 
%*% newbeta;
-    all_linear_terms = X %*% ssX_newbeta;
-    
-    tmp4 = glm_log_likelihood_part(all_linear_terms, Y, distribution_type, 
variance_as_power_of_the_mean, link_type, link_as_power_of_the_mean);
-    new_log_l = tmp4[1];
-    isNaN_new_log_l = tmp4[2];
-
-    if (isNaN_new_log_l == 0) {
-        new_deviance_nodisp = 2.0 * (saturated_log_l - new_log_l);
-        new_log_l = new_log_l - 0.5 * sum (lambda * newbeta ^ 2);
-    }
-        
-    log_l_change = new_log_l - log_l;               # R's criterion for 
termination: |dev - devold|/(|dev| + 0.1) < eps
-
-    if (reached_trust_boundary == 0 & isNaN_new_log_l == 0 & 
-        (2.0 * abs (log_l_change) < eps * (deviance_nodisp + 0.1) | abs 
(log_l_change) < (abs (log_l) + abs (new_log_l)) * 0.00000000000001) )  
-    {
-        termination_code = 1;
-    }
-    rho = - log_l_change / neg_log_l_change_predicted;
-    z_norm = sqrt (sum (z * z));
-    
-    tmp9 = round_to_print (z_norm);
-    z_norm_m = tmp9[1];
-    z_norm_e = tmp9[2];
-    tmp9 = round_to_print (trust_delta);
-    trust_delta_m = tmp9[1];
-    trust_delta_e = tmp9[2];
-    tmp9 = round_to_print (rho);
-    rho_m = tmp9[1];
-    rho_e = tmp9[2];
-    tmp9 = round_to_print (new_log_l);
-    new_log_l_m = tmp9[1];
-    new_log_l_e = tmp9[2]; 
-    tmp9 = round_to_print (log_l_change);
-    log_l_change_m = tmp9[1];
-    log_l_change_e = tmp9[2];
-    tmp9 = round_to_print (g_norm);
-    g_norm_m = tmp9[1];
-    g_norm_e = tmp9[2];
-
-    i_IRLS = i_IRLS + 1;
-    print ("Iter #" + i_IRLS + " completed"
-        + ", ||z|| = " + z_norm_m + "E" + z_norm_e
-        + ", trust_delta = " + trust_delta_m + "E" + trust_delta_e
-        + ", reached = " + reached_trust_boundary
-        + ", ||g|| = " + g_norm_m + "E" + g_norm_e
-        + ", new_log_l = " + new_log_l_m + "E" + new_log_l_e
-        + ", log_l_change = " + log_l_change_m + "E" + log_l_change_e
-        + ", rho = " + rho_m + "E" + rho_e);
-        
-    if (fileLog != " ") {
-        log_str = append (log_str, "NUM_CG_ITERS,"     + i_IRLS + "," + 
num_CG_iters);
-        log_str = append (log_str, "IS_TRUST_REACHED," + i_IRLS + "," + 
reached_trust_boundary);
-        log_str = append (log_str, "POINT_STEP_NORM,"  + i_IRLS + "," + 
z_norm);
-        log_str = append (log_str, "OBJECTIVE,"        + i_IRLS + "," + (- 
new_log_l));
-        log_str = append (log_str, "OBJ_DROP_REAL,"    + i_IRLS + "," + 
log_l_change);
-        log_str = append (log_str, "OBJ_DROP_PRED,"    + i_IRLS + "," + (- 
neg_log_l_change_predicted));
-        log_str = append (log_str, "OBJ_DROP_RATIO,"   + i_IRLS + "," + rho);
-        log_str = append (log_str, "LINEAR_TERM_MIN,"  + i_IRLS + "," + min 
(all_linear_terms));
-        log_str = append (log_str, "LINEAR_TERM_MAX,"  + i_IRLS + "," + max 
(all_linear_terms));
-    }
-        
-    if (i_IRLS == max_iteration_IRLS) {
-        termination_code = 2;
-    }
-}
-
-beta = newbeta;
-log_l = new_log_l;
-deviance_nodisp = new_deviance_nodisp;
-
-if (termination_code == 1) {
-    print ("Converged in " + i_IRLS + " steps.");
-} else {
-    print ("Did not converge.");
-}
-
-ssX_beta = diag (scale_X) %*% beta;
-ssX_beta [num_features, ] = ssX_beta [num_features, ] + t(shift_X) %*% beta;
-if (intercept_status == 2) {
-    beta_out = append (ssX_beta, beta);
