Author: reinwald
Date: Fri Mar 30 04:31:05 2018
New Revision: 1828046

URL: http://svn.apache.org/viewvc?rev=1828046&view=rev
Log:
Add missing 1.1.0 docs html files to website

Added:
    systemml/site/docs/1.1.0/algorithms-bibliography.html
    systemml/site/docs/1.1.0/algorithms-classification.html
    systemml/site/docs/1.1.0/algorithms-clustering.html
    systemml/site/docs/1.1.0/algorithms-descriptive-statistics.html
    systemml/site/docs/1.1.0/algorithms-matrix-factorization.html
    systemml/site/docs/1.1.0/algorithms-reference.html
    systemml/site/docs/1.1.0/algorithms-regression.html
    systemml/site/docs/1.1.0/algorithms-survival-analysis.html
    systemml/site/docs/1.1.0/beginners-guide-caffe2dml.html
    systemml/site/docs/1.1.0/beginners-guide-keras2dml.html
    systemml/site/docs/1.1.0/beginners-guide-python.html
    systemml/site/docs/1.1.0/beginners-guide-to-dml-and-pydml.html
    systemml/site/docs/1.1.0/contributing-to-systemml.html
    systemml/site/docs/1.1.0/debugger-guide.html
    systemml/site/docs/1.1.0/deep-learning.html
    systemml/site/docs/1.1.0/developer-tools-systemml.html
    systemml/site/docs/1.1.0/dml-language-reference.html
    systemml/site/docs/1.1.0/engine-dev-guide.html
    systemml/site/docs/1.1.0/hadoop-batch-mode.html
    systemml/site/docs/1.1.0/index.html
    systemml/site/docs/1.1.0/jmlc.html
    systemml/site/docs/1.1.0/native-backend.html
    systemml/site/docs/1.1.0/python-performance-test.html
    systemml/site/docs/1.1.0/python-reference.html
    systemml/site/docs/1.1.0/reference-guide-caffe2dml.html
    systemml/site/docs/1.1.0/release-creation-process.html
    systemml/site/docs/1.1.0/release-process.html
    systemml/site/docs/1.1.0/spark-batch-mode.html
    systemml/site/docs/1.1.0/spark-mlcontext-programming-guide.html
    systemml/site/docs/1.1.0/standalone-guide.html
    systemml/site/docs/1.1.0/troubleshooting-guide.html

Added: systemml/site/docs/1.1.0/algorithms-bibliography.html
URL: 
http://svn.apache.org/viewvc/systemml/site/docs/1.1.0/algorithms-bibliography.html?rev=1828046&view=auto
==============================================================================
--- systemml/site/docs/1.1.0/algorithms-bibliography.html (added)
+++ systemml/site/docs/1.1.0/algorithms-bibliography.html Fri Mar 30 04:31:05 
2018
@@ -0,0 +1,263 @@
+<!DOCTYPE html>
+<!--[if lt IE 7]>      <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]-->
+<!--[if IE 7]>         <html class="no-js lt-ie9 lt-ie8"> <![endif]-->
+<!--[if IE 8]>         <html class="no-js lt-ie9"> <![endif]-->
+<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
+    <head>
+        <title>SystemML Algorithms Reference - Bibliography - SystemML 
1.1.0</title>
+        <meta charset="utf-8">
+        <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
+        
+        <meta name="viewport" content="width=device-width">
+        <link rel="stylesheet" href="css/bootstrap.min.css">
+        <link rel="stylesheet" href="css/main.css">
+        <link rel="stylesheet" href="css/pygments-default.css">
+        <link rel="shortcut icon" href="img/favicon.png">
+    </head>
+    <body>
+        <!--[if lt IE 7]>
+            <p class="chromeframe">You are using an outdated browser. <a 
href="http://browsehappy.com/";>Upgrade your browser today</a> or <a 
href="http://www.google.com/chromeframe/?redirect=true";>install Google Chrome 
Frame</a> to better experience this site.</p>
+        <![endif]-->
+
+        <header class="navbar navbar-default navbar-fixed-top" id="topbar">
+            <div class="container">
+                <div class="navbar-header">
+                    <div class="navbar-brand brand projectlogo">
+                        <a href="http://systemml.apache.org/";><img 
class="logo" src="img/systemml-logo.png" alt="Apache SystemML" title="Apache 
SystemML"/></a>
+                    </div>
+                    <div class="navbar-brand brand projecttitle">
+                        <a href="http://systemml.apache.org/";>Apache 
SystemML<sup id="trademark">™</sup></a><br/>
+                        <span class="version">1.1.0</span>
+                    </div>
+                    <button type="button" class="navbar-toggle collapsed" 
data-toggle="collapse" data-target=".navbar-collapse">
