Added: systemml/site/docs/1.1.0/reference-guide-caffe2dml.html URL: http://svn.apache.org/viewvc/systemml/site/docs/1.1.0/reference-guide-caffe2dml.html?rev=1828046&view=auto ============================================================================== --- systemml/site/docs/1.1.0/reference-guide-caffe2dml.html (added) +++ systemml/site/docs/1.1.0/reference-guide-caffe2dml.html Fri Mar 30 04:31:05 2018 @@ -0,0 +1,1316 @@ +<!DOCTYPE html> +<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> +<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> +<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> +<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> + <head> + <title>Beginner's Guide for Caffe2DML users - SystemML 1.1.0</title> + <meta charset="utf-8"> + <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> + + <meta name="description" content="Beginner's Guide for Caffe2DML users"> + + <meta name="viewport" content="width=device-width"> + <link rel="stylesheet" href="css/bootstrap.min.css"> + <link rel="stylesheet" href="css/main.css"> + <link rel="stylesheet" href="css/pygments-default.css"> + <link rel="shortcut icon" href="img/favicon.png"> + </head> + <body> + <!--[if lt IE 7]> + <p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> + <![endif]--> + + <header class="navbar navbar-default navbar-fixed-top" id="topbar"> + <div class="container"> + <div class="navbar-header"> + <div class="navbar-brand brand projectlogo"> + <a href="http://systemml.apache.org/"><img class="logo" src="img/systemml-logo.png" alt="Apache SystemML" title="Apache SystemML"/></a> + </div> + <div class="navbar-brand brand projecttitle"> + <a href="http://systemml.apache.org/">Apache SystemML<sup id="trademark">â¢</sup></a><br/> + <span class="version">1.1.0</span> + </div> + <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target=".navbar-collapse"> + <span class="sr-only">Toggle navigation</span> + <span class="icon-bar"></span> + <span class="icon-bar"></span> + <span class="icon-bar"></span> + </button> + </div> + <nav class="navbar-collapse collapse"> + <ul class="nav navbar-nav navbar-right"> + <li><a href="index.html">Overview</a></li> + <li><a href="https://github.com/apache/systemml">GitHub</a></li> + <li class="dropdown"> + <a href="#" class="dropdown-toggle" data-toggle="dropdown">Documentation<b class="caret"></b></a> + <ul class="dropdown-menu" role="menu"> + <li><b>Running SystemML:</b></li> + <li><a href="https://github.com/apache/systemml">SystemML GitHub README</a></li> + <li><a href="spark-mlcontext-programming-guide.html">Spark MLContext</a></li> + <li><a href="spark-batch-mode.html">Spark Batch Mode</a> + <li><a href="hadoop-batch-mode.html">Hadoop Batch Mode</a> + <li><a href="standalone-guide.html">Standalone Guide</a></li> + <li><a href="jmlc.html">Java Machine Learning Connector (JMLC)</a> + <li class="divider"></li> + <li><b>Language Guides:</b></li> + <li><a href="dml-language-reference.html">DML Language Reference</a></li> + <li><a href="beginners-guide-to-dml-and-pydml.html">Beginner's Guide to DML and PyDML</a></li> + <li><a href="beginners-guide-python.html">Beginner's Guide for Python Users</a></li> + <li><a href="python-reference.html">Reference Guide for Python Users</a></li> + <li class="divider"></li> + <li><b>ML Algorithms:</b></li> + <li><a href="algorithms-reference.html">Algorithms Reference</a></li> + <li class="divider"></li> + <li><b>Tools:</b></li> + <li><a href="debugger-guide.html">Debugger Guide</a></li> + <li><a href="developer-tools-systemml.html">IDE Guide</a></li> + <li class="divider"></li> + <li><b>Other:</b></li> + <li><a href="contributing-to-systemml.html">Contributing to SystemML</a></li> + <li><a href="engine-dev-guide.html">Engine Developer Guide</a></li> + <li><a href="troubleshooting-guide.html">Troubleshooting Guide</a></li> + <li><a href="release-process.html">Release Process</a></li> + </ul> + </li> + + <li class="dropdown"> + <a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a> + <ul class="dropdown-menu" role="menu"> + <li><a href="./api/java/index.html">Java</a></li> + <li><a href="./api/python/index.html">Python</a></li> + </ul> + </li> + + <li class="dropdown"> + <a href="#" class="dropdown-toggle" data-toggle="dropdown">Issues<b class="caret"></b></a> + <ul class="dropdown-menu" role="menu"> + <li><b>JIRA:</b></li> + <li><a href="https://issues.apache.org/jira/browse/SYSTEMML">SystemML JIRA</a></li> + + </ul> + </li> + </ul> + </nav> + </div> + </header> + + <div class="container" id="content"> + + <h1 class="title">Beginner's Guide for Caffe2DML users</h1> + + + <!-- + +--> + +<ul id="markdown-toc"> + <li><a href="#layers-supported-in-caffe2dml" id="markdown-toc-layers-supported-in-caffe2dml">Layers supported in Caffe2DML</a> <ul> + <li><a href="#vision-layers" id="markdown-toc-vision-layers">Vision Layers</a> <ul> + <li><a href="#convolution-layer" id="markdown-toc-convolution-layer">Convolution Layer</a></li> + <li><a href="#pooling-layer" id="markdown-toc-pooling-layer">Pooling Layer</a></li> + <li><a href="#upsampling-layer" id="markdown-toc-upsampling-layer">Upsampling Layer</a></li> + <li><a href="#deconvolution-layer" id="markdown-toc-deconvolution-layer">Deconvolution Layer</a></li> + </ul> + </li> + <li><a href="#recurrent-layers" id="markdown-toc-recurrent-layers">Recurrent Layers</a> <ul> + <li><a href="#rnn-layer" id="markdown-toc-rnn-layer">RNN Layer</a></li> + <li><a href="#lstm-layer" id="markdown-toc-lstm-layer">LSTM Layer</a></li> + </ul> + </li> + <li><a href="#common-layers" id="markdown-toc-common-layers">Common Layers</a> <ul> + <li><a href="#inner-product--fully-connected-layer" id="markdown-toc-inner-product--fully-connected-layer">Inner Product / Fully Connected Layer</a></li> + <li><a href="#dropout-layer" id="markdown-toc-dropout-layer">Dropout Layer</a></li> + </ul> + </li> + <li><a href="#normalization-layers" id="markdown-toc-normalization-layers">Normalization Layers</a> <ul> + <li><a href="#batchnorm-layer" id="markdown-toc-batchnorm-layer">BatchNorm Layer</a></li> + </ul> + </li> + <li><a href="#activation--neuron-layers" id="markdown-toc-activation--neuron-layers">Activation / Neuron Layers</a> <ul> + <li><a href="#relu--rectified-linear-layer" id="markdown-toc-relu--rectified-linear-layer">ReLU / Rectified-Linear Layer</a></li> + <li><a href="#tanh-layer" id="markdown-toc-tanh-layer">TanH Layer</a></li> + <li><a href="#sigmoid-layer" id="markdown-toc-sigmoid-layer">Sigmoid Layer</a></li> + <li><a href="#threshold-layer" id="markdown-toc-threshold-layer">Threshold Layer</a></li> + </ul> + </li> + <li><a href="#utility-layers" id="markdown-toc-utility-layers">Utility Layers</a> <ul> + <li><a href="#eltwise-layer" id="markdown-toc-eltwise-layer">Eltwise Layer</a></li> + <li><a href="#concat-layer" id="markdown-toc-concat-layer">Concat Layer</a></li> + <li><a href="#softmax-layer" id="markdown-toc-softmax-layer">Softmax Layer</a></li> + </ul> + </li> + <li><a href="#loss-layers" id="markdown-toc-loss-layers">Loss Layers</a> <ul> + <li><a href="#softmax-with-loss-layer" id="markdown-toc-softmax-with-loss-layer">Softmax with Loss Layer</a></li> + <li><a href="#euclidean-layer" id="markdown-toc-euclidean-layer">Euclidean layer</a></li> + </ul> + </li> + </ul> + </li> + <li><a href="#frequently-asked-questions" id="markdown-toc-frequently-asked-questions">Frequently asked questions</a> <ul> + <li><a href="#what-is-the-purpose-of-caffe2dml-api-" id="markdown-toc-what-is-the-purpose-of-caffe2dml-api-">What is the purpose of Caffe2DML API ?</a></li> + <li><a href="#with-caffe2dml-does-systemml-now-require-caffe-to-be-installed-" id="markdown-toc-with-caffe2dml-does-systemml-now-require-caffe-to-be-installed-">With Caffe2DML, does SystemML now require Caffe to be installed ?</a></li> + <li><a href="#how-can-i-speedup-the-training-with-caffe2dml-" id="markdown-toc-how-can-i-speedup-the-training-with-caffe2dml-">How can I speedup the training with Caffe2DML ?</a></li> + <li><a href="#how-to-enable-gpu-support-in-caffe2dml-" id="markdown-toc-how-to-enable-gpu-support-in-caffe2dml-">How to enable GPU support in Caffe2DML ?</a></li> + <li><a href="#what-is-lrpolicy-in-the-solver-specification-" id="markdown-toc-what-is-lrpolicy-in-the-solver-specification-">What is lr_policy in the solver specification ?</a></li> + <li><a href="#how-do-i-regularize-weight-matrices-in-the-neural-network-" id="markdown-toc-how-do-i-regularize-weight-matrices-in-the-neural-network-">How do I regularize weight matrices in the neural network ?