-} else {
-    beta_out = ssX_beta;
-}
-
-writeMM(as(w,"CsparseMatrix"), paste(args[9], "w", sep=""));
-
-if (intercept_status == 1 | intercept_status == 2) {
-    intercept_value = as.scalar (beta_out [num_features, 1]);
-    beta_noicept = beta_out [1 : (num_features - 1), 1];
-} else {
-    beta_noicept = beta_out [1 : num_features, 1];
-}
-min_beta = min (beta_noicept);
-max_beta = max (beta_noicept);
-tmp_i_min_beta = rowIndexMin (t(beta_noicept))
-i_min_beta = as.scalar (tmp_i_min_beta [1, 1]);
-tmp_i_max_beta = rowIndexMax (t(beta_noicept))
-i_max_beta = as.scalar (tmp_i_max_beta [1, 1]);
-
-#####  OVER-DISPERSION PART  #####
-
-all_linear_terms = X %*% ssX_beta;
-tmp3 = glm_dist (all_linear_terms, Y, distribution_type, 
variance_as_power_of_the_mean, link_type, link_as_power_of_the_mean);
-g_Y = tmp3[1]
-w = tmp3[2];    
-    
-pearson_residual_sq = g_Y ^ 2 / w;
-pearson_residual_sq = replace (target = pearson_residual_sq, pattern = 
0.0/0.0, replacement = 0);
-# pearson_residual_sq = (y_residual ^ 2) / y_var;
-
-if (num_records > num_features) {
-    estimated_dispersion = sum (pearson_residual_sq) / (num_records - 
num_features);
-}
-if (dispersion <= 0.0) {
-    dispersion = estimated_dispersion;
-}
-deviance = deviance_nodisp / dispersion;
-
-#####  END OF THE MAIN PART  #####
-
-} else { print ("Input matrices are out of range.  Terminating the DML."); 
termination_code = 3; }
-} else { print ("Distribution/Link not supported.  Terminating the DML."); 
termination_code = 4; }
-
-str = "TERMINATION_CODE," + termination_code;
-str = append (str, "BETA_MIN," + min_beta);
-str = append (str, "BETA_MIN_INDEX," + i_min_beta);
-str = append (str, "BETA_MAX," + max_beta);
-str = append (str, "BETA_MAX_INDEX," + i_max_beta);
-str = append (str, "INTERCEPT," + intercept_value);
-str = append (str, "DISPERSION," + dispersion);
-str = append (str, "DISPERSION_EST," + estimated_dispersion);
-str = append (str, "DEVIANCE_UNSCALED," + deviance_nodisp);
-str = append (str, "DEVIANCE_SCALED," + deviance);
-print (str);
-
-

http://git-wip-us.apache.org/repos/asf/systemml/blob/98595c52/src/test/scripts/functions/codegen/Algorithm_L2SVM.R
----------------------------------------------------------------------
diff --git a/src/test/scripts/functions/codegen/Algorithm_L2SVM.R 
b/src/test/scripts/functions/codegen/Algorithm_L2SVM.R
deleted file mode 100644
index 68fe3e5..0000000
--- a/src/test/scripts/functions/codegen/Algorithm_L2SVM.R
+++ /dev/null
@@ -1,108 +0,0 @@
-#-------------------------------------------------------------
-#
-# Licensed to the Apache Software Foundation (ASF) under one
-# or more contributor license agreements.  See the NOTICE file
-# distributed with this work for additional information
-# regarding copyright ownership.  The ASF licenses this file
-# to you under the Apache License, Version 2.0 (the
-# "License"); you may not use this file except in compliance
-# with the License.  You may obtain a copy of the License at
-# 
-#   http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing,
-# software distributed under the License is distributed on an
-# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-# KIND, either express or implied.  See the License for the
-# specific language governing permissions and limitations
-# under the License.