+                        <span class="sr-only">Toggle navigation</span>
+                        <span class="icon-bar"></span>
+                        <span class="icon-bar"></span>
+                        <span class="icon-bar"></span>
+                    </button>
+                </div>
+                <nav class="navbar-collapse collapse">
+                    <ul class="nav navbar-nav navbar-right">
+                        <li><a href="index.html">Overview</a></li>
+                        <li><a 
href="https://github.com/apache/systemml";>GitHub</a></li>
+                        <li class="dropdown">
+                            <a href="#" class="dropdown-toggle" 
data-toggle="dropdown">Documentation<b class="caret"></b></a>
+                            <ul class="dropdown-menu" role="menu">
+                                <li><b>Running SystemML:</b></li>
+                                <li><a 
href="https://github.com/apache/systemml";>SystemML GitHub README</a></li>
+                                <li><a 
href="spark-mlcontext-programming-guide.html">Spark MLContext</a></li>
+                                <li><a href="spark-batch-mode.html">Spark 
Batch Mode</a>
+                                <li><a href="hadoop-batch-mode.html">Hadoop 
Batch Mode</a>
+                                <li><a href="standalone-guide.html">Standalone 
Guide</a></li>
+                                <li><a href="jmlc.html">Java Machine Learning 
Connector (JMLC)</a>
+                                <li class="divider"></li>
+                                <li><b>Language Guides:</b></li>
+                                <li><a href="dml-language-reference.html">DML 
Language Reference</a></li>
+                                <li><a 
href="beginners-guide-to-dml-and-pydml.html">Beginner's Guide to DML and 
PyDML</a></li>
+                                <li><a 
href="beginners-guide-python.html">Beginner's Guide for Python Users</a></li>
+                                <li><a href="python-reference.html">Reference 
Guide for Python Users</a></li>
+                                <li class="divider"></li>
+                                <li><b>ML Algorithms:</b></li>
+                                <li><a 
href="algorithms-reference.html">Algorithms Reference</a></li>
+                                <li class="divider"></li>
+                                <li><b>Tools:</b></li>
+                                <li><a href="debugger-guide.html">Debugger 
Guide</a></li>
+                                <li><a 
href="developer-tools-systemml.html">IDE Guide</a></li>
+                                <li class="divider"></li>
+                                <li><b>Other:</b></li>
+                                <li><a 
href="contributing-to-systemml.html">Contributing to SystemML</a></li>
+                                <li><a href="engine-dev-guide.html">Engine 
Developer Guide</a></li>
+                                <li><a 
href="troubleshooting-guide.html">Troubleshooting Guide</a></li>
+                                <li><a href="release-process.html">Release 
Process</a></li>
+                            </ul>
+                        </li>
+                        
+                        <li class="dropdown">
+                            <a href="#" class="dropdown-toggle" 
data-toggle="dropdown">API Docs<b class="caret"></b></a>
+                            <ul class="dropdown-menu" role="menu">
+                                <li><a 
href="./api/java/index.html">Java</a></li>
+                                <li><a 
href="./api/python/index.html">Python</a></li>
+                            </ul>
+                        </li>
+                        
+                        <li class="dropdown">
+                            <a href="#" class="dropdown-toggle" 
data-toggle="dropdown">Issues<b class="caret"></b></a>
+                            <ul class="dropdown-menu" role="menu">
+                                <li><b>JIRA:</b></li>
+                                <li><a 
href="https://issues.apache.org/jira/browse/SYSTEMML";>SystemML JIRA</a></li>
+                                
+                            </ul>
+                        </li>
+                    </ul>