</a></li> + <li><a href="#how-to-set-batch-size-" id="markdown-toc-how-to-set-batch-size-">How to set batch size ?</a></li> + <li><a href="#how-to-set-maximum-number-of-iterations-for-training-" id="markdown-toc-how-to-set-maximum-number-of-iterations-for-training-">How to set maximum number of iterations for training ?</a></li> + <li><a href="#how-to-set-the-size-of-the-validation-dataset-" id="markdown-toc-how-to-set-the-size-of-the-validation-dataset-">How to set the size of the validation dataset ?</a></li> + <li><a href="#how-to-monitor-loss-via-command-line-" id="markdown-toc-how-to-monitor-loss-via-command-line-">How to monitor loss via command-line ?</a></li> + <li><a href="#how-to-pass-a-single-jpeg-image-to-caffe2dml-for-prediction-" id="markdown-toc-how-to-pass-a-single-jpeg-image-to-caffe2dml-for-prediction-">How to pass a single jpeg image to Caffe2DML for prediction ?</a></li> + <li><a href="#how-to-prepare-a-directory-of-jpeg-images-for-training-with-caffe2dml-" id="markdown-toc-how-to-prepare-a-directory-of-jpeg-images-for-training-with-caffe2dml-">How to prepare a directory of jpeg images for training with Caffe2DML ?</a></li> + <li><a href="#can-i-use-caffe2dml-via-scala-" id="markdown-toc-can-i-use-caffe2dml-via-scala-">Can I use Caffe2DML via Scala ?</a></li> + <li><a href="#how-can-i-get-summary-information-of-my-network-" id="markdown-toc-how-can-i-get-summary-information-of-my-network-">How can I get summary information of my network ?</a></li> + <li><a href="#how-can-i-view-the-script-generated-by-caffe2dml-" id="markdown-toc-how-can-i-view-the-script-generated-by-caffe2dml-">How can I view the script generated by Caffe2DML ?</a></li> + </ul> + </li> +</ul> + +<p><br /></p> + +<h1 id="layers-supported-in-caffe2dml">Layers supported in Caffe2DML</h1> + +<p>Caffe2DML to be as compatible with <a href="http://caffe.berkeleyvision.org/tutorial/layers.html">the Caffe specification</a> as possible. +The main differences are given below along with the usage guide that mirrors the Caffe specification.</p> + +<h2 id="vision-layers">Vision Layers</h2> + +<h3 id="convolution-layer">Convolution Layer</h3> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/conv2d_builtin.dml">nn/layers/conv2d_builtin.dml</a> +or <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/conv2d_depthwise.dml">nn/layers/conv2d_depthwise.dml</a> layer.</p> + +<p><strong>Required Parameters:</strong></p> + +<ul> + <li>num_output: the number of filters</li> + <li>kernel_size (or kernel_h and kernel_w): specifies height and width of each filter</li> +</ul> + +<p><strong>Optional Parameters:</strong></p> + +<ul> + <li>bias_term (default true): specifies whether to learn and apply a set of additive biases to the filter outputs</li> + <li>pad (or pad_h and pad_w) (default 0): specifies the number of pixels to (implicitly) add to each side of the input</li> + <li>stride (or stride_h and stride_w) (default 1): specifies the intervals at which to apply the filters to the input</li> + <li>group (g) (default 1): If g > 1, we restrict the connectivity of each filter to a subset of the input. +Specifically, the input and output channels are separated into g groups, +and the ith output group channels will be only connected to the ith input group channels. +Note: we only support depthwise convolution, hence <code>g</code> should be divisible by number of channels</li> +</ul> + +<p><strong>Parameters that are ignored:</strong></p> + +<ul> + <li>weight_filler: We use the heuristic by He et al., which limits the magnification of inputs/gradients +during forward/backward passes by scaling unit-Gaussian weights by a factor of sqrt(2/n), +under the assumption of relu neurons.</li> + <li>bias_filler: We use <code>constant bias_filler</code> with <code>value:0</code></li> +</ul> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + # learning rate and decay multipliers for the filters + param { lr_mult: 1 decay_mult: 1 } + # learning rate and decay multipliers for the biases + param { lr_mult: 2 decay_mult: 0 } + convolution_param { + num_output: 96 # learn 96 filters + kernel_size: 11 # each filter is 11x11 + stride: 4 # step 4 pixels between each filter application + weight_filler { + type: "xavier" # initialize the filters from a Gaussian + } + bias_filler { + type: "constant" # initialize the biases to zero (0) + value: 0 + } + } + } +</code></p> + +<h3 id="pooling-layer">Pooling Layer</h3> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/max_pool2d_builtin.dml">nn/layers/max_pool2d_builtin.dml</a> layer.</p> + +<p><strong>Required Parameters:</strong></p> + +<ul> + <li>kernel_size (or kernel_h and kernel_w): specifies height and width of each filter</li> +</ul> + +<p><strong>Optional Parameters:</strong> +- pool (default MAX): the pooling method. Currently, we only support MAX and AVE, not STOCHASTIC. +- pad (or pad_h and pad_w) (default 0): specifies the number of pixels to (implicitly) add to each side of the input +- stride (or stride_h and stride_w) (default 1): specifies the intervals at which to apply the filters to the input</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "pool1" + type: "Pooling" + bottom: "conv1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 # pool over a 3x3 region + stride: 2 # step two pixels (in the bottom blob) between pooling regions + } +} +</code></p> + +<h3 id="upsampling-layer">Upsampling Layer</h3> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/upsample2d.dml">nn/layers/upsample2d.dml</a> layer.</p> + +<p><strong>Required Parameters:</strong></p> + +<ul> + <li>size_h and size_w: specifies the upsampling factor for rows and columns.</li> +</ul> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "upsample1" + type: "Upsample" + bottom: "pool1" + top: "upsample1" + upsample_param { + size_h = 2 + size_w = 2 + } +} +</code></p> + +<h3 id="deconvolution-layer">Deconvolution Layer</h3> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/conv2d_transpose.dml">nn/layers/conv2d_transpose.dml</a> +or <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/conv2d_transpose_depthwise.dml">nn/layers/conv2d_transpose_depthwise.dml</a> layer.</p> + +<p><strong>Required Parameters:</strong></p> + +<ul> + <li>num_output: the number of filters</li> + <li>kernel_size (or kernel_h and kernel_w): specifies height and width of each filter</li> +</ul> + +<p><strong>Optional Parameters:</strong></p> + +<ul> + <li>bias_term (default true): specifies whether to learn and apply a set of additive biases to the filter outputs</li> + <li>pad (or pad_h and pad_w) (default 0): specifies the number of pixels to (implicitly) add to each side of the input</li> + <li>stride (or stride_h and stride_w) (default 1): specifies the intervals at which to apply the filters to the input</li> + <li>group (g) (default 1): If g > 1, we restrict the connectivity of each filter to a subset of the input. +Specifically, the input and output channels are separated into g groups, +and the ith output group channels will be only connected to the ith input group channels. +Note: we only support depthwise convolution, hence <code>g</code> should be divisible by number of channels</li> +</ul> + +<p><strong>Parameters that are ignored:</strong></p> + +<ul> + <li>weight_filler: We use the heuristic by He et al., which limits the magnification of inputs/gradients +during forward/backward passes by scaling unit-Gaussian weights by a factor of sqrt(2/n), +under the assumption of relu neurons.</li> + <li>bias_filler: We use <code>constant bias_filler</code> with <code>value:0</code></li> +</ul> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "upconv_d5c_u4a" + type: "Deconvolution" + bottom: "u5d" + top: "u4a" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 190 + bias_term: false + pad: 1 + kernel_size: 4 + group: 190 + stride: 2 + weight_filler { + type: "bilinear" + } + } +} +</code></p> + +<h2 id="recurrent-layers">Recurrent Layers</h2> + +<h3 id="rnn-layer">RNN Layer</h3> + +<p>In a simple RNN, the output of the previous timestep is fed back in as an additional input at the current timestep.</p> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/rnn.dml">nn/layers/rnn.dml</a> layer.</p> + +<p><strong>Required Parameters:</strong></p> + +<ul> + <li>num_output: number of output</li> + <li>return_sequences: Whether to return output at all timesteps, or just for the final timestep.