-#
-#-------------------------------------------------------------
-
-args <- commandArgs(TRUE)
-library("Matrix")
-
-X = readMM(paste(args[1], "X.mtx", sep=""));
-Y = readMM(paste(args[1], "Y.mtx", sep=""));
-intercept = as.integer(args[2]);
-epsilon = as.double(args[3]);
-lambda = 0.001;
-maxiterations = as.integer(args[4]);
-
-check_min = min(Y)
-check_max = max(Y)
-num_min = sum(Y == check_min)
-num_max = sum(Y == check_max)
-if(num_min + num_max != nrow(Y)){ 
-       print("please check Y, it should contain only 2 labels") 
-}else{
-       if(check_min != -1 | check_max != +1) 
-               Y = 2/(check_max - check_min)*Y - (check_min + 
check_max)/(check_max - check_min)
-}
-
-dimensions = ncol(X)
-
-if (intercept == 1) {
-       ones  = matrix(1, rows=num_samples, cols=1)
-       X = cbind(X, ones);
-}
-
-num_rows_in_w = dimensions
-if(intercept == 1){
-       num_rows_in_w = num_rows_in_w + 1
-}
-w = matrix(0, num_rows_in_w, 1)
-
-g_old = t(X) %*% Y
-s = g_old
-
-Xw = matrix(0,nrow(X),1)
-iter = 0
-positive_label = check_max
-negative_label = check_min
-
-continue = TRUE
-while(continue && iter < maxiterations){
-       t = 0
-       Xd = X %*% s
-       wd = lambda * sum(w * s)
-       dd = lambda * sum(s * s)
-       continue1 = TRUE
-       while(continue1){
-               tmp_Xw = Xw + t*Xd
-               out = 1 - Y * (tmp_Xw)
-               sv = which(out > 0)
-               g = wd + t*dd - sum(out[sv] * Y[sv] * Xd[sv])
-               h = dd + sum(Xd[sv] * Xd[sv])
-               t = t - g/h
-               continue1 = (g*g/h >= 1e-10)
-       }
-       
-       w = w + t*s
-       Xw = Xw + t*Xd
-               
-       out = 1 - Y * (X %*% w)
-       sv = which(out > 0)
-       obj = 0.5 * sum(out[sv] * out[sv]) + lambda/2 * sum(w * w)
-       g_new = t(X[sv,]) %*% (out[sv] * Y[sv]) - lambda * w
-       
-       print(paste("OBJ : ", obj))
-
-       continue = (t*sum(s * g_old) >= epsilon*obj)
-       
-       be = sum(g_new * g_new)/sum(g_old * g_old)
-       s = be * s + g_new
-       g_old = g_new
-       
-       iter = iter + 1
-}
-
-extra_model_params = matrix(0, 4, 1)
-extra_model_params[1,1] = positive_label
-extra_model_params[2,1] = negative_label
-extra_model_params[3,1] = intercept
-extra_model_params[4,1] = dimensions
-
-w = t(cbind(t(w), t(extra_model_params)))
-
-writeMM(as(w,"CsparseMatrix"), paste(args[5], "w", sep=""));

http://git-wip-us.apache.org/repos/asf/systemml/blob/98595c52/src/test/scripts/functions/codegen/Algorithm_LinregCG.R
----------------------------------------------------------------------
diff --git a/src/test/scripts/functions/codegen/Algorithm_LinregCG.R 
b/src/test/scripts/functions/codegen/Algorithm_LinregCG.R
deleted file mode 100644
index 83d1f1f..0000000
--- a/src/test/scripts/functions/codegen/Algorithm_LinregCG.R
+++ /dev/null
@@ -1,159 +0,0 @@
-#-------------------------------------------------------------
-#
-# Licensed to the Apache Software Foundation (ASF) under one
-# or more contributor license agreements.  See the NOTICE file
-# distributed with this work for additional information
-# regarding copyright ownership.  The ASF licenses this file
-# to you under the Apache License, Version 2.0 (the
-# "License"); you may not use this file except in compliance
-# with the License.  You may obtain a copy of the License at
-# 
-#   http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing,
-# software distributed under the License is distributed on an
-# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-# KIND, either express or implied.  See the License for the
-# specific language governing permissions and limitations
-# under the License.
-#
-#-------------------------------------------------------------
-
-
-args <- commandArgs(TRUE)
-options(digits=22)
-library("Matrix")
-
-X = readMM(paste(args[1], "X.mtx", sep=""))
-y = readMM(paste(args[1], "y.mtx", sep=""))
-
-intercept_status = as.integer(args[2]);
-tolerance = as.double(args[3]);
-max_iteration = as.double(args[4]);
-regularization = as.double(args[5]);
-
-n = nrow (X);
-m = ncol (X);
-ones_n = matrix (1, n, 1);
-zero_cell = matrix (0, 1, 1);
-
-m_ext = m;
-if (intercept_status == 1 | intercept_status == 2)  # add the intercept column