+                </nav>
+            </div>
+        </header>
+
+        <div class="container" id="content">
+          
+            <h1 class="title"><a href="algorithms-reference.html">SystemML 
Algorithms Reference</a></h1>
+          
+
+          <!--
+
+-->
+
+<h1 id="bibliography">7. Bibliography</h1>
+
+<p><strong>[AcockStavig1979]</strong> Alan C. Acock and Gordon
+R. Stavig, A Measure of Association for Nonparametric
+Statistics, Social Forces, Oxford University
+Press, Volume 57, Number 4, June, 1979,
+1381&#8211;1386.</p>
+
+<p><strong>[AgrawalKSX2002]</strong> Rakesh Agrawal and
+Jerry Kiernan and Ramakrishnan Srikant and Yirong Xu,
+Hippocratic Databases, Proceedings of the 28-th
+International Conference on Very Large Data Bases (VLDB 2002),
+Hong Kong, China, August 20&#8211;23, 2002,
+143&#8211;154.</p>
+
+<p><strong>[Agresti2002]</strong> Alan Agresti, Categorical
+Data Analysis, Second Edition, Wiley Series in
+Probability and Statistics, Wiley-Interscience
+2002, 710.</p>
+
+<p><strong>[AloiseDHP2009]</strong> Daniel Aloise and Amit
+Deshpande and Pierre Hansen and Preyas Popat, NP-hardness of
+Euclidean Sum-of-squares Clustering, Machine Learning,
+Kluwer Academic Publishers, Volume 75, Number 2,
+May, 2009, 245&#8211;248.</p>
+
+<p><strong>[ArthurVassilvitskii2007]</strong>
+k-means++: The Advantages of Careful Seeding, David
+Arthur and Sergei Vassilvitskii, Proceedings of the 18th
+Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007),
+January 7&#8211;9, 2007, New Orleans, LA,
+USA, 1027&#8211;1035.</p>
+
+<p><strong>[Breiman2001]</strong> L. Breiman. Random forests. Machine 
Learning, 45(1):5–32, 2001.</p>
+
+<p><strong>[BreimanFOS1984]</strong> L. Breiman, J. H. Friedman, R. A. Olshen, 
and C. J. Stone. Classification and Regression Trees. Wadsworth, 1984.</p>
+
+<p><strong>[Chapelle2007]</strong> Olivier Chapelle, Training a Support Vector 
Machine in the Primal, Neural Computation, 2007.</p>
+
+<p><strong>[Cochran1954]</strong> William G. Cochran,
+Some Methods for Strengthening the Common $\chi^2$ Tests, 
+Biometrics, Volume 10, Number 4, December
+1954, 417&#8211;451.</p>
+
+<p><strong>[Collett2003]</strong> D. Collett. Modelling Survival Data in 
Medical Research, Second Edition. Chapman &amp; Hall/CRC Texts in Statistical 
Science. Taylor &amp; Francis, 2003.</p>
+
+<p><strong>[Gill2000]</strong> Jeff Gill, Generalized Linear
+Models: A Unified Approach, Sage University Papers Series on
+Quantitative Applications in the Social Sciences, Number 07-134,
+2000, Sage Publications, 101.</p>
+
+<p><strong>[Hartigan1975]</strong> John A. Hartigan,
+Clustering Algorithms, John Wiley~&amp;~Sons Inc.,
+Probability and Mathematical Statistics, April
+1975, 365.</p>
+
+<p><strong>[Hsieh2008]</strong> C-J Hsieh, K-W Chang, C-J Lin, S. S. Keerthi 
and S. Sundararajan, A Dual Coordinate Descent Method for Large-scale Linear 
SVM, International Conference of Machine Learning (ICML), 2008.</p>
+
+<p><strong>[Lin2008]</strong> Chih-Jen Lin and Ruby C. Weng and
+S. Sathiya Keerthi, Trust Region Newton Method for
+Large-Scale Logistic Regression, Journal of Machine Learning
+Research, April, 2008, Volume 9, 627&#8211;650.</p>
+
+<p><strong>[McCallum1998]</strong> A. McCallum and K. Nigam, A comparison of 
event models for naive bayes text classification, AAAI-98 workshop on learning 
for text categorization, 1998.</p>
+
+<p><strong>[McCullagh1989]</strong> Peter McCullagh and John Ashworth
+Nelder, Generalized Linear Models, Second Edition,
+Monographs on Statistics and Applied Probability, Number 37,
+1989, Chapman &amp; Hall/CRC, 532.</p>
+
+<p><strong>[Nelder1972]</strong> John Ashworth Nelder and Robert
+William Maclagan Wedderburn, Generalized Linear Models,
+Journal of the Royal Statistical Society, Series A
+(General), 1972, Volume 135, Number 3, 
+370&#8211;384.</p>
+
+<p><strong>[Nocedal1999]</strong> J. Nocedal and S. J. Wright, Numerical 
Optimization, Springer-Verlag, 1999.</p>
+
+<p><strong>[Nocedal2006]</strong> Optimization Numerical Optimization,
+Jorge Nocedal and Stephen Wright, Springer Series
+in Operations Research and Financial Engineering, 664,
+Second Edition, Springer, 2006.</p>
+
+<p><strong>[PandaHBB2009]</strong> B. Panda, J. Herbach, S. Basu, and R. J. 