</li> +</ul> + +<p><strong>Sample Usage:</strong> +<code> +layer { + top: "rnn_1" + recurrent_param { + return_sequences: false + num_output: 32 + } + type: "RNN" + name: "rnn_1" + bottom: "rnn_1_input" +} +</code></p> + +<h3 id="lstm-layer">LSTM Layer</h3> + +<p>In an LSTM, an internal cell state is maintained, additive +interactions operate over the cell state at each timestep, and +some amount of this cell state is exposed as output at each +timestep. Additionally, the output of the previous timestep is fed +back in as an additional input at the current timestep.</p> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/lstm.dml">nn/layers/lstm.dml</a> layer.</p> + +<p><strong>Required Parameters:</strong></p> + +<ul> + <li>num_output: number of output</li> + <li>return_sequences: Whether to return output at all timesteps, or just for the final timestep.</li> +</ul> + +<p><strong>Sample Usage:</strong> +<code> +layer { + top: "lstm_1" + recurrent_param { + return_sequences: false + num_output: 32 + } + type: "LSTM" + name: "lstm_1" + bottom: "lstm_1_input" +} +</code></p> + +<h2 id="common-layers">Common Layers</h2> + +<h3 id="inner-product--fully-connected-layer">Inner Product / Fully Connected Layer</h3> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/affine.dml">nn/layers/affine.dml</a> layer.</p> + +<p><strong>Required Parameters:</strong></p> + +<ul> + <li>num_output: the number of filters</li> +</ul> + +<p><strong>Parameters that are ignored:</strong> +- weight_filler (default type: ‘constant’ value: 0): We use the heuristic by He et al., which limits the magnification +of inputs/gradients during forward/backward passes by scaling unit-Gaussian weights by a factor of sqrt(2/n), under the +assumption of relu neurons. +- bias_filler (default type: ‘constant’ value: 0): We use the default type and value. +- bias_term (default true): specifies whether to learn and apply a set of additive biases to the filter outputs. We use <code>bias_term=true</code>.</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "fc8" + type: "InnerProduct" + # learning rate and decay multipliers for the weights + param { lr_mult: 1 decay_mult: 1 } + # learning rate and decay multipliers for the biases + param { lr_mult: 2 decay_mult: 0 } + inner_product_param { + num_output: 1000 + weight_filler { + type: "xavier" + } + bias_filler { + type: "constant" + value: 0 + } + } + bottom: "fc7" + top: "fc8" +} +</code></p> + +<h3 id="dropout-layer">Dropout Layer</h3> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/dropout.dml">nn/layers/dropout.dml</a> layer.</p> + +<p><strong>Optional Parameters:</strong></p> + +<ul> + <li>dropout_ratio(default = 0.5): dropout ratio</li> +</ul> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "drop1" + type: "Dropout" + bottom: "relu3" + top: "drop1" + dropout_param { + dropout_ratio: 0.5 + } +} +</code></p> + +<h2 id="normalization-layers">Normalization Layers</h2> + +<h3 id="batchnorm-layer">BatchNorm Layer</h3> + +<p>This is used in combination with Scale layer.</p> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/batch_norm2d.dml">nn/layers/batch_norm2d.dml</a> layer.</p> + +<p><strong>Optional Parameters:</strong> +- moving_average_fraction (default = .999): Momentum value for moving averages. Typical values are in the range of [0.9, 0.999]. +- eps (default = 1e-5): Smoothing term to avoid divide by zero errors. Typical values are in the range of [1e-5, 1e-3].</p> + +<p><strong>Parameters that are ignored:</strong> +- use_global_stats: If false, normalization is performed over the current mini-batch +and global statistics are accumulated (but not yet used) by a moving average. +If true, those accumulated mean and variance values are used for the normalization. +By default, it is set to false when the network is in the training phase and true when the network is in the testing phase.</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + bottom: "conv1" + top: "conv1" + name: "bn_conv1" + type: "BatchNorm" + batch_norm_param { + use_global_stats: true + } +} +layer { + bottom: "conv1" + top: "conv1" + name: "scale_conv1" + type: "Scale" + scale_param { + bias_term: true + } +} +</code></p> + +<h2 id="activation--neuron-layers">Activation / Neuron Layers</h2> + +<p>In general, activation / Neuron layers are element-wise operators, taking one bottom blob and producing one top blob of the same size. +In the layers below, we will ignore the input and out sizes as they are identical.</p> + +<h3 id="relu--rectified-linear-layer">ReLU / Rectified-Linear Layer</h3> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/relu.dml">nn/layers/relu.dml</a> layer.</p> + +<p><strong>Parameters that are ignored:</strong> +- negative_slope (default 0): specifies whether to leak the negative part by multiplying it with the slope value rather than setting it to 0.</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +</code></p> + +<h3 id="tanh-layer">TanH Layer</h3> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/tanh.dml">nn/layers/tanh.dml</a> layer.</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "tanh1" + type: "TanH" + bottom: "conv1" + top: "conv1" +} +</code></p> + +<h3 id="sigmoid-layer">Sigmoid Layer</h3> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/sigmoid.dml">nn/layers/sigmoid.dml</a> layer.</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "sigmoid1" + type: "Sigmoid" + bottom: "conv1" + top: "conv1" +} +</code></p> + +<h3 id="threshold-layer">Threshold Layer</h3> + +<p>Computes <code>X > threshold</code></p> + +<p><strong>Parameters that are ignored:</strong> +- threshold (default: 0):Strictly positive values</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "threshold1" + type: "Threshold" + bottom: "conv1" + top: "conv1" +} +</code></p> + +<h2 id="utility-layers">Utility Layers</h2> + +<h3 id="eltwise-layer">Eltwise Layer</h3> + +<p>Element-wise operations such as product or sum between two blobs.</p> + +<p><strong>Parameters that are ignored:</strong> +- operation(default: SUM): element-wise operation. only SUM supported for now. +- table_prod_grad(default: true): Whether to use an asymptotically slower (for >2 inputs) but stabler method +of computing the gradient for the PROD operation. (No effect for SUM op.)</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + bottom: "res2a_branch1" + bottom: "res2a_branch2c" + top: "res2a" + name: "res2a" + type: "Eltwise" +} +</code></p> + +<h3 id="concat-layer">Concat Layer</h3> + +<p><strong>Inputs:</strong> +- <code>n_i * c_i * h * w</code> for each input blob i from 1 to K.</p> + +<p><strong>Outputs:</strong> +- out: Outputs, of shape + - if axis = 0: <code>(n_1 + n_2 + ... + n_K) * c_1 * h * w</code>, and all input <code>c_i</code> should be the same. + - if axis = 1: <code>n_1 * (c_1 + c_2 + ... + c_K) * h * w</code>, and all input <code>n_i</code> should be the same.</p> + +<p><strong>Optional Parameters:</strong> +- axis (default: 1): The axis along which to concatenate.</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "concat_d5cc_u5a-b" + type: "Concat" + bottom: "u5a" + bottom: "d5c" + top: "u5b" +} +</code></p> + +<h3 id="softmax-layer">Softmax Layer</h3> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/softmax.dml">nn/layers/softmax.dml</a> layer.</p> + +<p>Computes the forward pass for a softmax classifier. The inputs +are interpreted as unnormalized, log-probabilities for each of +N examples, and the softmax function transforms them to normalized +probabilities.</p> + +<p>This can be interpreted as a generalization of the sigmoid +function to multiple classes.</p> + +<p><code>probs_ij = e^scores_ij / sum(e^scores_i)</code></p> + +<p><strong>Parameters that are ignored:</strong> +- axis (default: 1): The axis along which to perform the softmax.</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "sm" + type: "Softmax" + bottom: "score" + top: "sm" +} +</code></p> + +<h2 id="loss-layers">Loss Layers</h2> + +<p>Loss drives learning by comparing an output to a target and assigning cost to minimize. +The loss itself is computed by the forward pass and the gradient w.r.t. to the loss is computed by the backward pass.</p> + +<h3 id="softmax-with-loss-layer">Softmax with Loss Layer</h3> + +<p>The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. +Itâs conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient.</p> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/softmax.dml">nn/layers/softmax.dml</a> +and <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/cross_entropy_loss.dml">nn/layers/cross_entropy_loss.dml</a> +for classification problems.</p> + +<p>For image segmentation problems, invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/softmax2d_loss.dml">nn/layers/softmax2d_loss.dml</a> layer.</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "ip2" + bottom: "label" + top: "loss" +} +</code></p> + +<h3 id="euclidean-layer">Euclidean layer</h3> + +<p>The Euclidean loss layer computes the sum of squares of differences of its two inputs.</p> + +<p>Invokes <a href="https://github.com/apache/systemml/blob/master/scripts/nn/layers/l2_loss.dml">nn/layers/l2_loss.dml</a> layer.</p> + +<p><strong>Sample Usage:</strong> +<code> +layer { + name: "loss" + type: "EuclideanLoss" + bottom: "ip2" + bottom: "label" + top: "loss" +} +</code></p> + +<h1 id="frequently-asked-questions">Frequently asked questions</h1> + +<h4 id="what-is-the-purpose-of-caffe2dml-api-">What is the purpose of Caffe2DML API ?</h4> + +<p>Most deep learning experts are more likely to be familiar with the Caffe’s specification +rather than DML language. For these users, the Caffe2DML API reduces the learning curve to using SystemML. +Instead of requiring the users to write a DML script for training, fine-tuning and testing the model, +Caffe2DML takes as an input a network and solver specified in the Caffe specification +and automatically generates the corresponding DML.</p> + +<h4 id="with-caffe2dml-does-systemml-now-require-caffe-to-be-installed-">With Caffe2DML, does SystemML now require Caffe to be installed ?</h4> + +<p>Absolutely not. We only support Caffe’s API for convenience of the user as stated above. +Since the Caffe’s API is specified in the protobuf format, we are able to generate the java parser files +and donot require Caffe to be installed. This is also true for Tensorboard feature of Caffe2DML.</p> + +<p><code> +Dml.g4 ---> antlr ---> DmlLexer.java, DmlListener.java, DmlParser.java ---> parse foo.dml +caffe.proto ---> protoc ---> target/generated-sources/caffe/Caffe.java ---> parse caffe_network.proto, caffe_solver.proto +</code></p> + +<p>Again, the SystemML engine doesnot invoke (or depend on) Caffe for any of its runtime operators. +Since the grammar files for the respective APIs (i.e. <code>caffe.proto</code>) are used by SystemML, +we include their licenses in our jar files.</p> + +<h4 id="how-can-i-speedup-the-training-with-caffe2dml-">How can I speedup the training with Caffe2DML ?</h4> + +<ul> + <li>Enable native BLAS to improve the performance of CP convolution and matrix multiplication operators. +If you are using OpenBLAS, please ensure that it was built with <code>USE_OPENMP</code> flag turned on. +For more detail see http://apache.github.io/systemml/native-backend</li> +</ul> + +<p><code>python +caffe2dmlObject.setConfigProperty("sysml.native.blas", "auto") +</code></p> + +<ul> + <li>Turn on the experimental codegen feature. This should help reduce unnecessary allocation cost after every binary operation.</li> +</ul> + +<p><code>python +caffe2dmlObject.setConfigProperty("sysml.codegen.enabled", "true").setConfigProperty("sysml.codegen.plancache", "true") +</code></p> + +<ul> + <li> + <p>Tuned the <a href="http://spark.apache.org/docs/latest/tuning.html#garbage-collection-tuning">Garbage Collector</a>.</p> + </li> + <li> + <p>Enable GPU support (described below).</p> + </li> +</ul> + +<h4 id="how-to-enable-gpu-support-in-caffe2dml-">How to enable GPU support in Caffe2DML ?</h4> + +<p>To be consistent with other mllearn algorithms, we recommend that you use following method instead of setting +the <code>solver_mode</code> in solver file.</p> + +<p><code>python +# The below method tells SystemML optimizer to use a GPU-enabled instruction if the operands fit in the GPU memory +caffe2dmlObject.setGPU(True) +# The below method tells SystemML optimizer to always use a GPU-enabled instruction irrespective of the memory requirement +caffe2dmlObject.setForceGPU(True) +</code></p> + +<h4 id="what-is-lrpolicy-in-the-solver-specification-">What is lr_policy in the solver specification ?</h4> + +<p>The parameter <code>lr_policy</code> specifies the learning rate decay policy. Caffe2DML supports following policies: +- <code>fixed</code>: always return <code>base_lr</code>. +- <code>step</code>: return <code>base_lr * gamma ^ (floor(iter / step))</code> +- <code>exp</code>: return <code>base_lr * gamma ^ iter</code> +- <code>inv</code>: return <code>base_lr * (1 + gamma * iter) ^ (- power)</code> +- <code>poly</code>: the effective learning rate follows a polynomial decay, to be zero by the max_iter. return <code>base_lr (1 - iter/max_iter) ^ (power)</code> +- <code>sigmoid</code>: the effective learning rate follows a sigmod decay return b<code>ase_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))</code></p> + +<p>The parameters <code>base_lr</code> and <code>lr_policy</code> are required and other parameters are optional: +<code> +lr_policy: "step" # learning rate policy: drop the learning rate in "steps" + # by a factor of gamma every stepsize iterations (required) +base_lr: 0.01 # begin training at a learning rate of 0.01 (required) +gamma: 0.95 # drop the learning rate by the given factor (optional, default value: 0.95) +stepsize: 100000 # drop the learning rate every 100K iterations (optional, default value: 100000) +power: 0.75 # (optional, default value: 0.75) +</code></p> + +<h4 id="how-do-i-regularize-weight-matrices-in-the-neural-network-">How do I regularize weight matrices in the neural network ?</h4> + +<p>The user can specify the type of regularization using the parameter <code>regularization_type</code> in the solver file. +The valid values are <code>L2</code> (default) and <code>L1</code>. +Caffe2DML then invokes the backward function of the layers <code>nn/layers/l2_reg.dml</code> and <code>nn/layers/l1_reg.dml</code> respectively. +The regularation strength is set using the property <code>weight_decay</code> in the solver file: +<code> +regularization_type: "L2" +weight_decay: 5e-4 +</code></p> + +<p>Like learning rate, you can customize the regularation strength of a given layer by specifying the property <code>decay_mult</code> in the network file: +<code> +param { lr_mult: 1 decay_mult: 1 } +</code></p> + +<h4 id="how-to-set-batch-size-">How to set batch size ?</h4> + +<p>Batch size is set in <code>data_param</code> of the Data layer:</p> + +<p><code> +layer { + name: "mnist" + type: "Data" + top: "data" + top: "label" + data_param { + source: "mnist_train" + batch_size: 64 + backend: LMDB + } +} +</code></p> + +<h4 id="how-to-set-maximum-number-of-iterations-for-training-">How to set maximum number of iterations for training ?</h4> + +<p>The maximum number of iterations can be set in the solver specification</p> + +<p><code>bash +# The maximum number of iterations +max_iter: 2000 +</code></p> + +<h4 id="how-to-set-the-size-of-the-validation-dataset-">How to set the size of the validation dataset ?</h4> + +<p>The size of the validation dataset is determined by the parameters <code>test_iter</code> and the batch size. For example: If the batch size is 64 and +<code>test_iter</code> is 10, then the validation size is 640. This setting generates following DML code internally:</p> + +<p><code>python +num_images = nrow(y_full) +BATCH_SIZE = 64 +num_validation = 10 * BATCH_SIZE +X = X_full[(num_validation+1):num_images,]; y = y_full[(num_validation+1):num_images,] +X_val = X_full[1:num_validation,]; y_val = y_full[1:num_validation,] +num_images = nrow(y) +</code></p> + +<h4 id="how-to-monitor-loss-via-command-line-">How to monitor loss via command-line ?</h4> + +<p>To monitor loss, please set following parameters in the solver specification</p> + +<p><code> +# Display training loss and accuracy every 100 iterations +display: 100 +# Carry out validation every 500 training iterations and display validation loss and accuracy. +test_iter: 10 +test_interval: 500 +</code></p> + +<h4 id="how-to-pass-a-single-jpeg-image-to-caffe2dml-for-prediction-">How to pass a single jpeg image to Caffe2DML for prediction ?