-{
-    X = cbind (X, ones_n);
-    m_ext = ncol (X);
-}
-
-scale_lambda = matrix (1, m_ext, 1);
-if (intercept_status == 1 | intercept_status == 2)
-{
-    scale_lambda [m_ext, 1] = 0;
-}
-
-if (intercept_status == 2) {
-    avg_X_cols = colSums(X) / n;
-    var_X_cols = (colSums (X ^ 2) - n * (avg_X_cols ^ 2)) / (n - 1);
-    is_unsafe = (var_X_cols <= 0);
-    scale_X = 1.0 / sqrt (var_X_cols * (1 - is_unsafe) + is_unsafe);
-    scale_X [m_ext] = 1;
-    shift_X = - avg_X_cols * scale_X;
-    shift_X [m_ext] = 0;
-    scale_X = as.matrix(scale_X);
-    shift_X = as.matrix(shift_X);
-} else {
-    scale_X = matrix (1, m_ext, 1);
-    shift_X = matrix (0, m_ext, 1);
-}
-
-lambda = scale_lambda * regularization;
-beta_unscaled = matrix (0, m_ext, 1);
-
-if (max_iteration == 0) {
-    max_iteration = m_ext;
-}
-i = 0;
-r = - t(X) %*% y;
-
-if (intercept_status == 2) {
-    r = scale_X * r + shift_X %*% r [m_ext, ];
-}
-
-p = - r;
-norm_r2 = sum (r ^ 2);
-norm_r2_initial = norm_r2;
-norm_r2_target = norm_r2_initial * tolerance ^ 2;
-
-while (i < max_iteration & norm_r2 > norm_r2_target)
-{
-    if (intercept_status == 2) {
-        ssX_p = scale_X * p;
-        ssX_p [m_ext, ] = ssX_p [m_ext, ] + t(shift_X) %*% p;
-    } else {
-        ssX_p = p;
-    }
-    
-    q = t(X) %*% (X %*% ssX_p);
-
-    if (intercept_status == 2) {
-        q = scale_X * q + shift_X %*% q [m_ext, ];
-    }
-
-       q = q + lambda * p;
-       a = norm_r2 / sum (p * q);
-       beta_unscaled = beta_unscaled + a * p;
-       r = r + a * q;
-       old_norm_r2 = norm_r2;
-       norm_r2 = sum (r ^ 2);
-       p = -r + (norm_r2 / old_norm_r2) * p;
-       i = i + 1;
-}
-
-if (intercept_status == 2) {
-    beta = scale_X * beta_unscaled;
-    beta [m_ext, ] = beta [m_ext, ] + t(shift_X) %*% beta_unscaled;
-} else {
-    beta = beta_unscaled;
-}
-
-avg_tot = sum (y) / n;
-ss_tot = sum (y ^ 2);
-ss_avg_tot = ss_tot - n * avg_tot ^ 2;
-var_tot = ss_avg_tot / (n - 1);
-y_residual = y - X %*% beta;
-avg_res = sum (y_residual) / n;
-ss_res = sum (y_residual ^ 2);
-ss_avg_res = ss_res - n * avg_res ^ 2;
-
-plain_R2 = 1 - ss_res / ss_avg_tot;
-if (n > m_ext) {
-    dispersion  = ss_res / (n - m_ext);
-    adjusted_R2 = 1 - dispersion / (ss_avg_tot / (n - 1));
-} else {
-    dispersion  = 0.0 / 0.0;
-    adjusted_R2 = 0.0 / 0.0;
-}
-
-plain_R2_nobias = 1 - ss_avg_res / ss_avg_tot;
-deg_freedom = n - m - 1;
-if (deg_freedom > 0) {
-    var_res = ss_avg_res / deg_freedom;
-    adjusted_R2_nobias = 1 - var_res / (ss_avg_tot / (n - 1));
-} else {
-    var_res = 0.0 / 0.0;
-    adjusted_R2_nobias = 0.0 / 0.0;
-}
-
-plain_R2_vs_0 = 1 - ss_res / ss_tot;
-if (n > m) {
-    adjusted_R2_vs_0 = 1 - (ss_res / (n - m)) / (ss_tot / n);
-} else {
-    adjusted_R2_vs_0 = 0.0 / 0.0;
-}
-
-if (intercept_status == 2) {
-    beta_out = cbind (beta, beta_unscaled);
-} else {
-    beta_out = beta;
-}
-
-writeMM(as(beta_out,"CsparseMatrix"), paste(args[6], "w", sep=""))

http://git-wip-us.apache.org/repos/asf/systemml/blob/98595c52/src/test/scripts/functions/codegen/Algorithm_MLogreg.R
----------------------------------------------------------------------
diff --git a/src/test/scripts/functions/codegen/Algorithm_MLogreg.R 
b/src/test/scripts/functions/codegen/Algorithm_MLogreg.R
deleted file mode 100644
index 0321501..0000000
--- a/src/test/scripts/functions/codegen/Algorithm_MLogreg.R
+++ /dev/null
@@ -1,280 +0,0 @@
-#-------------------------------------------------------------
-#
-# Licensed to the Apache Software Foundation (ASF) under one
-# or more contributor license agreements.  See the NOTICE file
-# distributed with this work for additional information
-# regarding copyright ownership.  The ASF licenses this file
-# to you under the Apache License, Version 2.0 (the
-# "License"); you may not use this file except in compliance
-# with the License.  You may obtain a copy of the License at
-# 
-#   http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing,
-# software distributed under the License is distributed on an
-# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-# KIND, either express or implied.  See the License for the
-# specific language governing permissions and limitations
-# under the License.