Bayardo. PLANET: massively parallel learning of tree ensembles with mapreduce. 
PVLDB, 2(2):1426– 1437, 2009.</p>
+
+<p><strong>[Russell2009]</strong> S. Russell and P. Norvig, Artificial 
Intelligence: A Modern Approach, Prentice Hall, 2009.</p>
+
+<p><strong>[Scholkopf1995]</strong> B. Scholkopf, C. Burges and V. Vapnik, 
Extracting Support Data for a Given Task, International Conference on Knowledge 
Discovery and Data Mining (ICDM), 1995.</p>
+
+<p><strong>[Stevens1946]</strong> Stanley Smith Stevens,
+On the Theory of Scales of Measurement, Science
+June 7, 1946, Volume 103, Number 2684, 
+677&#8211;680.</p>
+
+<p><strong>[Vetterling1992]</strong>
+W. T. Vetterling and B. P. Flannery,
+Multidimensions in Numerical Recipes in C - The Art in Scientific Computing, 
W. H. Press and S. A. Teukolsky (eds.), Cambridge University Press, 1992.</p>
+
+<p><strong>[ZhouWSP08]</strong>
+Y. Zhou, D. M. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel 
collaborative filtering for the Netflix prize.
+In Algorithmic Aspects in Information and Management, 4th International 
Conference, AAIM 2008, Shanghai, China, June 23-25, 2008. Proceedings, pages 
337–348, 2008.</p>
+
+
+
+        </div> <!-- /container -->
+
+        
+
+        <script src="js/vendor/jquery-1.12.0.min.js"></script>
+        <script src="js/vendor/bootstrap.min.js"></script>
+        <script src="js/vendor/anchor.min.js"></script>
+        <script src="js/main.js"></script>
+        
+
+
+
+
+        <!-- Analytics -->
+        <script>
+            
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
+            (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new 
Date();a=s.createElement(o),
+            
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
+            
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
+            ga('create', 'UA-71553733-1', 'auto');
+            ga('send', 'pageview');
+        </script>
+
+
+
+        <!-- MathJax Section -->
+        <script type="text/x-mathjax-config">
+            MathJax.Hub.Config({
+                TeX: { equationNumbers: { autoNumber: "AMS" } }
+            });
+        </script>
+        <script>
+            // Note that we load MathJax this way to work with local file 
(file://), HTTP and HTTPS.
+            // We could use "//cdn.mathjax...", but that won't support 
"file://".
+            (function(d, script) {
+                script = d.createElement('script');
+                script.type = 'text/javascript';
+                script.async = true;
+                script.onload = function(){
+                    MathJax.Hub.Config({
+                        tex2jax: {
+                            inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ],
+                            displayMath: [ ["$$","$$"], ["\\[", "\\]"] ],
+                            processEscapes: true,
+                            skipTags: ['script', 'noscript', 'style', 
'textarea', 'pre']
+                        }
+                    });
+                };
+                script.src = ('https:' == document.location.protocol ? 
'https://' : 'http://') +
+                    
'cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
+                d.getElementsByTagName('head')[0].appendChild(script);
+            }(document));
+        </script>
+    </body>
+</html>


Reply via email to