</h4> + +<p>To convert a jpeg into NumPy matrix, you can use the <a href="https://pillow.readthedocs.io/">pillow package</a> and +SystemML’s <code>convertImageToNumPyArr</code> utility function. The below pyspark code demonstrates the usage:</p> + +<p><code>python +from PIL import Image +import systemml as sml +from systemml.mllearn import Caffe2DML +img_shape = (3, 224, 224) +input_image = sml.convertImageToNumPyArr(Image.open(img_file_path), img_shape=img_shape) +resnet = Caffe2DML(sqlCtx, solver='ResNet_50_solver.proto', weights='ResNet_50_pretrained_weights', input_shape=img_shape) +resnet.predict(input_image) +</code></p> + +<h4 id="how-to-prepare-a-directory-of-jpeg-images-for-training-with-caffe2dml-">How to prepare a directory of jpeg images for training with Caffe2DML ?</h4> + +<p>The below pyspark code assumes that the input dataset has 2 labels <code>cat</code> and <code>dogs</code> and the filename has these labels as prefix. +We iterate through the directory and convert each jpeg image into pyspark.ml.linalg.Vector using pyspark. +These vectors are stored as DataFrame and randomized using Spark SQL’s <code>orderBy(rand())</code> function. +The DataFrame is then saved in parquet format to reduce the cost of preprocessing for repeated training.</p> + +<p><code>python +from systemml.mllearn import Caffe2DML +from pyspark.sql import SQLContext +import numpy as np +import urllib, os, scipy.ndimage +from pyspark.ml.linalg import Vectors +from pyspark import StorageLevel +import systemml as sml +from pyspark.sql.functions import rand +# ImageNet specific parameters +img_shape = (3, 224, 224) +train_dir = '/home/biuser/dogs_vs_cats/train' +def getLabelFeatures(filename): + from PIL import Image + vec = Vectors.dense(sml.convertImageToNumPyArr(Image.open(os.path.join(train_dir, filename)), img_shape=img_shape)[0,:]) + if filename.lower().startswith('cat'): + return (1, vec) + elif filename.lower().startswith('dog'): + return (2, vec) + else: + raise ValueError('Expected the filename to start with either cat or dog') +list_jpeg_files = os.listdir(train_dir) +# 10 files per partition +train_df = sc.parallelize(list_jpeg_files, int(len(list_jpeg_files)/10)).map(lambda filename : getLabelFeatures(filename)).toDF(['label', 'features']).orderBy(rand()) +# Optional: but helps seperates conversion-related from training +# Alternatively, this dataframe can be passed directly to `caffe2dml_model.fit(train_df)` +train_df.write.parquet('kaggle-cats-dogs.parquet') +</code></p> + +<p>An alternative way to load images into a PySpark DataFrame for prediction, is to use MLLib’s LabeledPoint class:</p> + +<p><code>python +list_jpeg_files = os.listdir(train_dir) +train_df = sc.parallelize(list_jpeg_files, int(len(list_jpeg_files)/10)).map(lambda filename : LabeledPoint(0, sml.convertImageToNumPyArr(Image.open(os.path.join(train_dir, filename)), img_shape=img_shape)[0,:])).toDF().select('features') +# Note: convertVectorColumnsToML has an additional serialization cost +train_df = MLUtils.convertVectorColumnsToML(train_df) +</code></p> + +<h4 id="can-i-use-caffe2dml-via-scala-">Can I use Caffe2DML via Scala ?</h4> + +<p>Though we recommend using Caffe2DML via its Python interfaces, it is possible to use it by creating an object of the class +<code>org.apache.sysml.api.dl.Caffe2DML</code>. It is important to note that Caffe2DML’s scala API is packaged in <code>systemml-*-extra.jar</code>.</p> + +<h4 id="how-can-i-get-summary-information-of-my-network-">How can I get summary information of my network ?</h4> + +<p><code>python +lenet.summary() +</code></p> + +<p>Output:</p> + +<p><code> ++-----+---------------+--------------+------------+---------+-----------+---------+ +| Name| Type| Output| Weight| Bias| Top| Bottom| ++-----+---------------+--------------+------------+---------+-----------+---------+ +|mnist| Data| (, 1, 28, 28)| | |mnist,mnist| | +|conv1| Convolution|(, 32, 28, 28)| [32 X 25]| [32 X 1]| conv1| mnist| +|relu1| ReLU|(, 32, 28, 28)| | | relu1| conv1| +|pool1| Pooling|(, 32, 14, 14)| | | pool1| relu1| +|conv2| Convolution|(, 64, 14, 14)| [64 X 800]| [64 X 1]| conv2| pool1| +|relu2| ReLU|(, 64, 14, 14)| | | relu2| conv2| +|pool2| Pooling| (, 64, 7, 7)| | | pool2| relu2| +| ip1| InnerProduct| (, 512, 1, 1)|[3136 X 512]|[1 X 512]| ip1| pool2| +|relu3| ReLU| (, 512, 1, 1)| | | relu3| ip1| +|drop1| Dropout| (, 512, 1, 1)| | | drop1| relu3| +| ip2| InnerProduct| (, 10, 1, 1)| [512 X 10]| [1 X 10]| ip2| drop1| +| loss|SoftmaxWithLoss| (, 10, 1, 1)| | | loss|ip2,mnist| ++-----+---------------+--------------+------------+---------+-----------+---------+ +</code></p> + +<h4 id="how-can-i-view-the-script-generated-by-caffe2dml-">How can I view the script generated by Caffe2DML ?</h4> + +<p>To view the generated DML script (and additional debugging information), please set the <code>debug</code> parameter to True.</p> + +<p><code>python +lenet.set(debug=True) +</code></p> + +<p>Output: +``` +001|debug = TRUE +002|source(“nn/layers/softmax.dml”) as softmax +003|source(“nn/layers/cross_entropy_loss.dml”) as cross_entropy_loss +004|source(“nn/layers/conv2d_builtin.dml”) as conv2d_builtin +005|source(“nn/layers/relu.dml”) as relu +006|source(“nn/layers/max_pool2d_builtin.dml”) as max_pool2d_builtin +007|source(“nn/layers/affine.dml”) as affine +008|source(“nn/layers/dropout.dml”) as dropout +009|source(“nn/optim/sgd_momentum.dml”) as sgd_momentum +010|source(“nn/layers/l2_reg.dml”) as l2_reg +011|X_full_path = ifdef($X, “ “) +012|X_full = read(X_full_path) +013|y_full_path = ifdef($y, “ “) +014|y_full = read(y_full_path) +015|num_images = nrow(y_full) +016|# Convert to one-hot encoding (Assumption: 1-based labels) +017|y_full = table(seq(1,num_images,1), y_full, num_images, 10) +018|weights = ifdef($weights, “ “) +019|# Initialize the layers and solvers +020|X_full = X_full * 0.00390625 +021|BATCH_SIZE = 64 +022|[conv1_weight,conv1_bias] = conv2d_builtin::init(32,1,5,5) +023|[conv2_weight,conv2_bias] = conv2d_builtin::init(64,32,5,5) +024|[ip1_weight,ip1_bias] = affine::init(3136,512) +025|[ip2_weight,ip2_bias] = affine::init(512,10) +026|conv1_weight_v = sgd_momentum::init(conv1_weight) +027|conv1_bias_v = sgd_momentum::init(conv1_bias) +028|conv2_weight_v = sgd_momentum::init(conv2_weight) +029|conv2_bias_v = sgd_momentum::init(conv2_bias) +030|ip1_weight_v = sgd_momentum::init(ip1_weight) +031|ip1_bias_v = sgd_momentum::init(ip1_bias) +032|ip2_weight_v = sgd_momentum::init(ip2_weight) +033|ip2_bias_v = sgd_momentum::init(ip2_bias) +034|num_validation = 10 * BATCH_SIZE +035|# Sanity check to ensure that validation set is not too large +036|if(num_validation > ceil(0.3 * num_images)) { +037| max_test_iter = floor(ceil(0.3 * num_images) / BATCH_SIZE) +038| stop(“Too large validation size. Please reduce test_iter to “ + max_test_iter) +039|} +040|X = X_full[(num_validation+1):num_images,]; y = y_full[(num_validation+1):num_images,]; X_val = X_full[1:num_validation,]; y_val = y_full[1:num_validation,]; num_images = nrow(y) +041|num_iters_per_epoch = ceil(num_images / BATCH_SIZE) +042|max_epochs = ceil(2000 / num_iters_per_epoch) +043|iter = 0 +044|lr = 0.01 +045|for(e in 1:max_epochs) { +046| for(i in 1:num_iters_per_epoch) { +047| beg = ((i-1) * BATCH_SIZE) %% num_images + 1; end = min(beg + BATCH_SIZE - 1, num_images); Xb = X[beg:end,]; yb = y[beg:end,]; +048| iter = iter + 1 +049| # Perform forward pass +050| [out3,ignoreHout_3,ignoreWout_3] = conv2d_builtin::forward(Xb,conv1_weight,conv1_bias,1,28,28,5,5,1,1,2,2) +051| out4 = relu::forward(out3) +052| [out5,ignoreHout_5,ignoreWout_5] = max_pool2d_builtin::forward(out4,32,28,28,2,2,2,2,0,0) +053| [out6,ignoreHout_6,ignoreWout_6] = conv2d_builtin::forward(out5,conv2_weight,conv2_bias,32,14,14,5,5,1,1,2,2) +054| out7 = relu::forward(out6) +055| [out8,ignoreHout_8,ignoreWout_8] = max_pool2d_builtin::forward(out7,64,14,14,2,2,2,2,0,0) +056| out9 = affine::forward(out8,ip1_weight,ip1_bias) +057| out10 = relu::forward(out9) +058| [out11,mask11] = dropout::forward(out10,0.5,-1) +059| out12 = affine::forward(out11,ip2_weight,ip2_bias) +060| out13 = softmax::forward(out12) +061| # Perform backward pass +062| dProbs = cross_entropy_loss::backward(out13,yb); dOut13 = softmax::backward(dProbs,out12); dOut13_12 = dOut13; dOut13_2 = dOut13; +063| [dOut12,ip2_dWeight,ip2_dBias] = affine::backward(dOut13_12,out11,ip2_weight,ip2_bias); dOut12_11 = dOut12; +064| dOut11 = dropout::backward(dOut12_11,out10,0.5,mask11); dOut11_10 = dOut11; +065| dOut10 = relu::backward(dOut11_10,out9); dOut10_9 = dOut10; +066| [dOut9,ip1_dWeight,ip1_dBias] = affine::backward(dOut10_9,out8,ip1_weight,ip1_bias); dOut9_8 = dOut9; +067| dOut8 = max_pool2d_builtin::backward(dOut9_8,7,7,out7,64,14,14,2,2,2,2,0,0); dOut8_7 = dOut8; +068| dOut7 = relu::backward(dOut8_7,out6); dOut7_6 = dOut7; +069| [dOut6,conv2_dWeight,conv2_dBias] = conv2d_builtin::backward(dOut7_6,14,14,out5,conv2_weight,conv2_bias,32,14,14,5,5,1,1,2,2); dOut6_5 = dOut6; +070| dOut5 = max_pool2d_builtin::backward(dOut6_5,14,14,out4,32,28,28,2,2,2,2,0,0); dOut5_4 = dOut5; +071| dOut4 = relu::backward(dOut5_4,out3); dOut4_3 = dOut4; +072| [dOut3,conv1_dWeight,conv1_dBias] = conv2d_builtin::backward(dOut4_3,28,28,Xb,conv1_weight,conv1_bias,1,28,28,5,5,1,1,2,2); dOut3_2 = dOut3; +073| # Update the parameters +074| conv1_dWeight_reg = l2_reg::backward(conv1_weight, 5.000000237487257E-4) +075| conv1_dWeight = conv1_dWeight + conv1_dWeight_reg +076| [conv1_weight,conv1_weight_v] = sgd_momentum::update(conv1_weight,conv1_dWeight,(lr * 1.0),0.8999999761581421,conv1_weight_v) +077| [conv1_bias,conv1_bias_v] = sgd_momentum::update(conv1_bias,conv1_dBias,(lr * 2.0),0.8999999761581421,conv1_bias_v) +078| conv2_dWeight_reg = l2_reg::backward(conv2_weight, 5.000000237487257E-4) +079| conv2_dWeight = conv2_dWeight + conv2_dWeight_reg +080| [conv2_weight,conv2_weight_v] = sgd_momentum::update(conv2_weight,conv2_dWeight,(lr * 1.0),0.8999999761581421,conv2_weight_v) +081| [conv2_bias,conv2_bias_v] = sgd_momentum::update(conv2_bias,conv2_dBias,(lr * 2.0),0.8999999761581421,conv2_bias_v) +082| ip1_dWeight_reg = l2_reg::backward(ip1_weight, 5.000000237487257E-4) +083| ip1_dWeight = ip1_dWeight + ip1_dWeight_reg +084| [ip1_weight,ip1_weight_v] = sgd_momentum::update(ip1_weight,ip1_dWeight,(lr * 1.0),0.8999999761581421,ip1_weight_v) +085| [ip1_bias,ip1_bias_v] = sgd_momentum::update(ip1_bias,ip1_dBias,(lr * 2.0),0.8999999761581421,ip1_bias_v) +086| ip2_dWeight_reg = l2_reg::backward(ip2_weight, 5.000000237487257E-4) +087| ip2_dWeight = ip2_dWeight + ip2_dWeight_reg +088| [ip2_weight,ip2_weight_v] = sgd_momentum::update(ip2_weight,ip2_dWeight,(lr * 1.0),0.8999999761581421,ip2_weight_v) +089| [ip2_bias,ip2_bias_v] = sgd_momentum::update(ip2_bias,ip2_dBias,(lr * 2.0),0.8999999761581421,ip2_bias_v) +090| # Compute training loss & accuracy +091| if(iter %% 100 == 0) { +092| loss = 0 +093| accuracy = 0 +094| tmp_loss = cross_entropy_loss::forward(out13,yb) +095| loss = loss + tmp_loss +096| true_yb = rowIndexMax(yb) +097| predicted_yb = rowIndexMax(out13) +098| accuracy = mean(predicted_yb == true_yb)<em>100 +099| training_loss = loss +100| training_accuracy = accuracy +101| print(“Iter:” + iter + “, training loss:” + training_loss + “, training accuracy:” + training_accuracy) +102| if(debug) { +103| num_rows_error_measures = min(10, ncol(yb)) +104| error_measures = matrix(0, rows=num_rows_error_measures, cols=5) +105| for(class_i in 1:num_rows_error_measures) { +106| tp = sum( (true_yb == predicted_yb) * (true_yb == class_i) ) +107| tp_plus_fp = sum( (predicted_yb == class_i) ) +108| tp_plus_fn = sum( (true_yb == class_i) ) +109| precision = tp / tp_plus_fp +110| recall = tp / tp_plus_fn +111| f1Score = 2</em>precision<em>recall / (precision+recall) +112| error_measures[class_i,1] = class_i +113| error_measures[class_i,2] = precision +114| error_measures[class_i,3] = recall +115| error_measures[class_i,4] = f1Score +116| error_measures[class_i,5] = tp_plus_fn +117| } +118| print(“class \tprecision\trecall \tf1-score\tnum_true_labels\n” + toString(error_measures, decimal=7, sep=”\t”)) +119| } +120| } +121| # Compute validation loss & accuracy +122| if(iter %% 500 == 0) { +123| loss = 0 +124| accuracy = 0 +125| validation_loss = 0 +126| validation_accuracy = 0 +127| for(iVal in 1:num_iters_per_epoch) { +128| beg = ((iVal-1) * BATCH_SIZE) %% num_validation + 1; end = min(beg + BATCH_SIZE - 1, num_validation); Xb = X_val[beg:end,]; yb = y_val[beg:end,]; +129| # Perform forward pass +130| [out3,ignoreHout_3,ignoreWout_3] = conv2d_builtin::forward(Xb,conv1_weight,conv1_bias,1,28,28,5,5,1,1,2,2) +131| out4 = relu::forward(out3) +132| [out5,ignoreHout_5,ignoreWout_5] = max_pool2d_builtin::forward(out4,32,28,28,2,2,2,2,0,0) +133| [out6,ignoreHout_6,ignoreWout_6] = conv2d_builtin::forward(out5,conv2_weight,conv2_bias,32,14,14,5,5,1,1,2,2) +134| out7 = relu::forward(out6) +135| [out8,ignoreHout_8,ignoreWout_8] = max_pool2d_builtin::forward(out7,64,14,14,2,2,2,2,0,0) +136| out9 = affine::forward(out8,ip1_weight,ip1_bias) +137| out10 = relu::forward(out9) +138| [out11,mask11] = dropout::forward(out10,0.5,-1) +139| out12 = affine::forward(out11,ip2_weight,ip2_bias) +140| out13 = softmax::forward(out12) +141| tmp_loss = cross_entropy_loss::forward(out13,yb) +142| loss = loss + tmp_loss +143| true_yb = rowIndexMax(yb) +144| predicted_yb = rowIndexMax(out13) +145| accuracy = mean(predicted_yb == true_yb)</em>100 +146| validation_loss = validation_loss + loss +147| validation_accuracy = validation_accuracy + accuracy +148| } +149| validation_accuracy = validation_accuracy / num_iters_per_epoch +150| print(“Iter:” + iter + “, validation loss:” + validation_loss + “, validation accuracy:” + validation_accuracy) +151| } +152| } +153| # Learning rate +154| lr = (0.009999999776482582 * 0.949999988079071^e) +155|}</p> + +<p>Iter:100, training loss:0.24014199350958168, training accuracy:87.5 +class precision recall f1-score num_true_labels +1.0000000 1.0000000 1.0000000 1.0000000 3.0000000 +2.0000000 1.0000000 1.0000000 1.0000000 8.0000000 +3.0000000 0.8888889 0.8888889 0.8888889 9.0000000 +4.0000000 0.7500000 0.7500000 0.7500000 4.0000000 +5.0000000 0.7500000 1.0000000 0.8571429 3.0000000 +6.0000000 0.8333333 1.0000000 0.9090909 5.0000000 +7.0000000 1.0000000 1.0000000 1.0000000 8.0000000 +8.0000000 0.8571429 0.7500000 0.8000000 8.0000000 +9.0000000 1.0000000 0.5714286 0.7272727 7.0000000 +10.0000000 0.7272727 0.8888889 0.8000000 9.0000000</p> + +<p>Iter:200, training loss:0.09555593867171894, training accuracy:98.4375 +class precision recall f1-score num_true_labels +1.0000000 1.0000000 1.0000000 1.0000000 10.0000000 +2.0000000 1.0000000 1.0000000 1.0000000 3.0000000 +3.0000000 1.0000000 1.0000000 1.0000000 9.0000000 +4.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +5.0000000 1.0000000 1.0000000 1.0000000 7.0000000 +6.0000000 1.0000000 1.0000000 1.0000000 8.0000000 +7.0000000 1.0000000 0.6666667 0.8000000 3.0000000 +8.0000000 1.0000000 1.0000000 1.0000000 9.0000000 +9.0000000 0.8571429 1.0000000 0.9230769 6.0000000 +10.0000000 1.0000000 1.0000000 1.0000000 3.0000000</p> + +<p>Iter:300, training loss:0.058686794512570216, training accuracy:98.4375 +class precision recall f1-score num_true_labels +1.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +2.0000000 1.0000000 1.0000000 1.0000000 9.0000000 +3.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +4.0000000 1.0000000 1.0000000 1.0000000 8.0000000 +5.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +6.0000000 1.0000000 0.8750000 0.9333333 8.0000000 +7.0000000 1.0000000 1.0000000 1.0000000 5.0000000 +8.0000000 1.0000000 1.0000000 1.0000000 2.0000000 +9.0000000 0.8888889 1.0000000 0.9411765 8.0000000 +10.0000000 1.0000000 1.0000000 1.0000000 8.0000000</p> + +<p>Iter:400, training loss:0.08742103541529415, training accuracy:96.875 +class precision recall f1-score num_true_labels +1.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +2.0000000 0.8000000 1.0000000 0.8888889 8.0000000 +3.0000000 1.0000000 0.8333333 0.9090909 6.0000000 +4.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +5.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +6.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +7.0000000 1.0000000 1.0000000 1.0000000 7.0000000 +8.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +9.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +10.0000000 1.0000000 0.9230769 0.9600000 13.0000000</p> + +<p>Iter:500, training loss:0.05873836245880005, training accuracy:98.4375 +class precision recall f1-score num_true_labels +1.0000000 1.0000000 1.0000000 1.0000000 3.0000000 +2.0000000 1.0000000 1.0000000 1.0000000 5.0000000 +3.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +4.0000000 1.0000000 1.0000000 1.0000000 9.0000000 +5.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +6.0000000 1.0000000 0.8571429 0.9230769 7.0000000 +7.0000000 0.8571429 1.0000000 0.9230769 6.0000000 +8.0000000 1.0000000 1.0000000 1.0000000 9.0000000 +9.0000000 1.0000000 1.0000000 1.0000000 10.0000000 +10.0000000 1.0000000 1.0000000 1.0000000 5.0000000</p> + +<p>Iter:500, validation loss:260.1580978627665, validation accuracy:96.43954918032787 +Iter:600, training loss:0.07584116043829209, training accuracy:98.4375 +class precision recall f1-score num_true_labels +1.0000000 1.0000000 1.0000000 1.0000000 8.0000000 +2.