-#
-#-------------------------------------------------------------
-
-args <- commandArgs(TRUE)
-library("Matrix")
-library("matrixStats")
-
-X = readMM(paste(args[1], "X.mtx", sep=""));
-Y_vec = readMM(paste(args[1], "Y.mtx", sep=""));
-intercept = as.integer(args[2]);
-tol = as.double(args[3]);
-maxiter = as.integer(args[4]);
-
-intercept_status = intercept;
-regularization = 0.001;
-maxinneriter = 0;
-
-print ("BEGIN MULTINOMIAL LOGISTIC REGRESSION SCRIPT");
-
-eta0 = 0.0001;
-eta1 = 0.25;
-eta2 = 0.75;
-sigma1 = 0.25;
-sigma2 = 0.5;
-sigma3 = 4.0;
-psi = 0.1;
-
-N = nrow (X);
-D = ncol (X);
-
-# Introduce the intercept, shift and rescale the columns of X if needed
-if (intercept_status == 1 | intercept_status == 2)  # add the intercept column
-{
-    X = cbind (X, matrix (1, N, 1));
-    D = ncol (X);
-}
-
-scale_lambda = matrix (1, D, 1);
-if (intercept_status == 1 | intercept_status == 2)
-{
-    scale_lambda [D, 1] = 0;
-}
-
-if (intercept_status == 2)  # scale-&-shift X columns to mean 0, variance 1
-{                           # Important assumption: X [, D] = matrix (1, rows 
= N, cols = 1)
-    avg_X_cols = colSums(X) / N;
-    var_X_cols = (colSums (X ^ 2) - N * (avg_X_cols ^ 2)) / (N - 1);
-    is_unsafe = (var_X_cols <= 0.0);
-    scale_X = 1.0 / sqrt (var_X_cols * (1 - is_unsafe) + is_unsafe);
-    scale_X [D] = 1;
-    shift_X = - avg_X_cols * scale_X;
-    shift_X [D] = 0;
-    scale_X = as.matrix(scale_X);
-    shift_X = as.matrix(shift_X);
-    rowSums_X_sq = (X ^ 2) %*% (scale_X ^ 2) + X %*% (2 * scale_X * shift_X) + 
sum (shift_X ^ 2);
-} else {
-    scale_X = matrix (1, D, 1);
-    shift_X = matrix (0, D, 1);
-    rowSums_X_sq = rowSums (X ^ 2);
-}
-
-# Henceforth we replace "X" with "X %*% (SHIFT/SCALE TRANSFORM)" and rowSums(X 
^ 2)
-# with "rowSums_X_sq" in order to preserve the sparsity of X under shift and 
scale.
-# The transform is then associatively applied to the other side of the 
expression,
-# and is rewritten via "scale_X" and "shift_X" as follows:
-#
-# ssX_A  = (SHIFT/SCALE TRANSFORM) %*% A    --- is rewritten as:
-# ssX_A  = diag (scale_X) %*% A;
-# ssX_A [D, ] = ssX_A [D, ] + t(shift_X) %*% A;
-#
-# tssX_A = t(SHIFT/SCALE TRANSFORM) %*% A   --- is rewritten as:
-# tssX_A = diag (scale_X) %*% A + shift_X %*% A [D, ];
-
-# Convert "Y_vec" into indicator matrice:
-if (min (Y_vec) <= 0) { 
-    # Category labels "0", "-1" etc. are converted into the largest label
-    max_y = max (Y_vec);
-    Y_vec  = Y_vec  + (- Y_vec  + max_y + 1) * (Y_vec <= 0.0);
-}
-Y = table (seq (1, N, 1), as.vector(Y_vec));
-Y = as.matrix(as.data.frame.matrix(Y)) #this is required due to different 
table semantics
-
-K = ncol (Y) - 1;   # The number of  non-baseline categories
-
-lambda = (scale_lambda %*% matrix (1, 1, K)) * regularization;
-delta = 0.5 * sqrt (D) / max (sqrt (rowSums_X_sq));
-
-B = matrix (0, D, K);     ### LT = X %*% (SHIFT/SCALE TRANSFORM) %*% B;
-                                        ### LT = append (LT, matrix (0, rows = 
N, cols = 1));
-                                        ### LT = LT - rowMaxs (LT) %*% matrix 
(1, rows = 1, cols = K+1);
-P = matrix (1, N, K+1);   ### exp_LT = exp (LT);
-P = P / (K + 1);                        ### P =  exp_LT / (rowSums (exp_LT) 
%*% matrix (1, rows = 1, cols = K+1));
-obj = N * log (K + 1);                  ### obj = - sum (Y * LT) + sum (log 
(rowSums (exp_LT))) + 0.5 * sum (lambda * (B_new ^ 2));
-
-Grad = t(X) %*% (P [, 1:K] - Y [, 1:K]);
-if (intercept_status == 2) {
-    Grad = diag (as.vector(scale_X)) %*% Grad + shift_X %*% t(Grad [D, ]);
-}
-Grad = Grad + lambda * B;
-norm_Grad = sqrt (sum (Grad ^ 2));
-norm_Grad_initial = norm_Grad;
-
-if (maxinneriter == 0) {
-    maxinneriter = D * K;
-}
-iter = 1;
-
-# boolean for convergence check
-converge = (norm_Grad < tol) | (iter > maxiter);
-
-print (paste("-- Initially:  Objective = ", obj, ",  Gradient Norm = ", 
norm_Grad , ",  Trust Delta = " , delta));
-
-while (! converge)
-{
-       # SOLVE TRUST REGION SUB-PROBLEM
-       S = matrix (0, D, K);
-       R = - Grad;
-       V = R;
-       delta2 = delta ^ 2;
-       inneriter = 1;
-       norm_R2 = sum (R ^ 2);
-       innerconverge = (sqrt (norm_R2) <= psi * norm_Grad);
-       is_trust_boundary_reached = 0;
-
-       while (! innerconverge)
-       {
-           if (intercept_status == 2) {
-               ssX_V = diag (as.vector(scale_X)) %*% V;
-               ssX_V [D, ] = ssX_V [D, ] + t(shift_X) %*% V;
-           } else {
-               ssX_V = V;
-           }
-        Q = P [, 1:K] * (X %*% ssX_V);
-        HV = t(X) %*% (Q - P [, 1:K] * (rowSums (Q) %*% matrix (1, 1, K)));
-        if (intercept_status == 2) {
-            HV = diag (as.vector(scale_X)) %*% HV + shift_X %*% HV [D, ];
-        }
-        HV = HV + lambda * V;
-               alpha = norm_R2 / sum (V * HV);
-               Snew = S + alpha * V;
-               norm_Snew2 = sum (Snew ^ 2);
-               if (norm_Snew2 <= delta2)
-               {
-                       S = Snew;
-                       R = R - alpha * HV;
-                       old_norm_R2 = norm_R2 
-                       norm_R2 = sum (R ^ 2);
-                       V = R + (norm_R2 / old_norm_R2) * V;
-                       innerconverge = (sqrt (norm_R2) <= psi * norm_Grad);
-               } else {
-               is_trust_boundary_reached = 1;
-                       sv = sum (S * V);
-                       v2 = sum (V ^ 2);
-                       s2 = sum (S ^ 2);
-                       rad = sqrt (sv ^ 2 + v2 * (delta2 - s2));
-                       if (sv >= 0) {
-                               alpha = (delta2 - s2) / (sv + rad);
-                       } else {
-                               alpha = (rad - sv) / v2;
-                       }
-                       S = S + alpha * V;
-                       R = R - alpha * HV;
-                       innerconverge = TRUE;
-               }
-           inneriter = inneriter + 1;
-           innerconverge = innerconverge | (inneriter > maxinneriter);
-       }  
-       
-       # END TRUST REGION SUB-PROBLEM
-       
-       # compute rho, update B, obtain delta
-       gs = sum (S * Grad);
-       qk = - 0.5 * (gs - sum (S * R));
-       B_new = B + S;
-       if (intercept_status == 2) {
-        ssX_B_new = diag (as.vector(scale_X)) %*% B_new;
-        ssX_B_new [D, ] = ssX_B_new [D, ] + t(shift_X) %*% B_new;
-    } else {
-        ssX_B_new = B_new;
-    }
-    
-    LT = as.matrix(cbind ((X %*% ssX_B_new), matrix (0, N, 1)));
-    LT = LT - rowMaxs (LT) %*% matrix (1, 1, K+1);
-    exp_LT = exp (LT);
-    P_new  = exp_LT / (rowSums (exp_LT) %*% matrix (1, 1, K+1));
-    obj_new = - sum (Y * LT) + sum (log (rowSums (exp_LT))) + 0.5 * sum 
(lambda * (B_new ^ 2));
-       
-       # Consider updating LT in the inner loop
-       # Consider the big "obj" and "obj_new" rounding-off their small 
difference below:
-
-       actred = (obj - obj_new);
-       
-       rho = actred / qk;
-       is_rho_accepted = (rho > eta0);
-       snorm = sqrt (sum (S ^ 2));
-
-       if (iter == 1) {
-          delta = min (delta, snorm);
-       }
-
-       alpha2 = obj_new - obj - gs;
-       if (alpha2 <= 0) {
-          alpha = sigma3;
-       } 
-       else {
-          alpha = max (sigma1, -0.5 * gs / alpha2);
-       }
-       
-       if (rho < eta0) {
-               delta = min (max (alpha, sigma1) * snorm, sigma2 * delta);
-       }
-       else {
-               if (rho < eta1) {
-                       delta = max (sigma1 * delta, min (alpha * snorm, sigma2 
* delta));
-               }
-               else { 
-                       if (rho < eta2) {
-                               delta = max (sigma1 * delta, min (alpha * 
snorm, sigma3 * delta));
-                       }
-                       else {
-                               delta = max (delta, min (alpha * snorm, sigma3 
* delta));
-                       }
-               }
-       } 
-       
-       if (is_trust_boundary_reached == 1)
-       {
-           print (paste("-- Outer Iteration " , iter , ": Had " , (inneriter - 
1) , " CG iterations, trust bound REACHED"));
-       } else {
-           print (paste("-- Outer Iteration " , iter , ": Had " , (inneriter - 