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +3.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +4.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +5.0000000 1.0000000 1.0000000 1.0000000 5.0000000 +6.0000000 1.0000000 1.0000000 1.0000000 8.0000000 +7.0000000 1.0000000 1.0000000 1.0000000 8.0000000 +8.0000000 1.0000000 0.9230769 0.9600000 13.0000000 +9.0000000 1.0000000 1.0000000 1.0000000 5.0000000 +10.0000000 0.8333333 1.0000000 0.9090909 5.0000000</p> + +<p>Iter:700, training loss:0.07973166944626336, training accuracy:98.4375 +class precision recall f1-score num_true_labels +1.0000000 1.0000000 1.0000000 1.0000000 5.0000000 +2.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +3.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +4.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +5.0000000 1.0000000 1.0000000 1.0000000 5.0000000 +6.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +7.0000000 1.0000000 1.0000000 1.0000000 10.0000000 +8.0000000 0.8000000 1.0000000 0.8888889 4.0000000 +9.0000000 1.0000000 1.0000000 1.0000000 8.0000000 +10.0000000 1.0000000 0.9166667 0.9565217 12.0000000</p> + +<p>Iter:800, training loss:0.0063778595034221855, training accuracy:100.0 +class precision recall f1-score num_true_labels +1.0000000 1.0000000 1.0000000 1.0000000 9.0000000 +2.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +3.0000000 1.0000000 1.0000000 1.0000000 7.0000000 +4.0000000 1.0000000 1.0000000 1.0000000 7.0000000 +5.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +6.0000000 1.0000000 1.0000000 1.0000000 9.0000000 +7.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +8.0000000 1.0000000 1.0000000 1.0000000 8.0000000 +9.0000000 1.0000000 1.0000000 1.0000000 2.0000000 +10.0000000 1.0000000 1.0000000 1.0000000 6.0000000</p> + +<p>Iter:900, training loss:0.019673112167879484, training accuracy:100.0 +class precision recall f1-score num_true_labels +1.0000000 1.0000000 1.0000000 1.0000000 3.0000000 +2.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +3.0000000 1.0000000 1.0000000 1.0000000 3.0000000 +4.0000000 1.0000000 1.0000000 1.0000000 5.0000000 +5.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +6.0000000 1.0000000 1.0000000 1.0000000 10.0000000 +7.0000000 1.0000000 1.0000000 1.0000000 7.0000000 +8.0000000 1.0000000 1.0000000 1.0000000 7.0000000 +9.0000000 1.0000000 1.0000000 1.0000000 12.0000000 +10.0000000 1.0000000 1.0000000 1.0000000 7.0000000</p> + +<p>Iter:1000, training loss:0.06137978002508307, training accuracy:96.875 +class precision recall f1-score num_true_labels +1.0000000 1.0000000 1.0000000 1.0000000 5.0000000 +2.0000000 1.0000000 1.0000000 1.0000000 7.0000000 +3.0000000 1.0000000 1.0000000 1.0000000 8.0000000 +4.0000000 0.8333333 0.8333333 0.8333333 6.0000000 +5.0000000 1.0000000 1.0000000 1.0000000 5.0000000 +6.0000000 1.0000000 1.0000000 1.0000000 10.0000000 +7.0000000 1.0000000 1.0000000 1.0000000 3.0000000 +8.0000000 0.8888889 0.8888889 0.8888889 9.0000000 +9.0000000 1.0000000 1.0000000 1.0000000 7.0000000 +10.0000000 1.0000000 1.0000000 1.0000000 4.0000000</p> + +<p>Iter:1000, validation loss:238.62301345198944, validation accuracy:97.02868852459017 +Iter:1100, training loss:0.023325103696013115, training accuracy:100.0 +class precision recall f1-score num_true_labels +1.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +2.0000000 1.0000000 1.0000000 1.0000000 10.0000000 +3.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +4.0000000 1.0000000 1.0000000 1.0000000 4.0000000 +5.0000000 1.0000000 1.0000000 1.0000000 2.0000000 +6.0000000 1.0000000 1.0000000 1.0000000 10.0000000 +7.0000000 1.0000000 1.0000000 1.0000000 7.0000000 +8.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +9.0000000 1.0000000 1.0000000 1.0000000 9.0000000 +10.0000000 1.0000000 1.0000000 1.0000000 6.0000000 +… +```</p> + + + + </div> <!-- /container --> + + + + <script src="js/vendor/jquery-1.12.0.min.js"></script> + <script src="js/vendor/bootstrap.min.js"></script> + <script src="js/vendor/anchor.min.js"></script> + <script src="js/main.js"></script> + + + + + + <!-- Analytics --> + <script> + (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ + (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), + m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) + })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); + ga('create', 'UA-71553733-1', 'auto'); + ga('send', 'pageview'); + </script> + + + + <!-- MathJax Section --> + <script type="text/x-mathjax-config"> + MathJax.Hub.Config({ + TeX: { equationNumbers: { autoNumber: "AMS" } } + }); + </script> + <script> + // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. + // We could use "//cdn.mathjax...", but that won't support "file://". + (function(d, script) { + script = d.createElement('script'); + script.type = 'text/javascript'; + script.async = true; + script.onload = function(){ + MathJax.Hub.Config({ + tex2jax: { + inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], + displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], + processEscapes: true, + skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] + } + }); + }; + script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + + 'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'; + d.getElementsByTagName('head')[0].appendChild(script); + }(document)); + </script> + </body> +</html>
Added: systemml/site/docs/1.1.0/release-creation-process.html URL: http://svn.apache.org/viewvc/systemml/site/docs/1.1.0/release-creation-process.html?rev=1828046&view=auto ============================================================================== --- systemml/site/docs/1.1.0/release-creation-process.html (added) +++ systemml/site/docs/1.1.0/release-creation-process.html Fri Mar 30 04:31:05 2018 @@ -0,0 +1,285 @@ +<!DOCTYPE html> +<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> +<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> +<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> +<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> + <head> + <title>SystemML Release Creation Process - SystemML 1.1.0</title> + <meta charset="utf-8"> + <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> + + <meta name="description" content="Description of the SystemML release build process."> + + <meta name="viewport" content="width=device-width"> + <link rel="stylesheet" href="css/bootstrap.min.css"> + <link rel="stylesheet" href="css/main.css"> + <link rel="stylesheet" href="css/pygments-default.css"> + <link rel="shortcut icon" href="img/favicon.png"> + </head> + <body> + <!--[if lt IE 7]> + <p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> + <![endif]--> + + <header class="navbar navbar-default navbar-fixed-top" id="topbar"> + <div class="container"> + <div class="navbar-header"> + <div class="navbar-brand brand projectlogo"> + <a href="http://systemml.apache.org/"><img class="logo" src="img/systemml-logo.png" alt="Apache SystemML" title="Apache SystemML"/></a> + </div> + <div class="navbar-brand brand projecttitle"> + <a href="http://systemml.apache.org/">Apache SystemML<sup id="trademark">â¢</sup></a><br/> + <span class="version">1.1.0</span> + </div> + <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target=".navbar-collapse"> + <span class="sr-only">Toggle navigation</span> + <span class="icon-bar"></span> + <span class="icon-bar"></span> + <span class="icon-bar"></span> + </button> + </div> + <nav class="navbar-collapse collapse"> + <ul class="nav navbar-nav navbar-right"> + <li><a href="index.html">Overview</a></li> + <li><a href="https://github.com/apache/systemml">GitHub</a></li> + <li class="dropdown"> + <a href="#" class="dropdown-toggle" data-toggle="dropdown">Documentation<b class="caret"></b></a> + <ul class="dropdown-menu" role="menu"> + <li><b>Running SystemML:</b></li> + <li><a href="https://github.com/apache/systemml">SystemML GitHub README</a></li> + <li><a href="spark-mlcontext-programming-guide.html">Spark MLContext</a></li> + <li><a href="spark-batch-mode.html">Spark Batch Mode</a> + <li><a href="hadoop-batch-mode.html">Hadoop Batch Mode</a> + <li><a href="standalone-guide.html">Standalone Guide</a></li> + <li><a href="jmlc.html">Java Machine Learning Connector (JMLC)</a> + <li class="divider"></li> + <li><b>Language Guides:</b></li> + <li><a href="dml-language-reference.html">DML Language Reference</a></li> + <li><a href="beginners-guide-to-dml-and-pydml.html">Beginner's