1) , " CG iterations"));
-       }
-       print (paste("   -- Obj.Reduction:  Actual = " , actred , ",  Predicted 
= " , qk , 
-              "  (A/P: " , (round (10000.0 * rho) / 10000.0) , "),  Trust 
Delta = " , delta));
-              
-       if (is_rho_accepted)
-       {
-               B = B_new;
-               P = P_new;
-               Grad = t(X) %*% (P [, 1:K] - Y [, 1:K]);
-               if (intercept_status == 2) {
-                   Grad = diag (as.vector(scale_X)) %*% Grad + shift_X %*% 
t(Grad [D, ]);
-               }
-               Grad = Grad + lambda * B;
-               norm_Grad = sqrt (sum (Grad ^ 2));
-               obj = obj_new;
-           print (paste("   -- New Objective = " , obj , ",  Beta Change Norm 
= " , snorm , ",  Gradient Norm = " , norm_Grad));
-       } 
-       
-       iter = iter + 1;
-       converge = ((norm_Grad < (tol * norm_Grad_initial)) | (iter > maxiter) |
-           ((is_trust_boundary_reached == 0) & (abs (actred) < (abs (obj) + 
abs (obj_new)) * 0.00000000000001)));
-    if (converge) { print ("Termination / Convergence condition satisfied."); 
} else { print (" "); }
-} 
-
-if (intercept_status == 2) {
-    B_out = diag (as.vector(scale_X)) %*% B;
-    B_out [D, ] = B_out [D, ] + t(shift_X) %*% B;
-} else {
-    B_out = B;
-}
-
-writeMM(as(B_out,"CsparseMatrix"), paste(args[5], "w", sep=""));

http://git-wip-us.apache.org/repos/asf/systemml/blob/98595c52/src/test/scripts/functions/codegen/Algorithm_MSVM.R
----------------------------------------------------------------------
diff --git a/src/test/scripts/functions/codegen/Algorithm_MSVM.R 
b/src/test/scripts/functions/codegen/Algorithm_MSVM.R
deleted file mode 100644
index 6cdce91..0000000
--- a/src/test/scripts/functions/codegen/Algorithm_MSVM.R
+++ /dev/null
@@ -1,133 +0,0 @@
-#-------------------------------------------------------------
-#
-# Licensed to the Apache Software Foundation (ASF) under one
-# or more contributor license agreements.  See the NOTICE file
-# distributed with this work for additional information
-# regarding copyright ownership.  The ASF licenses this file
-# to you under the Apache License, Version 2.0 (the
-# "License"); you may not use this file except in compliance
-# with the License.  You may obtain a copy of the License at
-# 
-#   http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing,
-# software distributed under the License is distributed on an
-# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-# KIND, either express or implied.  See the License for the
-# specific language governing permissions and limitations
-# under the License.
-#
-#-------------------------------------------------------------
-
-args <- commandArgs(TRUE)
-library("Matrix")
-
-X = readMM(paste(args[1], "X.mtx", sep=""));
-Y = readMM(paste(args[1], "Y.mtx", sep=""));
-intercept = as.integer(args[2]);
-epsilon = as.double(args[3]);
-lambda = 0.001;
-max_iterations = as.integer(args[4]);
-
-
-if(nrow(X) < 2)
-       stop("Stopping due to invalid inputs: Not possible to learn a 
classifier without at least 2 rows")
-
-lambda = 0.001
-num_samples = nrow(X)
-dimensions = ncol(X)
-num_features = ncol(X)
-
-min_y = min(Y)
-num_classes = max(Y)
-mod1 = Y %% 1
-mod1_should_be_nrow = sum(abs(mod1==0))
-       
-
-if (intercept == 1) {
-       ones  = matrix(1, num_samples, 1);
-       X = append(X, ones);
-}
-
-num_rows_in_w = num_features
-if(intercept == 1){
-       num_rows_in_w = num_rows_in_w + 1
-}
-w = matrix(0, num_rows_in_w, num_classes)
-
-debug_mat = matrix(-1, max_iterations, num_classes)
-for(iter_class in 1:num_classes){                
-       Y_local = 2 * (Y == iter_class) - 1
-       w_class = matrix(0, num_features, 1)
-       if (intercept == 1) {
-               zero_matrix = matrix(0, 1, 1);
-               w_class = t(append(t(w_class), zero_matrix));
-       }
- 
-       g_old = t(X) %*% Y_local
-       s = g_old
-
-       Xw = matrix(0, nrow(X), 1)
-       iter = 0
-       continue = 1
-       while(continue == 1)  {
-               # minimizing primal obj along direction s
-               step_sz = 0
-               Xd = X %*% s
-               wd = lambda * sum(w_class * s)
-               dd = lambda * sum(s * s)
-               continue1 = 1
-               while(continue1 == 1){
-                       tmp_Xw = Xw + step_sz*Xd
-                       out = 1 - Y_local * (tmp_Xw)
-                       sv = (out > 0)
-                       out = out * sv
-                       g = wd + step_sz*dd - sum(out * Y_local * Xd)
-                       h = dd + sum(Xd * sv * Xd)
-                       step_sz = step_sz - g/h
-                       if (g*g/h < 0.0000000001){
-                       continue1 = 0
-               }
-       }
- 
-               #update weights
-               w_class = w_class + step_sz*s
-               Xw = Xw + step_sz*Xd
- 
-               out = 1 - Y_local * Xw
-               sv = (out > 0)
-               out = sv * out
-               obj = 0.5 * sum(out * out) + lambda/2 * sum(w_class * w_class)
-               g_new = t(X) %*% (out * Y_local) - lambda * w_class
-
-               tmp = sum(s * g_old)
-  
-               train_acc = sum( (Y_local*(X%*%w_class))>= 0)/num_samples*100
-               print(paste("For class " , iter_class , " iteration " , iter , 
" training accuracy: " , train_acc))
-               debug_mat[iter+1,iter_class] = obj         
-   
-               if((step_sz*tmp < epsilon*obj) | (iter >= max_iterations-1)){
-                       continue = 0
-               }
- 
-               #non-linear CG step
-               be = sum(g_new * g_new)/sum(g_old * g_old)
-               s = be * s + g_new
-               g_old = g_new
-
-               if(sum(s^2) == 0){
-               continue = 0
-               }
-
-               iter = iter + 1
-       }
-
-  w[,iter_class] = as.matrix(w_class)
-}
-
-extra_model_params = matrix(0, 2, ncol(w))
-extra_model_params[1, 1] = intercept
-extra_model_params[2, 1] = dimensions
-w = t(cbind(t(w), t(extra_model_params)))
-
-writeMM(as(w,"CsparseMatrix"), paste(args[5], "w", sep=""));

http://git-wip-us.apache.org/repos/asf/systemml/blob/98595c52/src/test/scripts/functions/codegen/Algorithm_PNMF.R
----------------------------------------------------------------------
diff --git a/src/test/scripts/functions/codegen/Algorithm_PNMF.R 
b/src/test/scripts/functions/codegen/Algorithm_PNMF.R
deleted file mode 100644
index a2fbb57..0000000
--- a/src/test/scripts/functions/codegen/Algorithm_PNMF.R
+++ /dev/null
@@ -1,43 +0,0 @@
-#-------------------------------------------------------------
-#
-# Licensed to the Apache Software Foundation (ASF) under one
-# or more contributor license agreements.  See the NOTICE file
-# distributed with this work for additional information
-# regarding copyright ownership.  The ASF licenses this file
-# to you under the Apache License, Version 2.0 (the
-# "License"); you may not use this file except in compliance
-# with the License.  You may obtain a copy of the License at
-# 
-#   http://www.apache.org/licenses/LICENSE-2.0
-# 
-# Unless required by applicable law or agreed to in writing,
-# software distributed under the License is distributed on an
-# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-# KIND, either express or implied.  See the License for the
-# specific language governing permissions and limitations
-# under the License.
-#
-#-------------------------------------------------------------
-
-args <- commandArgs(TRUE)
-library("Matrix")
-
-X = readMM(paste(args[1], "X.mtx", sep=""));
-W = readMM(paste(args[1], "W.mtx", sep=""));
-H = readMM(paste(args[1], "H.mtx", sep=""));
-
-k = as.integer(args[2]);
-eps = as.double(args[3]);
-max_iter = as.integer(args[4]);
-iter = 1;
-
-while( iter < max_iter ) {
-   H = (H*(t(W)%*%(X/(W%*%H+eps)))) / (colSums(W)%*%matrix(1,1,ncol(H)));
-   W = (W*((X/(W%*%H+eps))%*%t(H))) / (matrix(1,nrow(W),1)%*%t(rowSums(H)));
-   obj = sum(W%*%H) - sum(X*log(W%*%H+eps));
-   print(paste("obj=", obj))
-   iter = iter + 1;
-}
-
-writeMM(as(W,"CsparseMatrix"), paste(args[5], "W", sep=""));
-writeMM(as(H,"CsparseMatrix"), paste(args[5], "H", sep=""));

Reply via email to