Guide to DML and PyDML</a></li> + <li><a href="beginners-guide-python.html">Beginner's Guide for Python Users</a></li> + <li><a href="python-reference.html">Reference Guide for Python Users</a></li> + <li class="divider"></li> + <li><b>ML Algorithms:</b></li> + <li><a href="algorithms-reference.html">Algorithms Reference</a></li> + <li class="divider"></li> + <li><b>Tools:</b></li> + <li><a href="debugger-guide.html">Debugger Guide</a></li> + <li><a href="developer-tools-systemml.html">IDE Guide</a></li> + <li class="divider"></li> + <li><b>Other:</b></li> + <li><a href="contributing-to-systemml.html">Contributing to SystemML</a></li> + <li><a href="engine-dev-guide.html">Engine Developer Guide</a></li> + <li><a href="troubleshooting-guide.html">Troubleshooting Guide</a></li> + <li><a href="release-process.html">Release Process</a></li> + </ul> + </li> + + <li class="dropdown"> + <a href="#" class="dropdown-toggle" data-toggle="dropdown">API Docs<b class="caret"></b></a> + <ul class="dropdown-menu" role="menu"> + <li><a href="./api/java/index.html">Java</a></li> + <li><a href="./api/python/index.html">Python</a></li> + </ul> + </li> + + <li class="dropdown"> + <a href="#" class="dropdown-toggle" data-toggle="dropdown">Issues<b class="caret"></b></a> + <ul class="dropdown-menu" role="menu"> + <li><b>JIRA:</b></li> + <li><a href="https://issues.apache.org/jira/browse/SYSTEMML">SystemML JIRA</a></li> + + </ul> + </li> + </ul> + </nav> + </div> + </header> + + <div class="container" id="content"> + + <h1 class="title">SystemML Release Creation Process</h1> + + + <!-- + +--> + +<ul id="markdown-toc"> + <li><a href="#release-creation-guidelines-documentation" id="markdown-toc-release-creation-guidelines-documentation">Release Creation Guidelines Documentation</a></li> +</ul> + +<h4 id="release-creation-guidelines-documentation">Release Creation Guidelines Documentation</h4> +<p>Prerequisite: <a href="https://github.com/SparkTC/development-guidelines/blob/master/project-release-guidelines.md">Project release guidelines</a></p> + +<p>Tips to prepare and release the build</p> + +<p>Step 0: Minimum changes and verification to be done before release build process starts.</p> + +<pre><code>1. ReadMe update and âMust Fixâ changes are already in. +2. Performance Test is passing for dataset size of 80GB and below. +</code></pre> + +<p>Step 1: Prepare the release.</p> + +<pre><code># Extract latest code to a directory +<GitRepoHome> + +# Go to dev/release directory +cd <GitRepoHome>/dev/release +</code></pre> + +<p>1.a. Dry Run (this is trial build, will not commit anything in repository).</p> + +<pre><code>e.g. (On Master branch with release candidate rc1, release version 0.15.0, and next development version 1.0.0-SNAPSHOT) +./release-build.sh --release-prepare --releaseVersion="0.15.0" --developmentVersion="1.0.0-SNAPSHOT" --releaseRc="rc1" --tag="v0.15.0-rc1" --dryRun + +e.g. (On branch-0.15 branch with release candidate rc2, release version 0.15.0, and next development version 0.15.1-SNAPSHOT) +./release-build.sh --release-prepare --releaseVersion="0.15.0" --developmentVersion="0.15.1-SNAPSHOT" --releaseRc="rc2" --tag="v0.15.0-rc2" --gitCommitHash="branch-0.15" --dryRun +</code></pre> + +<p>1.b. Compile release verification code.</p> + +<pre><code>./release-verify.sh --compile +</code></pre> + +<p>1.c. Run license verification.</p> + +<pre><code>./release-verify.sh --verifyLic +</code></pre> + +<p>1.d. Run command to do release prepare step (this will commit changes to the repository).<br /> + This is same as step 1.a, without âdryRun option.</p> + +<pre><code>e.g. (On the Master branch)<br> +./release-build.sh --release-prepare --releaseVersion="0.15.0" --developmentVersion="1.0.0-SNAPSHOT" --releaseRc="rc1" --tag="v0.15.0-rc1" + +e.g. (On the branch-0.15 branch) +./release-build.sh --release-prepare --releaseVersion="0.15.0" --developmentVersion="0.15.1-SNAPSHOT" --releaseRc="rc2" --tag="v0.15.0-rc2" --gitCommitHash="branch-0.15" +</code></pre> + +<p>1.e. Verify the release.<br /> + This will verify release on Mac Operating System (OS), assuming these steps are run on Mac OS. It will verify licenses, notice and all other required verification only on Mac OS. + Verification of licenses and notice is required only on one platform.</p> + +<pre><code>./release-verify.sh --verifyAll +</code></pre> + +<p>Step 2: Publish the release.</p> + +<pre><code>e.g. +./release-build.sh --release-publish --gitTag="v0.15.0-rc1" +</code></pre> + +<p>Step 3: Close the release candidate build on Nexus site.</p> + +<p>Visit <a href="https://repository.apache.org/#stagingRepositories">NexusRepository</a> site.</p> + +<pre><code>Find out SystemML under (Staging Repositories) link. It should be in Open State (status). Close it (button on top left to middle) with proper comment. Once it completes copying, URL will be updated with maven location to be sent in mail. +</code></pre> + +<p>Step 4: Send mail for voting (dev PMC [email protected]).</p> + +<p>Please check <a href="https://github.com/SparkTC/development-guidelines/blob/master/project-release-guidelines.md">Project release guidelines</a> +or previous mail thread for format/content of the mail.</p> + +<p>Step 5: Create a branch based on release to be released.</p> + +<pre><code># Create a branch based on TAG +Syntax: git branch <branch name> <Tag Name> +e.g. git branch branch-0.15 v0.15.0-rc1 + +# Push a branch to master repository +Syntax: git push origin <branch name> +(origin is https://git-wip-us.apache.org/repos/asf/systemml.git) +e.g. git push origin branch-0.15 +</code></pre> + +<p>Step 6: If there is failure to get votes then address issues and repeat from step 1.</p> + +<p>Step 7: If release has been approved, then make it available for general use for everyone.</p> + +<pre><code>7.a. Move distribution from dev to release (run following commands from command line). + +RELEASE_STAGING_LOCATION="https://dist.apache.org/repos/dist/dev/systemml/" +RELEASE_STAGING_LOCATION2="https://dist.apache.org/repos/dist/release/systemml/" + +e.g. for SystemML 0.15 rc2 build +svn move -m "Move SystemML 0.15 from dev to release" $RELEASE_STAGING_LOCATION/0.15.0-rc2 $RELEASE_STAGING_LOCATION2/0.15.0 + + +7.b. Move Nexus data from dev to release. +Visit following site and identify release sent for voting in step 3 above. It would be in âclosedâ state (status). + +https://repository.apache.org/#stagingRepositories + +Click on âReleaseâ button on top middle of the screen and complete the process. + +Note: Release candidates which were not approved can be dropped by clicking âdropâ button from top middle of the screen. + +7.c. Update pypi from following site (request someone who has the access). +https://pypi.python.org/pypi/systemml/ + +7.d. Update documents and release notes. + +7.e. Send ANNOUNCE NOTE. +To: [email protected] [email protected] +Subject e.g. +[ANNOUNCE] Apache SystemML 0.15.0 released. +</code></pre> + + + </div> <!-- /container --> + + + + <script src="js/vendor/jquery-1.12.0.min.js"></script> + <script src="js/vendor/bootstrap.min.js"></script> + <script src="js/vendor/anchor.min.js"></script> + <script src="js/main.js"></script> + + + + + + <!-- Analytics --> + <script> + (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ + (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), + m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) + })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); + ga('create', 'UA-71553733-1', 'auto'); + ga('send', 'pageview'); + </script> + + + + <!-- MathJax Section --> + <script type="text/x-mathjax-config"> + MathJax.Hub.Config({ + TeX: { equationNumbers: { autoNumber: "AMS" } } + }); + </script> + <script> + // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. + // We could use "//cdn.mathjax...", but that won't support "file://". + (function(d, script) { + script = d.createElement('script'); + script.type = 'text/javascript'; + script.async = true; + script.onload = function(){ + MathJax.Hub.Config({ + tex2jax: { + inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], + displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], + processEscapes: true, + skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] + } + }); + }; + script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + + 'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'; + d.getElementsByTagName('head')[0].appendChild(script); + }(document)); + </script> + </body> +</html>
